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Abstract 

In this paper we demonstrate application of a statistical technique to estimate the 

volatility of volatility of a stock, based on re-sampling method. The jackknife technique 

is easy to implement, useful in case of small sample data and does not place a heavy 

burden on data requirements. The paper describes the jackknife procedure and illustrates 

how it can be used to estimate the volatility of volatility. To demonstrate its practical use 

the pricing bias is analyzed using the stochastic volatility estimate as input in Hull and 

White (1987) model.  Finally, confidence intervals are constructed for selecting among 

different weighting schemes as summarized in Mayhew (1995).  The proposed technique 

is ideal for small data sets when implementing stochastic option pricing models.  
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The Jackknife Estimator for Estimating Volatility of Volatility of a Stock 

 

Introduction  

The Black-Scholes option-pricing model for valuing a European option on a 

dividend-protected stock depends upon five parameters, the stock price (S), exercise price 

(K), volatility of the stock (σ), time to maturity (T) and the risk-free rate (r).   The value 

of a call option (C) can be written as  

)(N)(N 21 dKedSC rT−−=  
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and N(d) is the cumulative normal distribution value evaluated at d. 

Except for the volatility of the stock, all of the other parameters of the model are 

relatively easy to observe.   The historic volatility of the stock can be estimated by 

computing the standard deviation of continuous price return of a series of recent stock 

prices. Along with the other parameters, the historic volatility can be plugged into the 

Black-Scholes formula to derive a price for the option.   As an alternative, the stock's 

volatility can be inferred from the market price of a stock by inverting the Black-Scholes 

formula.   This procedure involves substituting the option's market price along with 

values for the exercise price, the time to maturity, risk free rate and the initial stock price 

in the model and solving for the volatility parameter. The volatility parameter based on 

the market price of an option is called the implied volatility. 

The Black and Scholes (BS) formula depends on 10 unrealistic assumptions but 

the formula works well than any other formula in a wide range of circumstances (Black 

1993). Among others, a critical assumption of the BS model is that a stock's volatility is 
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known and doesn't change over the life of the option. Contrary to this assumption, 

empirical evidence on stock prices and their derivatives strongly suggest that the 

volatility of a stock is not constant. The asset price volatility is indeed stochastic. 

Consequently, changes in the volatility of a stock may have a major impact on the value 

of an option, especially if the option is far out-of-the money. 

Since the development of the path breaking BS (1973) model, many researchers 

have tried to relax its most stringent assumptions.   Researchers have introduced 

stochastic volatility models that relax the constant volatility assumption.   When asset 

prices do not exhibit continuous processes, and researchers have introduced jump 

diffusion models Merton (1976), Cox and Ross (1976).    Many researchers including 

Scott (1987, 1991), Hull and White (1987, 1988), Heston (1993a and 1993b) have 

generalized the BS model to incorporate stochastic volatility.   In order to implement 

stochastic option pricing models, an input parameter, the volatility of volatility of the 

asset has to be estimated.   Ball and Roma (1994), state that estimation problems in 

implementing stochastic volatility models are a promising area for future research. 

 The following quote from Black's (1993) article and above observation by Ball 

and Roma (1994) motivated our research: '' Since the volatility can change, we should 

really include ways in which it can change the formula. The option value will depend on 

the entire future path that we expect the volatility to take, and on the uncertainty about 

what the volatility will be at each point in the future. One measure of that volatility is the 

volatility of volatility''. The basic question that leads from the above is: how can one 

measure a stock's volatility of volatility? Also, if the volatility of an underlying asset 
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itself is stochastic, as assumed in stochastic volatility models, from an implementation 

point of view, it is important to estimate the volatility of volatility. 

 Hull and White (1987) suggest two alternative methods to estimate the volatility 

of volatility, which is a parameter in their stochastic option model.  They compare each 

of the two methods. First, the volatility of volatility is estimated by examining the 

changes in volatility implied by option prices. Using the implied volatility is an indirect 

procedure and the results they argue can be contaminated since the changes in implied 

volatility to some extent can be attributed to pricing errors in the options. Alternatively, 

they suggest that one could use the changes in estimates of the actual variances to 

estimate the volatility of volatility. This however, would require very large amounts of 

data. 

 In this paper, we propose yet another statistical method to estimate the volatility 

of volatility based on re-sampling techniques. The jackknife re-sampling technique is 

easy to implement and does not place a heavy burden on data requirements. The 

jackknife is a versatile statistical procedure based on the principle of replicability for 

estimating the standard error of a statistic non-parametrically. We demonstrate the 

usefulness of the jackknife procedure in estimating the volatility of volatility of a stock.   

