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A b s t r a c t - - T h e  exact expression for the inverse of the correlation matrix for the moving average 
order one, MA(1) process, is obtained. Its application in the context of longitudinal data analysis is 
discussed. (~) 2003 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - I n v e r s i o n  of the correlation matrix of AR(1) process, Partitioning, Inversion of a 
submatrix. 

1. I N T R O D U C T I O N  

Cons ide r  a t ime-ser ies  rea l i za t ion  {Yt: t = 1 , . . . ,  n} of  l eng th  n f rom a s t a t i o n a r y  Gauss i an  process. 

Suppose  t h a t  Ptt' refers to  t he  cor re la t ion  be tween  Yt and  Yt' for t, t '  = 1 , . . . ,  n. Obviously ,  Ptt = 1. 

If  P t t ' =  P (say), for all t ~ t', t , t '  = 1 , . . .  ,n ,  t h e n  the  process  is known to be exchangeab le  or 

equ icor re l a t ion  ( E Q C )  process.  Fur the r ,  suppose  t h a t  CE = (1 - p)In + PJn deno tes  t he  n × n 

cor re la t ion  m a t r i x  of  th is  E Q C  process,  where  Jn is an  n × n m a t r i x  of ls .  T h e n  its inverse CE 1 

f rom [1] is g iven  by CE 1 = (a -- b)In + bJn, where  a = {1 + (n - 2)p}/[(1  -- p){1 + (n - 1)p}] and 

b = - p / [ ( 1  - p){1 + (n  - 1)p}]. 

If  {y t : t  = 1 , . . . , n }  follow t h e  AR(1 )  process  Yt = ¢Yt-1 + at, where  - 1  < ¢ < 1 is t he  

i .~ .  N ( 0 ,  qa2), t h e n  the  cor re la t ion  m a t r i x  CA (¢ l t - t ' l )  of th is  p a r a m e t e r  of  t he  process,  and at = 
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process has its inverse CA 1 [2] 

CA 1 = 1 
1 - ~  

1 --¢ 0 0 0 0 
--¢ 1 + ¢  2 --¢ 0 . . .  0 0 
0 - ¢  1+¢2 _ ¢  . . .  0 0 
: : : : : : : 

0 0 0 0 . . .  1 + ¢2 _ ¢  

0 0 0 0 . . . .  ¢ 1 

(1.1) 

If {ye:t = 1 , . . .  ,n},  however, follow the MA(1) process Y, = at - Oat-l, where - 1  < 8 < 1 is 

the pa ramete r  of the process, and at i.i~. N(0,  a2), then it is not so easy to invert the correlation 
matr ix  CM of this process [2], where the n x n CM matr ix  is given by 

1 81 0 0 ''" 0 0 

81 1 81 0 . . .  0 0 
0 81 1 81 . . .  0 0 

CM = , (1.2) 

0 0 0 0 . . .  1 81 
0 0 0 0 ' ' '  81 1 

where 81 = - 0 / ( 1  + 82). As a remedy, some approximations were suggested to obtain  the inverse 
of the CM matr ix  [3,4]. More specifically, let c w denote the (t, t ' )  th element of the approximate  
inverse mat r ix  of CM. Following [3,4], these elements are given by 

( - I ) ] e - V [  { i - " v / ~  } lt-t'' (1.3) 
(1 + 0~) ~ 201 

Later on, Shaman [5] considered three new approximations to derive the inverse of the CM ma- 
trix. Under  certain modifications, these three approaches appear  to agree with the approximat ion 
given in (1.3). 

In the next section, we provide the exact expression for the inverse CM 1 of the correlation 
matr ix  CM. A numerical illustration is given in Section 3 to compare  the exact inverse CM 1 
with the approximate  inverse of CM. In Section 4, we discuss an immediate  application of this 
inversion process to the longitudinal da ta  analysis. 

