
Chapter 8:

Arrays and the ArrayList Class

8-2

Chapter Topics

Chapter 8 discusses the following main topics:

 Introduction to Arrays

 Processing Array Contents

 Passing Arrays as Arguments to Methods

 Some Useful Array Algorithms and Operations

 Returning Arrays from Methods

 String Arrays

 Arrays of Objects

8-3

Chapter Topics

Chapter 8 discusses the following main topics:

 The Sequential Search Algorithm

 Parallel Arrays

 Two-Dimensional Arrays

 Arrays with Three or More Dimensions

 The Selection Sort and the Binary Search

 Command-Line Arguments

 The ArrayList Class

8-4

Introduction to Arrays

A contiguous sequence of homogenous elements

8-5

Introduction to Arrays

 Primitive variables are designed to hold only
one value at a time.

 Arrays allow us to create a collection of like
values that are indexed.

 An array can store any type of data but only
one type of data at a time.

 An array is a list of data elements.

8-6

Creating Arrays

 An array is an object so it needs an object reference.

// Declare a reference to an array that will hold integers.

int[] numbers;

 The next step creates the array and assigns its address to the
numbers variable.

 // Create a new array that will hold 6 integers.

 numbers = new int[6];

Array element values are initialized to 0.

Array indexes always start at 0.

0

index 0

0

index 1

0

index 2

0

index 3

0

index 4

0

index 5

8-7

Creating Arrays

 It is possible to declare an array reference and create
it in the same statement.

int[] numbers = new int[6];

 Arrays may be of any type.

float[] temperatures = new float[100];

char[] letters = new char[41];

long[] units = new long[50];

double[] sizes = new double[1200];

8-8

Creating Arrays

 The array size must be a non-negative number.

 It may be a literal value, a constant, or variable.

final int ARRAY_SIZE = 6;

int[] numbers = new int[ARRAY_SIZE];

 Once created, an array size is fixed and cannot be
changed.

8-9

Accessing the Elements of an
Array

 An array is accessed by:

 the reference name

 a subscript that identifies which element in the array to
access.

numbers[0] = 20; //pronounced "numbers at index zero"

numbers[0]

0

numbers[1]

0

numbers[2]

0

numbers[3]

0

numbers[4]

0

numbers[5]

20

8-
10

Inputting and Outputting
Array Elements

 Array elements can be treated as any other variable.

 They are simply accessed by the same name and a
subscript.

 See example: ArrayDemo1.java

 Array subscripts can be accessed using variables
(such as for loop counters).

 See example: ArrayDemo2.java

ArrayDemo1.java
ArrayDemo2.java

8-
11

Bounds Checking

 Array indexes always start at zero and continue to
(array length - 1).

int values = new int[10];

 This array would have indexes 0 through 9.

 See example: InvalidSubscript.java

 In for loops, it is typical to use i, j, and k as counting
variables.
 It might help to think of i as representing the word index.

InvalidSubscript.java

8-
12

Off-by-One Errors

 It is very easy to be off-by-one when accessing arrays.

// This code has an off-by-one error.

int[] numbers = new int[100];

for (int i = 1; i <= 100; i++)

 numbers[i] = 99;

 Here, the equal sign allows the loop to continue on to index
100, where 99 is the last index in the array.

 This code would throw an
ArrayIndexOutOfBoundsException.

8-
13

Array Initialization

 When relatively few items need to be initialized, an
initialization list can be used to initialize the array.

int[]days = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

 The numbers in the list are stored in the array in order:
 days[0] is assigned 31,

 days[1] is assigned 28,

 days[2] is assigned 31,

 days[3] is assigned 30,

 etc.

 See example: ArrayInitialization.java

ArrayInitialization.java

8-
14

Alternate Array Declaration

 Previously we showed arrays being declared:
 int[] numbers;

 However, the brackets can also go here:
 int numbers[];

 These are equivalent but the first style is typical.

 Multiple arrays can be declared on the same line. Please
don’t.
 int[] numbers, codes, scores;

 With the alternate notation each variable must have
brackets.
int numbers[], codes[], scores;

 The scores variable in this instance is simply an int variable.