Although the procedure is simple to apply there is a general lack of its use in option 

pricing applications. The proposed technique is ideal for small data sets when 

implementing stochastic option pricing models. 

The paper is organized as follows. First, we describe the jackknife procedure in 

detail. Second, we illustrate the jackknife procedure using an example from Gemmill 

(1992). Weighted-average techniques for computing the implied volatility have received 
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quite a bit of attention. However, there are mixed results as to whether implied volatility 

is better at forecasting future volatility than estimators based on historic data.  Next, we 

use the jackknife estimate of stochastic volatility as input in Hull and White (1987) 

stochastic volatility model to illustrate the pricing bias.  Finally, in order to select 

volatility estimates based on statistical comparison of different weighting schemes, we 

use the jackknife volatility of volatility estimates to construct confidence intervals for 

different weighting schemes as summarized in Mayhew (1995). 

  

Jackknife procedure 

  The jackknife method is computationally intensive but is easy to use 

especially if the sample size is small.   Efron and Gong (1983) discuss properties of the 

jackknife and compare it with the bootstrap method.   Buzas (1997) provides an approach 

that is faster for estimating the jackknife standard error.  The jackknife procedure has 

several advantages over other methods.   First, it is appropriate for small samples such as 

the weekly two-year stock price data typically used for estimating the historic volatility 

of a stock.   Second, the procedure is sensitive enough to detect the influence of outliers 

on the analysis.  Third, it uses all the data while eliminating potential bias related to the 

inclusion of atypical data.  Finally, as we will demonstrate it can easily be implemented 

on a spreadsheet and does not need special statistical packages or computer programs as 

required for the bootstrap method.    

 Let R1, R2, ……,Rn be the percent returns for a stock over the n trading periods 

calculated from the sequence of the successive closing prices for that stock, i.e., the 

percent return 



 7

⎥
⎦

⎤
⎢
⎣

⎡ +
=

−1

log100
t

tt
t price

dividendsprice
R  

The standard deviation of the returns σ is a commonly used measure of the volatility of a 

stock.  In order calculate the price on a European call using the Black and Scholes model 

the estimate of the historic volatility 2
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 In order to implement stochastic option pricing models, we need to measure the 

volatility of the volatility of a stock, say psi (ξ ).  We argue that the jackknife technique 

can be efficiently employed to estimate ξ, using the same returns data used to find a 

stock’s volatility σ.  The procedure is as follows.   A given sample n is partitioned into m 

sub-samples all of which must be the same size.   The value of m can range between one 

and the largest multiplicative factor of n.   We first calculate a pseudovalue in ,1−θ , which 

is the standard deviation of returns after each observation is omitted. We repeat 

computation of pseudovalues based on sub-samples to obtain the jackknife estimate of 

the volatility of the volatility. Notice that the jackknife statistic is based on the (n – 1) 

returns excluding Ri  for the ith  sub-sample.  For example, if there are 19 observations for 

stock returns in the sample, to generate the first pseudovalue, the first observation is 

omitted and the statistic computed from the remaining 18 observations: to generate the 

second sub-sample the second observation is omitted from the given sample of 19 

observations. This procedure is repeated until 19 pseudovalues are computed.  Then 

following Tukey (1958), we estimate the volatility of volatility ξ, by 
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An Example 

We illustrate the jackknife procedure using an example from Gemmill (1992).  

We selected the same data that Gemmill (1986) used to analyze different volatility 

weighting schemes and implied volatility.   In Table 1, 20 end of week prices and 

dividends for the British oil company, BP for the period August 23 to January 3, 1992 are 

presented.   The return for week 2 in Table 1 is computed as R2 = 100[ln (352.5/347)] = 

1.5726.   The average return of the stock price is -0.8452 per week and standard deviation 

is (σw = 3.0363%) per week.  The annual historic volatility of BP stock is calculated as 

22%.  The historic volatility of 22% could then be used in the Black and Scholes model 

as a forecast of future volatility.   

Next, by applying the jackknife procedure we estimate the volatility of volatility 

of BP stock as ξ = 3.26%.  The Microsoft Excel formulas for computing the average 

returns, volatility, pseudovalues and the volatility of volatility are presented in Table 1.   