2. D E R I V A T I O N  O F  CM 1 

THEOREM 2.1. For t, t' = 1 , . . . ,  n, the (t, it) th element of the inverse matr ix  o r e  M (1.2) is given 

by 

1 + 8 2  / ~ ;O'*- t"  -- ~2(n+2) - ' - t ' -2~  -- 0 '+"  

PROOF. The  technique of the derivation depends on the fact tha t  the inverse of the correlation 
mat r ix  of the AR(1) process, i.e., CA 1, contains an ( n -  2) x ( n -  2) symmetr ic  mat r ix  which has 
the same s t ructure  as the correlation mat r ix  of the MA(1) process. More specifically, part i t ion 
the CA 1 mat r ix  in (1.1) as 

cA 1 - ~_-~ G ~ , (2.1) 

where G = [0, 0 , . . . ,  - ¢ / ( 1  + ¢2)]T is the (n - 1) x 1 vector, Q = 1/(1 + ¢2) is a scalar quantity, 
G T is the t ranspose of G, and P is the leading (n - 1) x (n - 1) symmetr ic  mat r ix  which may 
further be part i t ioned as [A 

P = DM ' 



MA(1) Process 319 

where A = 1/(1 + ¢2) is a scalar quantity, B = [ -¢ / (1  + ¢2) ,0 , . . . ,0 ]  is the 1 × (n - 2) row 
vector, and D is the (n - 2) × (n - 2) symmetric matrix given by 

1 Ca 0 0 --. 0 0 
¢1 1 ¢1 0 "'" 0 0 
0 ¢1 1 ¢1 "'" 0 0 DM = (2.3) 

0 0 0 0 . . .  1 ¢1 
0 0 0 0 "'" ¢1 1 

with ¢1 = - ¢ / ( 1  + ¢2). Notice that DM has the exact same form a s  C M in (1.2). The difference 
between these two matrices is: CM is an n x n symmetric matrix, whereas DM is an (n--2) × (n--2) 
symmetric matrix. For convenience, we denote the CM matrix by CM(81) and similarly the D M 

matrix by DM(¢I). Here our objective is to obtain DM1(¢1) and extend its dimension to obtain 
o r  

To obtain DM1(¢1), we first obtain p -1  from (2.1) and then use (2.2). Since CA = (¢It-t'l), 
and from [1] 

( p Q ) - I  ( p _ I + F E _ I F T  _ F E _ I )  
GT = _E_IF E_ 1 (2.4) 

with E = Q - GT p-1G and F = p-1G, it follows that 

E_I  1 + ¢  2 , ( 1 + ¢ 2 ~  
-- 1 _ ¢ 2 '  _ F E - 1  [ ~ J  [ ¢ n - l , ¢ n - 2  . . . .  , ¢ ] T ,  

implying that F = _[¢n-1, ¢ n - 2 , . . . ,  ¢] and 

f l 
+¢2"[  

(¢2,~-t-t ')  : ( n - 1 ) x  ( n - 1 ) ,  (2.5) FE-1F r = [ l_--Z-~j 

for t,t' = 1 , . . . , n -  1. This yields the ( n -  1) × ( n -  1) p - 1  matrix as 

= 

Next, we partition the P -1  matrix as 

p-1 = (B11 B12  C27t 
\B21 B22] ' 

which is 
( A  B )  -1 

B r DM ' (2.8) 

the same as (2.2). Now by equating (2.8) to (2.7), we obtain DM 1 (i.e., DM1(¢1)). From [6] 

= D ; )  - BD;  1, (2.0t 

where B21 = -DM1B-r Bn,  yielding -DM1B r = B21/B11 and 

B21BT21 (2.10) 
B22 = D;41 + Ba------~' 

Bll  being a scalar quantity. Thus, we obtain 

DM 1 = B22 -- ~l--~--BzlB12, (2.11) 
r o l l  
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where, by (2.6), 

,j" 1 -I- ¢2 } [1 - ¢2n-2] 
B l l  = I, 

B12 = I,[1~+¢2} [¢ {1 _ ¢2,~_2_2} , ¢2 {1 _ ¢2n-2-4 } , . . . ,  ¢,~-2 {1 _ ¢2n-2-2(n-2) }] , 

B21 = B ~ ,  

~l+¢2}(¢'t-t'l-¢2n-t-t'-2):(n_2)x(n_2)" 
B22 = I, 

Consequently, the (t, t ') th element of the (n - 2) x (n - 2) DM 1 matrix is given by 

{1÷ _ } ~-~-~- j 1-7~-d_2 { (1- ¢2n-2t-2)(1- ¢2n-2t'-2)}]. (2,12) 

Now by replacing n with n + 2 in (2.12), we obtain the inverse of the n x n DM matrix, that 
is, the inverse of DM(¢I): n x n with ¢1 = - ¢ / ( 1  + ¢2). Next, by replacing ¢ with O, i.e., Ct 
with 81 = -8 / ( 1  + 82), we obtain the CM1(81) as in the theorem. 