8-
15

Processing Array Contents

 Processing data in an array is the same as any other variable.

grossPay = hours[3] * payRate;

 Pre and post increment works the same:

int[] score = {7, 8, 9, 10, 11};

++score[2]; // Pre-increment operation

score[4]++; // Post-increment operation

 See example: PayArray.java

PayArray.java

8-
16

Processing Array Contents

 Array elements can be used in relational operations:

if(cost[20] < cost[0])

{

 //statements

}

 They can be used as loop conditions:

while(value[count] != 0)

{

 //statements

}

8-
17

Array Length

 Arrays are objects and provide a public field named length
that is a constant that can be tested.

double[] temperatures = new double[25];

 The length of this array is 25.

 The length of an array can be obtained via its length
constant.

int size = temperatures.length;

 The variable size will contain 25.

8-
18

The Enhanced for Loop

 Simplified array processing (read only)

 Always goes through all elements

 General format:

for(datatype elementVariable : array)

 statement;

8-
19

The Enhanced for Loop

Example:

int[] numbers = {3, 6, 9};

for(int val : numbers)

{

 System.out.println("The next value is " +

 val);

}

8-
20

Array Size

 The length constant can be used in a loop
to provide automatic bounding.

for(int i = 0; i < temperatures.length; i++)

{

 System.out.println("Temperature " + i ": "

 + temperatures[i]);

}

Index subscripts start at 0 and end at one less than the

array length.

8-
21

Array Size

 You can let the user specify the size of an array:

int numTests;

int[] tests;

Scanner keyboard = new Scanner(System.in);

System.out.print("How many tests do you have? ");

numTests = keyboard.nextInt();

tests = new int[numTests];

 See example: DisplayTestScores.java

DisplayTestScores.java

8-
22

Reassigning Array References

 An array reference can be assigned to another array
of the same type.

// Create an array referenced by the numbers variable.

int[] numbers = new int[10];

// Reassign numbers to a new array.

numbers = new int[5];

 If the first (10 element) array no longer has a
reference to it, it will be garbage collected.

8-
23

Reassigning Array References

Address
The numbers variable

holds the address of an
int array.

int[] numbers = new int[10];

8-
24

Reassigning Array References

Address
The numbers variable

holds the address of an
int array.

numbers = new int[5];

This array gets marked for

garbage collection

8-
25

Copying Arrays

 This is not the way to copy an array.
int[] array1 = { 2, 4, 6, 8, 10 };

int[] array2 = array1; // This does not copy array1.

2

Address
array1 holds an

address to the array

Address
array2 holds an

address to the array

4 6 8 10

Example:

SameArray.java

SameArray.java

8-
26

Copying Arrays

 You cannot copy an array by merely assigning one
reference variable to another.

 You need to copy the individual elements of one array to
another.

int[] firstArray = {5, 10, 15, 20, 25 };

int[] secondArray = new int[5];

for (int i = 0; i < firstArray.length; i++)

 secondArray[i] = firstArray[i];

 This code copies each element of firstArray to the
corresponding element of secondArray.

8-
27

Passing Array Elements to a
Method
 When a single element of an array is passed to a

method it is handled like any other variable.

 See example: PassElements.java

 More often you will want to write methods to
process array data by passing the entire array, not
just one element at a time.

PassElements.java

8-
28

Passing Arrays as Arguments

 Arrays are objects.

 Their references can be passed to methods like any
other object reference variable.

5 10 15 20 25

Address

showArray(numbers); 30 35 40

public static void showArray(int[] array)

{

 for (int i = 0; i < array.length; i++)

 System.out.print(array[i] + " ");

}

Example: PassArray.java

PassArray.java

8-
29

Comparing Arrays

 The == operator determines only whether array
references point to the same array object.

int[] firstArray = { 5, 10, 15, 20, 25 };

int[] secondArray = { 5, 10, 15, 20, 25 };

if (firstArray == secondArray) // This is a mistake.