The jackknife procedure is computationally efficient, since the same 20 end of week 

prices that are used to estimate the historic volatility can be used to estimate the volatility 

of volatility.  It requires less data unlike the estimation procedures of Hull and White that 

uses changes in estimates of the actual variances.  Furthermore, it is also easy to 

implement unlike bootstrap procedures.  These advantages make it a good choice as an 

estimation procedure for implementing stochastic volatility models.  In the next section, 
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we use the stochastic volatility parameter that we estimated using the jackknife technique 

to illustrate the pricing bias of a BP call option.   

 
[Insert Table 1 Here] 

 
 
 
Pricing Bias of BP Calls Caused by Stochastic Volatility 

In order to illustrate the pricing bias due to stochastic volatility, we use BP call 

option data from Gemmill (1992). A series of BP calls with an initial stock price S = 291, 

volatility σ = 22%, days to maturity (T ) = 19 for January call, 110 for April call and 201 

for July has the market prices as shown in Table 2.  The risk free rate is r = 11% or 

(0.1044 compounded continuously).    The BS prices based upon the historic volatility of 

22% are given in brackets in Table 2. 

 

[Insert Table 2 Here] 

 
 
 In order to demonstrate the pricing bias we use the stochastic volatility parameter 

ξ = 3.26% estimated for BP stock using the jackknife procedure as an input in the Hull 

and White (1987) stochastic volatility model.  Hull and White (1987) developed a model 

to price a European call on an asset with stochastic volatility.  The option price is 

determined in series form for the case where the stochastic volatility is independent of its 

underlying stock price.   The series form of Hull and White model with the first three 

terms of the series solution is given below. 
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In order to compare the pricing bias, of the Hull and White and BS models we use 

the at-the-money April 300 call which has just over three months to maturity.  The April 

300 call is treated as the marker since it is nearest to the money.  The implied volatility is 

16% since, by setting σ = 16% we obtain a BS price of 10 which is exactly equal to the 

market price.  The call option parameters to determine the pricing bias are σ = 16%, ξ = 

3.26%, T = 110 days, and r = 10.44% respectively.   In Figure 1, we compare the Hull 

and White call prices with the BS model.  In order to illustrate the pricing bias, we have 

exaggerated the bias 25,000 times since the actual pricing error is quite small.   When the 

volatility is un-correlated with the stock we find that the Hull and White option price is 

lower compared to the BS price for near the money options.   The BS price is too low for 

deep in the money and deep out of the money and high at the money. These observations 

are consistent with the Hull and White (1987) findings.  

 
[Insert Figure 1 Here] 

 
 
 
Confidence Intervals for Weighted Average Implied Volatility 

Weighted-average techniques for computing the implied volatility have received 

quite a bit of attention.  For prices of multiple options with varying strike prices and 
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maturity written on the same underlying asset implied volatility are not the same.   For 

instance, for the six BP call options in Table 1 the implied volatility are found to be Jan-

280 (15%), Apr-280 (8%), July-280 (1%), Jan –300 (22%), Apr-300 (16%) and July-300 

(14%).   Consequently, researches have developed various weighting schemes to derive a 

single implied volatility estimate that can be used to price options.  Mayhew (1995) 

provide an excellent literature review on option–implied volatility.  In his article, he 

describes four implied volatility-weighting schemes that range from simple equal weights 

to more complex elasticity weighting.   

An important issue in volatility is its predictive ability.   Among others, early 

literature such as, Latene and Rendleman (1976), Schmalensee and Trippi (1978) and 

Beckers (1981) found that implied volatility is better than historic volatility at predicting 

actual volatility.   Gemmill (1986) compared historic volatility and six different implied 

volatility schemes- equal weights, elasticity weights, minimized squared pricing errors, 

at-the-money implied volatility, out-of-the money implied volatility, in the money 

implied volatility to ascertain the predictive ability of actual volatility.  By regressing the 

predictors on the actual volatility, Gemmill found that at-the-money implied volatility is 

the best predictor of future volatility.   Subsequent literatures also support this claim but 

results have been mixed Mayhew (1995).      

In this section, we use the volatility of volatility estimate obtained using the 

jackknife technique to construct confidence intervals for historic volatility (Historic) and 

four volatility schemes described in Mayhew (1995) to identify the best predictor of 

actual volatility.  The four weighted average implied volatility measures are: 

(1) Equal weights used by Schmalensee and Trippi (1978) - (Equal weighting); 
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(2) Black-Scholes Vega weighting scheme of Latene and Rendleman (1976) –(Vega 

Weighting);  

(3)  Volatility elasticity used by Chiras and Manaster (1978) – (Elasticity Weighting);  

(4)  Beckers (1981) Implied Standard Deviation – (Beckers ISD).   

