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Multinomial Approximating Models for Options  

 

Abstract. We ensure non-negative probabilities for the Kamrad and Ritchken (1991) 

multinomial approximating model by bounding the stretch parameter, which parameterizes the 

size of the up- and down- jumps in the lattice.  Next, we propose the inclusion of an omitted 

second order term and derive analytical bounds in order to reduce errors.  We establish 

theoretical bounds and mathematical expressions to determine the number of nodes generated by 

the approximation process.  Numerical examples are presented to illustrate our findings.  
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1. Introduction 

Contingent claim models whose value depends on multiple sources of uncertainty have been 

developed for stock options in the finance literature (Kamrad and Ritchken 1991, Boyle 1988, 

Boyle Evnine and Gibbs 1989, Johnson 1987, and Stulz 1982). These models are useful for 

valuing real options having multiple sources of uncertainty.   Often numerical procedures are 

used to approximate the stochastic process when there are multiple sources of uncertainties 

because analytical solutions are unavailable. Numerical procedures can handle early exercise 

features of American options.  Such numerical procedures include finite difference schemes, 

lattice approaches and simulation.  

Several researchers have developed lattice models to value multivariate contingent claims 

on stock.  Boyle (1988) uses a trinomial lattice where he equates the first two moments to obtain 

jump probabilities. In order to ensure that jump probabilities are non-negative he introduces a 

stretch parameter, λ which need to be constrained.  Boyle considers values of λ ≥ 1 but does not 

provide ways to select a suitable stretch parameter.  Boyle, Evnine and Gibbs (BEG) (1989) 

consider an alternative approximation procedure that allows them to generalize the model for n 

state variables.  Boyle et al. (1989) uses a binomial lattice that gives a four-jump model when 

there are two state variables. The problem of negative probability is overcome by selecting a 

time step that is sufficiently small. Both these models do not however allow for horizontal jumps 

and do not provide the means to choose the value of time step that is sufficiently small.  Nelson 

and Ramaswamy (1990) show how to construct computationally simple binomial processes that 

converge weakly to commonly employed diffusions in financial models.  The method is based on 

the volatility stabilization transformation.   
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Kamrad and Ritchken (1991) propose a general multinomial approximation model for 

valuing claims on one or more state variables.  KR model is mathematically elegant.  Their 

research extends previous literature on multinomial approximating models by allowing for 

horizontal jumps.  The basis of KR model is similar to BEG model in that a multinomial lattice 

approximates the logarithmic return process.  KR model also uses a stretch parameter  λ.  The 

authors claim their model with horizontal jumps yields a feasible set of probabilities for any λ 

≥1.  Kamrad and Ritchken (1991) show that when λ = 1, the binomial model is a special case of 

their one state model and BEG model is a special case of their two state model. They generalize 

their model for k state variables and illustrate the model using three-state variables.  

Kamrad and Ritchken (1991) model has several limitations. KR model ignores higher 

order terms of time step in the approximation process when calculating jump probabilities.  As a 

result the probability expressions for estimating jump probabilities introduce an error when 

pricing an option.  Furthermore, the stretch parameter λ required to obtain a feasible set of 

probabilities is chosen arbitrarily.  Arbitrary selection may impose an additional problem since 

the probability values depend on λ.  Although Kamrad and Ritchken (1991) argue that any λ ≥1 

yields a feasible set of probabilities, we find that negative probabilities can occur when λ ≥ 1 

thus severely limiting model applicability.   

Our work is motivated by an imprecision in the KR model to value a compound option.  

The imprecision is due to (i) the stretch parameter, which parameterizes the up- and down- jump 

in the tree and (ii) omission of the second order terms of the time step.   We suggest including 

the omitted second order terms in the probability expressions for the KR model.  Then using the 

new probability expressions we develop bounds which condition the stretch parameter to ensure 

that probabilities are non-negative.  We prove theoretical results for the bounds and provide 
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numerical examples to illustrate model results.   The new probability expression are referred to 

as modified KR (MKR) model in this paper.   In order to illustrate the computational advantage 

of proposed MKR model over KR model we present a general formula for the number of nodes 

generated by the approximating process for a 2k +1 jumps and 2k jumps.  

 In the next sections we develop new probability expressions for a single state model, 

two-state model and a k-state model using a three-state model as an illustration.  We provide 

numerical examples under each case that show how negative probabilities may occur when λ ≥ 1 

for the KR model and illustrate the relative errors.   Next, in order to obtain a feasible set of 

probabilities for any time step we derive analytical bounds for the stretch parameter and 

correlation coefficients.   We illustrate though an example the gain in accuracy of the MKR 

model. Finally, we show the computational advantage of the MKR model over the KR model in 

terms of computational effort measured using the number of nodes generated by the process.  