 System.out.println("The arrays are the same.");

else

 System.out.println("The arrays are not the same.");

8-
30

Comparing Arrays: Example
int[] firstArray = { 2, 4, 6, 8, 10 };

int[] secondArray = { 2, 4, 6, 8, 10 };

boolean arraysEqual = true;

int i = 0;

// First determine whether the arrays are the same size.

if (firstArray.length != secondArray.length){

 arraysEqual = false;

}

// Next determine whether the elements contain the same data.

while (arraysEqual && i < firstArray.length)

{

 if (firstArray[i] != secondArray[i]){

 arraysEqual = false;

 }

 i++;

}

if (arraysEqual){

 System.out.println("The arrays are equal.");

}

else{

 System.out.println("The arrays are not equal.");

}

8-
31

Useful Array Operations

 Finding the Highest Value
 int [] numbers = new int[50];

 int highest = numbers[0];

 for (int i = 1; i < numbers.length; i++)

 {

 if (numbers[i] > highest){

 highest = numbers[i];

 }

 }

 Finding the Lowest Value
 int lowest = numbers[0];

 for (int i = 1; i < numbers.length; i++)

 {

 if (numbers[i] < lowest){

 lowest = numbers[i];

 }

 }

8-
32

Useful Array Operations

 Summing Array Elements:
int total = 0; // Initialize accumulator

for (int i = 0; i < units.length; i++){

 total += units[i];

}

 Averaging Array Elements:
double total = 0; // Initialize accumulator

double average; // Will hold the average

for (int i = 0; i < scores.length; i++){

 total += scores[i];

}

average = total / scores.length;

 Example: SalesData.java, Sales.java

SalesData.java
Sales.java

8-
33

Partially Filled Arrays

 Typically, if the amount of data that an array must hold is unknown:
 size the array to the largest expected number of elements.
 use a counting variable to keep track of how much valid data is in the

array.
…

int[] array = new int[100];

int count = 0;

…

 System.out.print("Enter a number or -1 to quit: ");

 number = keyboard.nextInt();

 while (number != -1 && count <= 99)

 {

 array[count] = number;

 count++;

 System.out.print("Enter a number or -1 to quit: ");

 number = keyboard.nextInt();

 }

…

input, number and keyboard were

previously declared and keyboard

references a Scanner object

8-
34

Arrays and Files

 Saving the contents of an array to a file:
int[] numbers = {10, 20, 30, 40, 50};

PrintWriter outputFile =

 new PrintWriter ("Values.txt");

for (int i = 0; i < numbers.length; i++){

 outputFile.println(numbers[i]);

}

outputFile.close();

8-
35

Arrays and Files

 Reading the contents of a file into an array:

final int SIZE = 5; // Assuming we know the size.

int[] numbers = new int[SIZE];

int i = 0;

File file = new File ("Values.txt");

Scanner inputFile = new Scanner(file);

while (inputFile.hasNext() && i < numbers.length)

{

 numbers[i] = inputFile.nextInt();

 i++;

}

inputFile.close();

8-
36

Returning an Array Reference

 A method can return a reference to an array.

 The return type of the method must be declared as an array
of the right type.

public static double[] getArray()

{

 double[] array = { 1.2, 2.3, 4.5, 6.7, 8.9 };

 return array;

}

 The getArray method is a public static method that
returns an array of doubles.

 See example: ReturnArray.java

ReturnArray.java

8-
37

String Arrays

 Arrays are not limited to primitive data.

 An array of String objects can be created:
String[] names = { “Alice", “Bob", “Charlie", “Dave" };

The names variable holds

the address to the array.

A String array is an array

of references to String objects.

Address

“Dave”

address

address

address

address

names[1]

names[0]

names[3]

names[2]

Example:

MonthDays.java

MonthDays.java

8-
38

String Arrays

 If an initialization list is not provided, the new keyword must
be used to create the array:
String[] names = new String[4];

The names variable holds

the address to the array.

Address

null

null

null

null

names[1]

names[0]

names[3]

names[2]

8-
39

String Arrays

 When an array is created in this manner, each element of the
array must be initialized.

The names variable holds

the address to the array.