The different weighting schemes along with the parameter description and the 

volatility estimates are summarized in Table 3.    The volatility based on the four 

weighting schemes range from 8.3% to 18.5%.   Of the four weighting schemes, Beckers 

ISD provide the volatility estimate closest to the implied volatility (16%) of the April 

300-marker call option.  

 

[Insert Table 3 Here] 

 

Next, using the volatility of volatility estimates obtained from the Jackknife 

procedure we develop the 95% and 99% confidence intervals for each of the weighted 

average implied volatility scheme.   The confidence intervals for historic and the four 

weighted average volatility are presented in Figure 2.  In Table 4, we present the 

estimated call values for the six BP call options.  The call prices indicate that for near-

the-money options (300-Jan, 300-April and 300-July) historic volatility, elasticity 

weighted and Beckers ISD perform better than the other weighting schemes.  Vega 

weighting of Chiras and Manaster (1978) price the in-the-money options better than the 

other methods. The shaded regions in Table 4 show the best weighting schemes for near-

the-money and in-the-money options. 
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The confidence intervals for the call prices using the jackknife-based volatility of 

volatility parameter are given in Table 5.    Based on a 95% confidence interval for 

implied volatility, we find that Vega weight is more appropriate compared to the other 

weighting schemes for in-the money options.  In case of pricing near-the-money options 

the results are mixed.  However, Beckers ISD is found to be consistently performing 

better for all three near-the money options followed by historic volatility and elasticity 

weighted scheme as shown by the shaded regions in Table 5.  

 

[Insert Figure 2 Here] 

 

[Insert Table 4 Here] 

 

[Insert Table 5 Here] 

 
Next, we study the pricing bias of Hull and White stochastic volatility model and 

the BS model when different weighted volatility values are used.  According to Hull and 

White (1987) the principle result of increasing volatility is to make the bias more positive 

for out-of-the options and more negative for in-the money options. Consistent with their 

findings, the pricing bias is minimum when Hull and White model with historic volatility 

of 22% is compared to the BS with implied volatility of 16%.  The pricing bias of BS is 

maximum when Vega weighting of 8.3% is used in the Hull and White stochastic 

volatility model.  As shown in Figure 3 the graphs indicate that the bias is inversely 

related with the volatility of the stock.  
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[Insert Figure 3 Here] 
 

 

Conclusions 

In this paper we introduce a relatively easy and efficient statistical approach to estimating 

the volatility of volatility of an asset.  A key contribution of this paper is the Jackknife 

procedure to empirically estimate the volatility of volatility parameter, which is an input 

to stochastic volatility models. The jackknife method is easy to use especially if the 

sample size is small such as the weekly two-year stock price data typically used for 

estimating the volatility of a stock.   It can easily be implemented on a spreadsheet and 

does not need special statistical packages or computer programs.  It provides more 

conservative and less biased volatility of volatility estimates for implementing stochastic 

option pricing models.  Further since the purpose of deriving prediction models is for 

prediction with future samples, and if a model does not predict well with future samples, 

the purpose for which model is designed is lost.  Thus, when an external replication is not 

feasible, the jackknife statistic is the most appropriate technique to determine result 

stability [Ang(1998)].  

Next, we demonstrated how one could use volatility of volatility estimates to 

develop confidence intervals for selecting among different weighting schemes.  As future 

extension of this research, we plan to perform a comparative study of different replication 

techniques to estimate the volatility of volatility of a stock.  
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TABLE 1 
 

Weekly Prices Returns and Jack-knife Estimates for BP Stock 
(August – January 1992) 

 
 

 

Week Price Return (ri)
Standard Deviation

of ri ( θ18)
Cell A B C

1 347

2 352.5 1.5726 3.0657

3 346 -1.8612 3.1140

4 337 -2.6356 3.0923

5 331 -1.7965 3.1153

6 336.5 1.6480 3.0619

7 339 0.7402 3.0992

8 341 0.5882 3.1038

9 352 3.1749 2.9594

10 331 -6.1513 2.8307

11 328 -0.9105 3.1243

12 332.5 1.3626 3.0755

13 324 -0.8760 3.1243

14 311 -4.0951 3.0175

15 302 -2.9366 3.0805

16 291 -3.7104 3.0416

17 297.5 2.2091 3.0302

18 279 -6.4202 2.7985

19 277 -0.7194 3.1241

20 290.5 4.7586 2.7949

⎥⎦
⎤

⎢⎣
⎡=

347
5.352ln100tR

8452.0B20):AVERAGE(B2  −==wR
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B20):B4STDEV(B2,  )2,18( =θ