Section 6 provides a conclusion.  

 

2.  Probability Expressions for One State Model 

Kamrad and Ritchken (1991) multinomial approximation approach is as follows.  We assume an 

underlying asset S follows a diffusion process with a drift rate µ = r - σ 
2/2 where,  r is the risk-

free rate, and σ  is the instantaneous standard deviation. Then for the asset over time interval  [ t , 

t + ∆t ] we have: 

                                   ,  )()(ln)(ln ttSttS ζ+=∆+                                (1) 

where the normal random variable ζ (t) has mean µ∆t and variance σ2 ∆t. Since we need to 

approximate the distribution for ζ (t) over the period [ t , t + ∆t ], we consider a discrete random 

variable ζ 
a(t) such that  
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where v = λσ √∆t and  the stretch parameter λ is to be determined. In order to determine the jump 

probabilities pi we equate the mean and variance of ζ 
a(t)  to the mean and variance of ζ (t).   

More specifically; 
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If we denote 1/θ as the coefficient of variation of the underlying asset then θ = µ /σ and since   

∑ pi  = 1, we obtain the following expressions for the MKR probabilities from 2(a) and 2(b): 
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KR model does not provide a way of selecting λ which may seriously limit the implementation 

of their model.   Recall that when λ is selected arbitrarily the following problems may arise:  (a) 

inability to guarantee a feasible set of probabilities; and (b) probability values depend on λ which 

will affect the option values.  The following Theorem provides bounds for the stretch parameter, 

which makes the MKR probability non-negative.  

      THEOREM 2.1: In the one state model for probabilities to be feasible (0 ≤ pi ≤ 1) the stretch 

parameter λ must satisfy:   11
2

2

t
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∆
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      PROOF: For the probabilities to be non-negative from equations (3a) to (3c) we obtain the 

required result. 
 

 It is apparent from Theorem 2.1 that the choice of stretch parameter λ is not arbitrary. It 

is a function of the coefficient of variation of the asset and time step. In order to compare the KR 

and the MKR models we set the stretch parameter to its lower bound t∆+= 21 θλ .  Note that 

when t∆+= 21 θλ  then p2 = 0 and MKR model collapse to a two jump model and a binomial 

model as the KR model does when ∆t is made sufficiently small. 

 REMARK 2.1. Kamrad and Ritchken (1991) claim that any λ ≥1 yields a feasible set of 

probabilities. Contrary to this we find that negative probabilities can occur as illustrated in the 

example below.  However, the MKR model always provides a feasible set of probabilities for the 

feasible bounds of λ. 

          EXAMPLE 2.1. Our first example deals with the situation when KR model gives negative 

probabilities.   Specifically we select the following model parameters.   Let r = 7%, σ = 3%, µ = 

0.0695 and θ = 2.3183. For ∆t = 0.25 ( n = 4) the probabilities from KR model with λ = 1 are ( 

1.08, 0, -0.08) and with λ = 1.2247 as considered by KR in their paper are ( 0.81, 0.33, -0.14). In 

the proposed model with λ = 1.5309 (obtained by setting λ =√(1 + θ2∆t)) yield the probabilities  ( 

0.88, 0, 0.12).  

            REMARK 2.2. It may be noted that assuming ∆t to be sufficiently small, Kamrad and 

Ritchken ignore the order term (µ∆t)2 in (2b). The resulting effect is not equating the variance of 

the two distributions, but considering the second moment of ζ (t) as equal to the variance of ζ 

a(t).  These omissions introduce errors in determining the jump probability pi as given in Table 1.  
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Insert Table 1 here 

 

As shown below the extent of this omission may be significant even for small values of ∆t.  

 EXAMPLE 2.2.  In this example we illustrate the size of the error  from ignoring the 

order terms.  Let r = 7%, σ = 8%, µ = 0.0668 and θ = 0.835. For ∆t = 0.25 ( n = 4) the 

probabilities from KR model with λ = 1 are ( 0.71, 0, 0.29) and from MKR model λ = 1.0836 are 

( 0.69, 0, 0.31).  Similarly when σ = 5%, ∆t = 0.1 ( n = 10) the probabilities from KR model with 

λ = 1 are ( 0.72, 0, 0.28) and from the proposed model λ = 1.0904 are ( 0.70, 0, 0.30). For σ = 

5%, ∆t = 0.5 ( n = 2) the probabilities from KR model with λ = 1 are ( 0.75, 0, 0.25) and from the 

proposed MKR model with λ = 1.1613 are ( 0.80, 0, 0.20). The percent absolute relative errors in 

estimating pi, defined as = 100|pi(KR)- pi(MKR)|/ pi(MKR), in these cases are given in Table 2. 