Address

null

null

null

null

names[0] = "Bill";

names[1] = "Susan";

names[2] = "Steven";

names[3] = "Jean";

“Bill”

“Susan”

“Steven”

“Jean”

names[1]

names[0]

names[3]

names[2]

8-
40

Calling String Methods On
Array Elements
 String objects have several methods, including:

 toUpperCase

 compareTo

 equals

 charAt

 Each element of a String array is a String object.

 Methods can be used by using the array name and index as
before.

System.out.println(names[0].toUpperCase());

char letter = names[3].charAt(0);

8-
41

The length Field & The length Method

 Arrays have a final field named length.

 String objects have a method named length.

 To display the length of each string held in a String array:

for (int i = 0; i < names.length; i++)

 System.out.println(names[i].length());

 An array’s length is a field
 You do not write a set of parentheses after its name.

 A String’s length is a method
 You do write the parentheses after the name of the String class’s
length method.

8-
42

Arrays of Objects

 Because Strings are objects, we know that arrays can
contain objects.
BankAccount[] accounts = new BankAccount[5];

The accounts variable holds the address

 of an BankAccount array.

Address

null

null

null

null

accounts[1]

accounts[0]

accounts[3]

accounts[2]

null accounts[4]

The array is an

array of references

to BankAccount

objects.

8-
43

Arrays of Objects

 Each element needs to be initialized.
for (int i = 0; i < accounts.length; i++)

 accounts[i] = new BankAccount();

 See example: ObjectArray.java

The accounts variable holds the address

 of an BankAccount array.

Address

Address

Address

Address

Address

Address

balance:
0.0

balance:

balance:

balance:

balance:

0.0

0.0

0.0

0.0

accounts[1]

accounts[0]

accounts[3]

accounts[2]

accounts[4]

ObjectArray.java

8-
44

The Sequential Search Algorithm

 A search algorithm is a method of locating a specific
item in a larger collection of data.

 The sequential search algorithm uses a loop to:
 sequentially step through an array,

 compare each element with the search value, and

 stop when
 the value is found or

 the end of the array is encountered.

 See example: SearchArray.java

SearchArray.java

8-
45

Two-Dimensional Arrays

 A two-dimensional array is an array of arrays.

 Array

Each element is an array

8-
46

Two-Dimensional Arrays

 A two-dimensional array is an array of arrays.

 It can be thought of as having rows and columns.

row 0

column 1 column 2 column 3 column 0

row 1

row 2

row 3

8-
47

 Declaring a two-dimensional array requires two sets of
brackets and two size declarators
 The first one is for the number of rows

 The second one is for the number of columns.

double[][] scores = new double[3][4];

 The two sets of brackets in the data type indicate that the

scores variable will reference a two-dimensional array.

 Notice that each size declarator is enclosed in its own set of
brackets.

Two-Dimensional Arrays

two dimensional array rows columns

8-
48

Accessing Two-Dimensional Array
Elements

 When processing the data in a two-dimensional
array, each element has two subscripts:

 one for its row and

 another for its column.

8-
49

Accessing Two-Dimensional Array
Elements

scores[0][3] scores[0][2] scores[0][1] scores[0][0] row 0

column 1 column 2 column 3 column 0

row 1

row 2

The scores variable

holds the address of a
2D array of doubles.

Address

scores[1][3] scores[1][2] scores[1][1] scores[1][0]

scores[2][3] scores[2][2] scores[2][1] scores[2][0]

8-
50

Accessing Two-Dimensional Array
Elements

Accessing one of the elements in a two-

dimensional array requires the use of both

subscripts.

scores[2][1] = 95.7;

0 0 0 0 row 0

column 1 column 2 column 3 column 0

row 1

row 2

Address

0 0 0 0

0 0 95.7 0

The scores variable

holds the address of a
2D array of doubles.

8-
51

Accessing Two-Dimensional Array
Elements

 Programs that process two-dimensional arrays can
do so with nested loops.