3. A N U M E R I C A L  V E R I F I C A T I O N  

In this section, we verify the exactness of our results given in Theorem 2.1 and also we check 
the performance of the approximation (1.3) for the inversion of the correlation matrix CM. We 
consider a time-series realization {Yt : t = 1 , . . . ,  4} from an MA(1) process Yt = at + 0.5at-l ,  so 
that in the notation of (1.2) and (1.3), 8 = -0.5 and the 4 x 4 correlation matrix CM is given by 

0 

1 0.4 (3.1) 
CM = 0 . 4  1 0 ' 

0 0.4 

Now using our results from Theorem 2.1, the inverse of the C M matrix is computed as 

1.2463 -0.6158 0.2933 -0:1173- 
-0.6158 1.5396 -0.7331 0.2933 
0.2933 -0.7331 1.5396 -0.6158 

-0.1173 0.2933 -0.6158 1.2463 

(3.2) 

which is the inverse of the CM matrix as it is readily verified t h a t  CMC~I 1 = 14, where/4 is the 
4 x 4 identity matrix. Next, by using equation (1.3), the approximate inverse of CM is computed 
a s  

1.3333 -0.6667 0.3333 -0.1667" 
-0.6667 1.3333 -0.6667 0.3333 
0.3333 -0.6667 1.3333 -0.6667 

-0.6667 0.3333 -0.6667 1.3333 

(3.3) 

which, after multiplying by the CM matrix does not yield the I4 matrix. Note that it is not only 
that the elements of the approximate inverse matrix in (3.3) are different from those in (3.2), the 
first and last leading diagonal elements in the approximate inverse matrix also appear to be the 
same as other diagonal elements of this matrix, whereas in the exact inverse matrix, the first and 
the last diagonal elements are the same but they are different than the other diagonal elements. 
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4.  A P P L I C A T I O N  

The inverse of the correlation matrix of the MA(1) process is used in estimation and forecasting 
in various ways in t ime series analysis. One of the main advantages of having the exact expression 
of CM 1 (8) available is that  one can avoid the computer-based calculations for this which may not 
be feasible sometimes especially for large n, size of the series. 

Recently, there have been studies IT] in other areas, such as in cluster longitudinal set-up, where 
the inversion of the correlation matrix of the moving average process of order 1 is used to compute 
the standard errors of the regression coefficient obtained by applying the so-called generalized 
estimating equations (GEE) approach. But the inversion itself is done based on a computer 
program. To be specific, in the longitudinal set-up discussed by Liang and Zeger IT], suppose that 
the so-called 'working' and ' true'  correlation structures in their notations are considered to be the 
structures of the MA(1) and EQC processes, respectively. Then, for associated design matrix X~ 
of order n~ x p, and diagonal variance matrix A~ of order n~ x n~ under the i th (i ---- 1 , . . . ,  K )  

cluster, the asymptotic (as K -* co) covariance matrix of the GEE-based regression estimator is 
given by 

V a ~-- K~oolim ~A.., i i iMk ] i i f  
\ i = 1  / 

i i iMk ) iAtq  )1 i M t  ) i " ~ r  (4.1) 

x i i ~-~iMkt')'~i X i )  , 

where CiM(O) and Cim(¢) are the correlation matrices of the 'working' MA(1) and true AR(1) 
processes. It  is clear that  one may now use the exact'.expression given in Theorem 2.1 for the 
ni x ni (for any small or large ni) inverse matrix C~-~(~) in (3.1) to compute such covariance 
matrices. 
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