 

Insert Table 2 here 

 

3.  Probability Expressions for Two State Model 

We define the asset pair {S1(t), S2(t)}over time t  with joint density of the two underlying assets 

as bi-variate lognormal.  Assume the drift rate is µ i = r - σ i 
2/2 where σ i is the instantaneous 

standard deviation of the ith asset.  As in the one state model for each underlying asset over time 

interval  [ t , t + ∆t ] we have: 

                                          )()(ln)(ln ttSttS iii ζ+=∆+                                         (3) 

where ζ i (t) is a normal random variable with mean µi ∆t and variance σ2
i ∆t. Let  the 

instantaneous correlation between ζ1(t) and ζ2(t) be ρ.    
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 A pair of multinomial discrete random variables having the following distribution is used 

to approximate the joint normal random variable {ζ1(t), ζ2(t)};   

ζ1
a(t) ζ2

a(t) Probability 

ν 1 ν 2 p1 

ν 1 -ν 2 p2 

-ν 1 -ν 2 p3 

-ν 1 ν 2 p4 

0 0 p5 

 

where vi  = λiσ i√∆t (i= 1,2), and as before the stretch parameter λi is to be determined.   

A necessary condition for the convergence of true joint normal distribution and the 

approximate multinomial distribution is equality of mean, variance and covariance terms. 

Specifically this ensures that  

                             tpppp ∆=−−+ 143211 )(       :Mean µν     (3.1a) 

                                              tpppp ∆=+−− 243212 )( µν                (3.1b) 

                    ( ) ttpppp ∆=∆−+++ 2
1

2
14321

2
1 )(         :Variance σµν       (3.1c)            

                                           ( ) ttpppp ∆=∆−+++ 2
2

2
24321

2
2 )( σµν                               (3.1d)  

               ttpppp ∆=∆−−+− ρσσµµνν 21
2

21432121 )(       :Covariance                 (3.1e) 

          REMARK 3.1.  We now examine the implications of ignoring the O(∆t2) terms in the two-

state KR model.  The corresponding equations obtained by equating the variance of the true and 

approximating distributions in the KR model (as per equation 5(c) and 5(d)  page 1647 Kamrad 

and Ritchken (1991) ) are 
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where, 1/θ i is the coefficient of variation for asset i.
 

It is therefore evident that λi is a function of θ i and ∆t and λ1, λ2 will be equal if and only if  

θ 1 = θ2.   Thus the error in the KR model by ignoring the O(∆t) terms, which means equating the 

variance to the second moment has resulted in making λ1= λ2. 

       Next we obtain the estimations for jump probabilities from equations 3.1(1) through 3.1(e).  

Since ∑ pi = 1, the expressions for jump probabilities are given by: 
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To obtain a feasible set of jump probabilities we follow the same approach as in the one state 

model. We present the results in the form of theorems with proofs in Appendix.  We first derive 

the bound for the stretch parameters as per Theorem 3.1.  

      THEOREM 3.1: In the two state MKR model for probabilities to be feasible (0 ≤ pi ≤ 1) the 

stretch parameters λ1 and λ2 must satisfy  
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 We find that constraining the stretch parameter does not ensure positive probabilities for 

any ∆t since probability values are also a function of the correlation coefficient.  In order to 

ensure feasible probabilities we establish bounds for the instantaneous correlation coefficient ρ 

that makes the probabilities non-negative for any value of ∆t using t∆+= 2
11 1 θλ  from (3.3a) 

and λ2 from equation (3.3b).  Notice that when t∆+= 2
11 1 θλ  and λ2 from equation 3.3(b) MKR 

model collapses to a four jump model.   On the other hand, KR model with λ1= λ2 = 

t∆+= 2
11 θλ  gives a five jump model.  When λ1= λ2 = 1, then KR model collapses to the BEG 

model.   Theorem 3.2 provides bounds for correlation coefficient.  
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THEOREM 3.2: For a two-asset MKR model the probabilities will always be non-negative when  
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and λ* = λ2/λ1 = √(1 + θ 22∆t )/ √(1 + θ 12∆t ).    

The following example illustrate that a feasible set of bounds obtained from Theorem 3.2 

provide non negative probabilities for any ∆t. 