0344.3
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TABLE 2 

 
Market and BS Model Prices for BP on 3 January 1992 

 
January April July 

Expiry 
price Market 

price 
BS  

price 
Market 
price 

BS  
price 

Market 
price 

BS  
price 

280 13 (14) 20 (26) 26 (34) 

300 3 (3) 10 (14) 16 (23) 
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TABLE 3  
 

Weighted Average Volatility 
 

Description  Model Estimated 
Volatility 

Historic  - 22% 

Schmalensee and Trippi (1978) – 
(Equal weighting) 
 

∑
=

=
N

i
iN 1

1ˆ σσ  

σi: implied volatility of ith call 
12.67% 

Latene and Rendleman (1976) 
(Vega Weighting) 

∑
∑ =

=

=
N

i
iiN

i
i

w
w 1

22

1

1ˆ σσ  

wi: Black-Scholes vegas of option i 

8.30% 

Chiras and Manaster (1978) 
(Elasticity Weighting) ∑

∑

=

== N

i i

i

i

i

N

i i

i

i

i
i

C
C

C
C

1

1ˆ
σ

δσ
δ

σ
δσ
δσ

σ  

Ci: Market price of option i 

18.5% 

Beckers (1981) 
(Beckers ISD) 

Minimize [ ]2
1

)ˆ(σii

N

i
i BSCw −∑

=

 

BSi: Black-Scholes price of option i 
16% 
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TABLE 4 

 
Call Prices Based on Weighting Schemes 

 
 

Call 
Option 

Market 
Price Historic Equal 

Weighting 
Vega 

Weighting 
Elasticity 
Weighting 

Beckers 
ISD 

280-Jan 13 14 13 13 13 13 

280-April 20 26 21 20 24 23 

280-July 26 34 29 27 32 31 

300-Jan 3 3 1 0 2 2 

300-April 10 14 8 5 12 10 

300-July 23 23 15 12 20 18 
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TABLE 5 

 
Estimates of Call Prices Based on Confidence Intervals (CI) for Implied Volatility 

 
 

Historic Equal Weighting Vega Weighting Elasticity Weighting Beckers ISD Call 
Option 

Market 
Price 

95% CI            99%CI 95% CI             99%CI 95% CI              99%CI 95% CI              99%CI 95% CI             99%CI 

280-Jan 13 13.0 15.2 12.7 15.9 12.5 13.5 12.5 14.1 12.5 13.0 0.0 13.4 12.7 14.6 12.5 15.2 12.6 14.1 12.5 14.7 

280-April 20 22.4 29.0 21.1 30.9 19.7 24.2 19.7 25.8 19.7 22.1 0.0 23.6 21.0 27.2 20.1 29.0 20.3 25.9 19.7 27.6 

280-July 26 30.2 39.0 28.5 41.4 26.7 32.5 26.6 34.7 26.6 29.8 0.0 31.8 28.4 36.6 27.2 38.9 27.4 34.8 26.7 37.1 

300-Jan 3 1.4 4.5 0.8 5.3 0.1 2.3 0.0 3.0 0.0 1.3 0.0 2.0 0.8 3.7 0.3 4.5 0.4 3.1 0.1 3.8 

300-April 10 9.9 18.2 7.9 20.3 4.1 12.4 2.0 14.4 1.3 9.6 0.0 11.6 7.8 16.1 5.7 18.2 6.2 14.5 4.1 16.6 

300-July 23 17.3 28.2 14.6 30.9 10.0 20.5 8.1 23.2 7.8 16.8 0.0 19.5 14.6 25.4 12.0 28.1 12.5 23.2 10.1 26.0 
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Figure 1: Pricing Bias when σ = 16%, ξ = 3.26%, T = 110 days, r = 10.44 
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1 Historic, 2 Equal Weighting, 3 Vega Weighting, 4 Elasticity Weighting, 5 Beckers ISD 

 
Figure 2: Confidence Intervals for Historic and Weighted Average Volatility 

Schemes. 
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Figure 3: Effect of pricing bias with varying volatility. 
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