 To fill the scores array:

for (int row = 0; row < 3; row++)

{

 for (int col = 0; col < 4; col++)

 {

 System.out.print("Enter a score: ");

 scores[row][col] = keyboard.nextDouble();

 }

}

Number of rows, not the

largest subscript

Number of

columns, not the

largest subscript

keyboard references a

Scanner object

8-
52

Accessing Two-Dimensional Array
Elements

 To print out the scores array:

for (int row = 0; row < 3; row++)

{

 for (int col = 0; col < 4; col++)

 {

 System.out.println(scores[row][col]);

 }

}

 See example: CorpSales.java

CorpSales.java

8-
53

Initializing a Two-Dimensional
Array
 Initializing a two-dimensional array requires enclosing each

row’s initialization list in its own set of braces.

int[][] numbers = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} };

 Java automatically creates the array and fills its elements
with the initialization values.
 row 0 {1, 2, 3}

 row 1 {4, 5, 6}

 row 2 {7, 8, 9}

 Declares an array with three rows and three columns.

8-
54

Initializing a Two-Dimensional
Array

3 2 1 row 0

column 1 column 2 column 0

row 1

row 2

Address

6 5 4

9 8 7

The numbers variable

holds the address of a
2D array of int values.

int[][] numbers = {{1, 2, 3},

 {4, 5, 6},

 {7, 8, 9}};

produces:

8-
55

The length Field

 Two-dimensional arrays are arrays of one-
dimensional arrays.

 The length field of the array gives the number of
rows in the array.

 Each row has a length constant tells how many
columns is in that row.

 Each row can have a different number of columns.

8-
56

The length Field

 To access the length fields of the array:
int[][] numbers = { { 1, 2, 3, 4 },

 { 5, 6, 7 },

 { 9, 10, 11, 12 } };

for (int row = 0; row < numbers.length; row++)

{

 for (int col = 0; col < numbers[row].length; col++)

 System.out.println(numbers[row][col]);

}

 See example: Lengths.java

Number of rows Number of columns in this row.

The array can have variable length rows.

Lengths.java

8-
57

Summing The Elements of a Two-
Dimensional Array

int[][] numbers = { { 1, 2, 3, 4 },

 {5, 6, 7, 8},

 {9, 10, 11, 12} };

int total;

total = 0;

for (int row = 0; row < numbers.length; row++)

{

 for (int col = 0; col < numbers[row].length; col++)

 total += numbers[row][col];

}

System.out.println("The total is " + total);

8-
58

Summing The Rows of a Two-
Dimensional Array

int[][] numbers = {{ 1, 2, 3, 4},

 {5, 6, 7, 8},

 {9, 10, 11, 12}};

int total;

for (int row = 0; row < numbers.length; row++)

{

 total = 0;

 for (int col = 0; col < numbers[row].length; col++){

 total += numbers[row][col];

 }

 System.out.println("Total of row "

 + row + " is " + total);

}

8-
59

Summing The Columns of a Two-
Dimensional Array

int[][] numbers = {{1, 2, 3, 4},

 {5, 6, 7, 8},

 {9, 10, 11, 12}};

int total;

for (int col = 0; col < numbers[0].length; col++){

 total = 0;

 for (int row = 0; row < numbers.length; row++){

 total += numbers[row][col];

 }

 System.out.println("Total of column "

 + col + " is " + total);

}

8-
60

Passing and Returning Two-
Dimensional Array References

 There is no difference between passing a single
or two-dimensional array as an argument to a
method.

 The method must accept a two-dimensional
array as a parameter.

 See example: Pass2Darray.java

Pass2Darray.java

8-
61

Ragged Arrays

 When the rows of a two-dimensional array are of
different lengths, the array is known as a ragged array.

 You can create a ragged array by creating a two-
dimensional array with a specific number of rows, but no
columns.

 int [][] ragged = new int [4][];

 Then create the individual rows.
ragged[0] = new int [3];

ragged[1] = new int [4];

ragged[2] = new int [5];

ragged[3] = new int [6];

8-
62

More Than Two Dimensions

 Java does not limit the number of dimensions that an array
may be.

 More than three dimensions is hard to visualize, but can be
useful in some programming problems.