 EXAMPLE 3.1. For this example we take r = 7%, σ1 = 50%, σ2 = 100%, ∆t = 0.25 ( n = 

4) and λ1 = 1.0015 and λ2 = 1.0228 ( values obtained from equation 3.3a and 3.3b). From the 

MKR model the feasible bounds for ρ  are max[-0.765, -1.308] and min[1.172, 0.854] given by -

0.765≤ ρ ≤  0.854.  Any values of correlation coefficient between the two assets within this 

interval will always result in a feasible set of probabilities in MKR model; for instance ρ  = 0.85 

gives probabilities as ( 0.3949, 0.0776, 0.5275, 0, 0). However, there can be instances when KR 

model can give an infeasible set of probabilities, for example when ρ  = 0.85 and λ = 1.0015 

probabilities are ( 0.395, 0.076, 0.529, -0.003, 0.003).  

            COROLLARY 3.3: When θ 1=θ 2 = θ  then it implies that λ1= λ2 =λ and in order to 

obtain the feasible probabilities we must have t∆+= 21 θλ and  
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( ) ( )[ ] .1  212- ,  212max 22 ≤≤∆+−∆∆+−∆ ρθλθθλθ tttt

                      (3.6)   

 EXAMPLE 3.2. In our second example we set λ1 = λ2 = λ by selecting equal volatility 

for the two assets.  More specifically,  letting  r = 7%, σ1 = σ2 = 5%, ∆t = 0.1 ( n = 10) and λ = 

1.0904 ( value obtained from equation 3.3a). The feasible bounds for ρ  from the Corollary 3.3 

are max[-0.4298, -2.326] and 1, that means -0.43 ≤ ρ ≤  1.  For ρ  = -0.30 the MKR model gives 

probabilities as ( 0.43, 0.27, 0.03, 0.27, 0) and KR probabilities are ( 0.35, 0.27, -0.05, 0.27, 

0.16). The percent absolute relative error for the probabilities are (18.60, 0, 266, 0, ∞). 

 We next analyze how KR model behaves when time step ∆t varies.  If the time step ∆t is 

made sufficiently small, then λ1 and λ2 converge to 1 for any values of asset volatility σi and 

MKR model converges to the KR model.  As ∆t is made sufficiently small the bounds for the 

correlation coefficient become –1 ≤ρ ≤1.  Consequently, both the models will work for any 

values of ρ.   For example for both models with λ = 1, and when ρ = -1 the probability values are 

(p1 = p3 = p5 = 0) and  (p2 = p4 = 0.5).  In the case when ρ = +1 the probability values are (p2 = p4 

= p5 = 0) and  (p1 = p3 = 0.5).   This does not hold however, if λ is arbitrarily selected to be 

greater than 1.  

 

3.1  Comparison of the Accuracy on Option Prices with the KR and the MKR Models 

We compare the accuracy of the computed option prices using transition probabilities calculated 

from the KR and MKR models with true value on the maximum of two underlying assets.  We 

consider the data in Johnson (1987) with S1(0) = S2(0) = exercise price (X) = 40, σ1 = σ2 = 30%,  

r = 10%, ρ = 0.5, and λ = 1.  The computed option prices for T= 1, and 10 years are given in 

Table 3.  The figures in parenthesis give the percentage errors.  
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Insert Table 3 here 

 

4. Probability Expressions for k- State Model 

The approach for determining jump probabilities for two state variable model can be extended 

for k states.   We assume that joint density of k underlying assets follow a multi-variate 

lognormal distribution with instantaneous mean µ i = r - σ i 
2/2, and instantaneous standard 

deviation σ i.  We denote instantaneous correlation between assets i and j as ρij  and as before 

define 1/θ i as the coefficient of variation for asset i .  The total number of jump probabilities in 

the model are 2k +1 such that  
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Notice that as in the previous cases when t∆+= 2
11 1 θλ  ,  the MKR model collapses to a 2k 

jump model. 

 To illustrate the k state MKR model we consider the following three assets {S1(t), S2(t), 

S3(t)}. The approximating multivariate distribution {ζ1
a(t), ζ2

a(t), ζ3
a(t)} is now given by 

ζ1
a(t) ζ2

a(t) ζ3
a(t) Probability 

ν 1 ν 2 ν 3 p1 

ν 1 ν 2 -ν 3 p2 

ν 1 -ν 2 ν 3 p3 

ν 1 -ν 2 -ν 3 p4 

-ν 1 ν 2 ν 3 p5 

-ν 1 ν 2 -ν 3 p6 

-ν 1 -ν 2 ν 3 p7 

-ν 1 -ν 2 -ν 3 p8 

0 0 0 p9 

 

             REMARK 4.1.  Here we investigate the implications of ignoring the O(∆t2) terms in the 

KR model.  We first equate the variance terms of the true and approximate distributions to obtain 

the following set of equations from KR and MKR models.  The KR model results in  
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implying that λ1 = λ2 =λ3.   And from the MKR model we get  
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From the above expressions it evident that λi are equal if and only if θ i = θ .   Ignoring O(∆t) 

terms in the KR model as we have shown introduces an error in the probability expressions.  

Next the resulting expressions for MKR probabilities pm, for m = 1, 2, …..8 from equation (4.2a) 

are 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ∆+
+

∆+
+

∆+
+

∆+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++∆=

32

3223

31

3113

21

2112
2

1

2
1

3

3

2

2

1

1
1

1
8
1

λλ
θθρ

λλ
θθρ

λλ
θθρ

λ
θ

λ
θ

λ
θ

λ
θ tttt

tp
     (4.3 a)

 

      ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ∆+
−

∆+
−

∆+
+

∆+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+∆=

32

3223

31

3113

21

2112
2

1

2
1

3

3

2

2

1

1
2

1
8
1

λλ
θθρ

λλ
θθρ

λλ
θθρ

λ
θ

λ
θ

λ
θ

λ
θ tttttp

        (4.3 b) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ∆+
−

∆+
+

∆+
−

∆+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−∆=

32

3223

31

3113

21

2112
2

1

2
1

3

3

2

2

1

1
3

1
8
1

λλ
θθρ

λλ
θθρ

λλ
θθρ

λ
θ

λ
θ

λ
θ

λ
θ tttt

tp
    (4.3 c)

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ∆+
+

∆+
−

∆+
−

∆+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−∆=

32

3223

31

3113

21

2112
2

1

2
1

3

3

2

2

1

1
4

1
8
1

λλ
θθρ

λλ
θθρ

λλ
θθρ

λ
θ

λ
θ

λ
θ

λ
θ tttt

tp
    (4.3 d)

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ∆+
+

∆+
−

∆+
−

∆+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−∆=

32

3223

31

3113

21

2112
2

1

2
1

3

3

2

2

1

1
5

1
8
1

λλ
θθρ

λλ
θθρ

λλ
θθρ

λ
θ

λ
θ

λ
θ

λ
θ tttt

tp
 (4.3 e) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ∆+
−

∆+
+

∆+
−

∆+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−∆=

32

3223

31

3113

21

2112
2

1

2
1

3

3

2

2

1

1
6

1
8
1

λλ
θθρ

λλ
θθρ

λλ
θθρ

λ
θ

λ
θ

λ
θ

λ
θ tttt

tp
  (4.3 f) 



 18

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ∆+
−

∆+
−

∆+
+

∆+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−−∆=

32

3223

31

3113

21

2112
2

1

2
1

3

3

2

2

1

1
7

1
8
1

λλ
θθρ

λλ
θθρ

λλ
θθρ

λ
θ

λ
θ

λ
θ

λ
θ tttt

tp
  (4.3 g)

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ∆+
+

∆+
+

∆+
+

∆+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−∆=

32

3223

31

3113

21

2112
2

1

2
1

3

3

2

2

1

1
8

1
8
1

λλ
θθρ

λλ
θθρ

λλ
θθρ

λ
θ

λ
θ

λ
θ

λ
θ tttt

tp
  (4.3 h)

 

and from equation (4.2b) we get 
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To obtain a feasible set of jump probabilities we follow the same approach as in the two-state 

model. We present results in the form of theorems with proofs in Appendix.  The following 

theorem provides bounds for the stretch parameters.  

 THEOREM 4.1: In the three state MKR model for probabilities to be feasible (0 ≤ pi ≤ 1) 

the stretch parameters λ1 λ2 and λ3 must satisfy 

                                                         1 2
11 t∆+≥ θλ

                                                        (4.4 a) 
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and                                                 
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                                                       (4.4 c ) 
 

In order to obtain bounds for the correlation coefficients we set the value of t∆+= 2
11 1 θλ  .  

Next we obtain bounds for the instantaneous correlation coefficients ρij that makes the 

probabilities non-negative for any value of ∆t.  Without loss of generality for mathematical 

tractability we assume that the instantaneous correlation coefficients follow the correlation 

structure ρ12 = ρ, ρ13 = ρ + k1, ρ23 = ρ + k2 where k1, and  k2 are the constants such that - 1≤ ρij ≤ 

1. 
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 THEOREM 4.2: For a three-asset MKR model the probabilities will always be non-

negative when  

                                    
[ ] [ ].6,....2,1for     ,   min   ,   max 21 =≤≤ iULL iρ

                                     (4.5) 

In order for a feasible set of jump probabilities we must have  
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where λ12 = λ1/λ2 and λ13 = λ1/λ3.    

Using following example we illustrate below that the feasible bounds obtained from Theorem 4.2 

gives non negative probabilities.  