8-
63

More than Two Dimensions

Array

Each element is an array

Each of these is an array

8-
64

Binary Search

 A binary search:
 requires an array sorted in ascending order.

 starts with the element in the middle of the array.

 If that element is the desired value, the search is over.

 Otherwise, the value in the middle element is either greater or
less than the desired value

 If it is greater than the desired value, search in the first half of the
array.

 Otherwise, search the last half of the array.

 Repeat as needed while adjusting start and end points of the
search.

 See example: BinarySearchDemo.java

BinarySearchDemo.java

8-
65

The ArrayList Class

 Similar to an array, an ArrayList allows object storage

 Unlike an array, an ArrayList object:
 Automatically expands when a new item is added

 Automatically shrinks when items are removed

 Requires:

import java.util.ArrayList;

8-
66

Creating an ArrayList

ArrayList<String> nameList = new ArrayList<String>();

Notice the word String written inside angled

brackets <>

This specifies that the ArrayList can hold String

objects.

If we try to store any other type of object in this ArrayList,

an error will occur.

8-
67

Using an ArrayList

 To populate the ArrayList, use the add method:
 nameList.add("James");

 nameList.add("Catherine");

 To get the current size, call the size method
 nameList.size(); // returns 2

8-
68

Using an ArrayList

 To access items in an ArrayList, use the get method
nameList.get(1);

In this statement 1 is the index of the item to get.

 Example: ArrayListDemo1.java

ArrayListDemo1.java

8-
69

Using an ArrayList

 The ArrayList class's toString method returns a string

representing all items in the ArrayList

System.out.println(nameList);

This statement yields :
[James, Catherine]

 The ArrayList class's remove method removes
designated item from the ArrayList
nameList.remove(1);

This statement removes the second item.

 See example: ArrayListDemo3.java

ArrayListDemo3.java

8-
70

Using an ArrayList

 The ArrayList class's add method with one argument
adds new items to the end of the ArrayList

 To insert items at a location of choice, use the add method
with two arguments:

nameList.add(1, "Mary");

This statement inserts the String "Mary" at index 1

 To replace an existing item, use the set method:
nameList.set(1, "Becky");

This statement replaces “Mary” with “Becky”

 See example: ArrayListDemo5.java

ArrayListDemo5.java

8-
71

Using an ArrayList

 An ArrayList has a capacity, which is the number of
items it can hold without increasing its size.

 The default capacity of an ArrayList is 10 items.

 To designate a different capacity, use a parameterized
constructor:

ArrayList<String> list = new ArrayList<String>(100);

8-
72

Using an ArrayList

 You can store any type of object in an ArrayList

ArrayList<BankAccount> accountList =

 new ArrayList<BankAccount>();

This creates an ArrayList that
can hold BankAccount objects.

8-
73

Using an ArrayList

// Create an ArrayList to hold BankAccount objects.

ArrayList<BankAccount> list = new ArrayList<BankAccount>();

// Add three BankAccount objects to the ArrayList.

list.add(new BankAccount(100.0));

list.add(new BankAccount(500.0));

list.add(new BankAccount(1500.0));

// Display each item.

for (int index = 0; index < list.size(); index++)

{

 BankAccount account = list.get(index);

 System.out.println("Account at index " + index +

 "\nBalance: " + account.getBalance());

}

See: ArrayListDemo6.java

ArrayListDemo6.java

Filling an ArrayList
private ArrayList<Integer> numbers;

private String filename = "data.txt";

 public void run(){

 try{

 File file = new File(filename);

 Scanner fin = new Scanner(file);

 while(fin.hasNextInt()){

 numbers.add(fin.nextInt());

 }

 fin.close();

 for(Integer number:numbers){

 System.out.print(number+" ");

 }

 System.out.print("\n");

 java.util.Collections.sort(numbers);

 for(Integer number:numbers){

 System.out.print(number+" ");

 }

 System.out.print("\n");

 }

 catch(java.io.FileNotFoundException e){

 System.out.println("Error opening "+filename+", ending program");

 System.exit(1);

 }

 } FileAndArrayList.java

FileAndArrayList.java