  EXAMPLE 4.1. In this example we let r = 7%, σ1 = 10%, σ2 = 5% σ3 = 40%, ∆t = 0.1 ( n 

= 10) , k1 = 0.10 and k2 = 0.15 and λ1 = 1.0209, λ2 = 1.0904, λ3 = 1.0000 ( value obtained from 

Theorem 4.1). The feasible bounds for ρ  from the Theorem 4.2 are max[-0.68, -0.26] and 
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min[1.46, 0.81, 0.80, 1.19, 1.30, 0.24],  given by -0.26≤ ρ ≤  0.24. Let k1 = 0.10 and k2 = 0.15 

then for ρ 12 = -0.26,    ρ 13 = -0.16 and ρ 23 = -0.11. The MKR model gives probabilities as  

( 0.15, 0.21, 0.11, 0.13,0.17,0.16,0.06,0,0) and KR with (λ  = 1) probabilities are ( 0.14, 0.21, 

0.12, 0.14,0.19,0.18,0.04,-0.02,0). If the time step ∆t is made sufficiently small, then λi (i = 1, 2, 

3) converges to 1 and the MKR model converges to KR model.  

 COROLLARY 4.3: When θ 1=θ 2 =θ 2= θ  then it implies that λ1= λ2 = λ3 = 

t∆+= 21 θλ  and λ12= λ13 = 1. Assuming ρ12 = ρ, ρ13 = ρ + k1, ρ23 = ρ + k2 with constants k1, k2 

then in order to obtain the feasible probabilities we must have 
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where  

( ) 211 1 kktU ++∆+= λθ
   , 

( ) 212 1 kktU +−∆+= λθ
         , 

( ) 213 1 kktU −+∆−= λθ  

( ) 214 1 kktU −+∆+= λθ
, 

( ) 215 1 kktU +−∆−= λθ
     , 

( ) .1 216 kktU ++∆−= λθ  

The feasible bounds from Corollary 4.3 that provides non negative probabilities are illustrated 

below in example 4.2 

 EXAMPLE 4.2. Let r = 7%, σ1 = σ2 = σ3 = 5%, ∆t = 0.1 ( n = 10) k1 = 0.10 and k2 = 0.15  

and λ = 1.0904 ( value obtained from equation 4.4a). The feasible bounds for ρ  from the 

Corollary 4.2 are max[-1.14, -0.19] and min[1.22, 1.42, 0.58, 1.52, 0.48, 0.28],  given by -0.19≤ 

ρ ≤  0.28. Let k1 = 0.10 and k2 = 0.15 then ρ 12 = -0.19, ρ 13 = -0.09 and ρ 23 = -0.04. The MKR 

model estimates probabilities as ( 0.30, 0.15, 0.17, 0.08,0.18,0.07,0.05,0,0) and KR with (λ  = 1) 

probabilities are ( 0.25, 0.17, 0.20, 0.10,0.21,0.09,0.06,-0.08,0). As before if the time step ∆t is 
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made sufficiently small, then λi (i = 1, 2, 3) converges to 1 and the MKR model and  KR model 

are identical.  

             COROLLARY 4.4: When θ 1=θ 2 =θ 2= θ  then it implies that λ1= λ2 = λ3 = λ  and λ12= 

λ13 = 1.  Assuming ρij = ρ then in order to obtain the feasible probabilities we must have 

t∆+= 21 θλ and  
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3
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              (4.8) 

 

We use the following example to illustrate that feasible bounds from Corollary 4.4 provide the 

required set of non negative probabilities. 

 EXAMPLE 4.3.  As before we set r = 7%, σ1 = σ2 = σ3 = 5%, and now change ∆t = 0.01 

( n = 100) giving λ = 1.0094 ( value obtained from equation 4.4a). The feasible bounds for ρ  

from the Corollary 4.3 are max[-0.50, -0.22] and min[0.086, 1.14],  given by -0.22 ≤ ρ ≤  0.086.  

For ρ  = -0.22 the MKR model gives probabilities as ( 0.10, 0.17, 0.17, 0.13,0.17,0.13,0.13,0,0) 

and KR with (λ  = 1) probabilities are ( 0.09, 0.17, 0.17, 0.14,0.17,0.14,0.14,-0.01,0).  

Also in this case when the time step ∆t is made sufficiently small, then λi (i = 1, 2, 3) converges 

to 1 and the MKR model converges to the KR model.  In addition to this we observe the 

following.  As ∆t is made sufficiently small the bounds for the correlation coefficient become      

-1/3 ≤ ρ ≤ 1.  Now for both models with λ = 1 , and ρ = -0.33, we get the probability values (p1 = 

p8= p9 = 0)  and (pi =1/6 , for  i = 2, ..7)) and with ρ = 1, we get (p1 = p8= 1/2)  and (pi = 0, for  i 

= 2, ..,7 and p9 = 0).  
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5. Computational Effort 

To implement the KR and MKR models, one has to decide on the size of the time step in the 

approximating process ∆t = T/n, where T is the duration of the option, and n is the number of 

iterations.  For model comparison purpose we use the total number of nodes generated by the 

process as a criteria to assess computational effort.  Here the number of nodes refers to a possible 

state generated by the approximating process.  For example, a trinomial process generates three 

nodes (states) after elapse of time ∆t; an up node, a horizontal node and a down node.  Kamrad 

and Ritchken (1991) only provide expressions to compute the number of nodes for one and two 

state models.  Here, we first derive the mathematical expressions for computing the total number 

of node generated for a k-assets model with and without horizontal jumps.  Using numerical 

examples we then compare the computational effort required for implementing a single state, two 

state and three state KR and MKR models.   

 We define Nk(n) as the total number of nodes generated in n  iterations for a model with k 

state variables.  For the k- state model with 2k +1 jumps the total number of nodes generated by 

the process after n iterations we have 
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 and with 2k jumps,  
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where,  

( ) ............3,2,1,0                            ,........................21, =+++= rjrjS rrr
                        (5.1c ) 

In order to evaluate S(j,r) we use the following result (Theorem A.3, page 562, Miller and Miller 

1999), 
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If negative probabilities occur in the KR model ∆t has to be made further small to obtain feasible 

probabilities.  This however, would result in increasing the number of nodes and making it 

computationally expensive.  The numerical examples in the next sub sections best illustrate this 

point. 

 

5.1 One State Model 

We first consider the one state model. When k =1 the total number of nodes for a trinomial 

model can be computed by 

( ) ( ) ( )( ) ( )6116
6
1

2
211 23

0 0 0

1
1 +++=⎥⎦

⎤
⎢⎣
⎡ ++

=+=∑∑ ∑
= = =

nnnjjinN
n

j

j

i

n

j
               (5.1.1a) 

and for the binomial model is given by 
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 EXAMPLE 5.1 Here we consider our previous Example 2.1. To make the KR jump 

probabilities feasible, we need to change ∆t = 0.15 when λ = 1. This yields the following feasible 

set of probabilities (0.95, 0, 0.05). When λ = 1.2247 we need to change ∆t = 0.12 in order to 

obtain the positive probabilities ( 0.66, 0.33, 0.01).  It is therefore evident that the only way to 

obtain a feasible set of probabilities without increasing λ arbitrarily is to increase the number of 

nodes.  Notice that in Example 2.1 the MKR model provides a feasible set of probabilities for 

any ∆t.  In the limiting case when for any ∆t = 0.0001 (n = 104) the probabilities from both 

model are (0.5, 0, 0.5) since λ in the MKR converges to 1.  
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5.2 Two State Model 

Next we consider a two state model. When k =2 then the total number of nodes generated in a 

five  jump model is  
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and in a four jump model is 
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.                (5.1.2b) 

 The following example provides an insight.  

 EXAMPLE 5.2. We consider r = 7%, σ1 = 10%, σ2 = 5%, and λ = 1.0515 ( value 

obtained from equation 3.3b).   For a set of increasing ∆t values we evaluate the KR probabilities 

as indicated in Table 4.  

Insert Table 4 here 

 

Notice that the number of iterations required to implement the KR model, is n = 1667.  From 

equations 5.1.2a and 5.1.2b, the resulting total number of nodes generated by the process after n 

iterations for a 5-jump model and a four-jump model will be very large and impose heavy 

computational burden. 

 

5.3 Three State Model 

As a final example we consider a three state model.  When k =3 then the total number of nodes in 

a 9 jump model is given by  
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and in an eight jump model is given by 
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The following example illustrates the computational effort that is required.   

EXAMPLE 5.3 For the last example we take r = 7%, σ1 = 10%, σ2 = 5%, σ3 = 60%, and 

employ the KR model with λ = 1. Table 5 provides the KR probabilities for a set of increasing ∆t 

values.   

Insert Table 5 here 

 

The number of iteration necessary to obtain the feasible probabilities in the KR model is 

n = 17.  From equations 5.1.3a and 5.1.3b, the resulting total number of nodes for 9-jump model 

and an 8-jump model are 123,224 and 29241. This would require an enormous computational 

effort. 

Hence our theoretical results in section 2 through section 4 can be exploited to improve 

computational effort.   

 

6. Conclusion 

We included an omitted second order term in computing the transition probabilities in the KR 

model to value contingent claims whose value depends on multiple sources of uncertainty.  We 

demonstrated the accuracy of the MKR model over the KR model using option prices on the 
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maximum of two assets. Our analysis suggest that the KR model should be used when the time 

step is very small and when there are fewer state variables implying it is only then the model 

becomes computationally inexpensive.   We proved that bounds for the stretch parameter and the 

correlation coefficient could be exploited to obtain a feasible set of probabilities without 

imposing heavy computational burden.  In addition, we developed general expressions to 

determine the number of nodes generated in the approximation process when there are k state 

variables.  

The probability estimates from the MKR model are more accurate than the probability 

estimates based on the KR model which ignore the second order terms of the time step.  We have 

however shown that the two models provide identical probability estimates when the time step is 

very small.  The previous research including Kamrad and Ritchken (1991) do not provide an 

objective way of selecting the stretch parameter. The examples that we selected show that 

negative probabilities may occur limiting the usefulness of the KR model.   Also, option values 

may be different for different stretch parameters.   Adapting the framework that we suggested as 

we have shown reduces the computational effort.  More importantly it provides a model where 

positive probabilities are guaranteed by constraining the correlation coefficient.  Knowing the 

feasible range of the correlation coefficient indicates when the multinomial approximation model 

can be applied.  
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Appendix 

Two state Model 

     Proof of Theorem 3.1 

From equations 3.1c and 3.1(d) we have  
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From equations 3.2 e and 3.3a we get t∆+≥ 2
11 1 θλ  for p5  ≥ 0 and .   
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   Proof of Theorem 3.2 

From equation 3.2 a., for p1 ≥ 0, we must have  
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Multiplying A2 by λ1λ2  and  using equation A.1 we obtain  
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Similarly we obtain the following bounds that make pi ≥ 0, for i = 2,3, and 4. 
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Therefore, in the two asset model the probabilities will always be non negative when  
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Three State Model  

      Proof of Theorem 4.1 

By equating the pair-wise covariance terms we obtain 
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From equation (4.3i) for p9  ≥ 0 we get  
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Next using t∆+= 2
11 1 θλ  and λ2 , λ3 from equations A10 and A11  we obtain bounds for the 

instantaneous correlation coefficients ρij  that makes the probabilities non-negative for any value 

of ∆t.  

         Proof of Theorem 4.2 

From equations 4.3 a., for p1 ≥ 0, we must have  
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From equation A.7 and A.8 we obtain  
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Assume that the instantaneous correlation coefficients to follow correlation structure ρ12 = ρ, ρ13 

= ρ + k1, ρ23 = ρ + k2 with constants k1, k2 we obtain the required result as 

( ) ( ) ( )[ ] ( )
( ) 1

13121312

131221311312321331122113312211
2

11
L

kkttt
=

++
++∆+++∆+++∆+

−≥
λλλλ

λλλλλθθλθθλθθλθλθθλθ
ρ

                      

(A12) 

Similarly we obtain the following bounds that make pi ≥ 0, for i = 2,3, and 8. 
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For a three-asset model the probabilities will always be non negative when  
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Table 1 

 Errors Resulting by Ignoring O(∆t) 

Probability Error 

p1 22 2λθ t∆  

p2 22 λθ t∆−  

p3 22 2λθ t∆  
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Table 2 

 Percent Absolute Relative Errors 

σ = 8%, ∆t = 0.25 σ = 8%, ∆t = 0.1 σ = 5%, ∆t = 0.5 

2.90 2.89 6.25 

0 0 0 

6.45 6.67 25 
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Table 3 

 Option Prices with the KR and the MKR Models 

T True Option Price KR Model MKR Model 

1 Year 9.94 9.68 (-2.8%) 9.70 (-2.6%) 

10 Years 40.54 37.39 (-7.7%) 38.03 (-6.2%) 
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Table 4  

Process Iterations and Probabilities for a Two State Model 

∆t n KR Probabilities 

0.25 4 0.252, 0.355, -0.229, 0.527, 0.096 

0.0007 1420 0.024, 0.436, -0.001, 0.445, 0.096 

0.0006 1667 0.23, 0.437, 0, 0.445, 0.096 
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Table 5 

 Process Iterations and Probabilities for a Three State Model 

∆t n KR Probabilities 

0.25 4 0.3, 0.2, 0.06, 0.1, 0.17, 0.17, -0.07, 0.07, 0 

0.07 14 0.24, 0.14, 0.08, 0.12, 0.16, 0.14, -0.01, 0.12, 0 

0.06 17 0.24, 0.13, 0.09, 0.12, 0.16, 0.14, 0, 0.13, 0 

 

 

 

 

 


