
Chapter 5:

Methods

5-2

Chapter Topics

Chapter 5 discusses the following main topics:

 Introduction to Methods

 Passing Arguments to a Method

 More About Local Variables

 Returning a Value from a Method

 Problem Solving with Methods

5-3

Why Write Methods?

 Methods are commonly used to break a problem
down into small manageable pieces. This is
called divide and conquer.

 Methods simplify programs. If a specific task is
performed in several places in the program, a
method can be written once to perform that
task, and then be executed anytime it is needed.
This is known as code reuse.

5-4

void Methods and Value-
Returning Methods

 A void method is one that simply performs a
task and then terminates.

 System.out.println("Hi!");

 A value-returning method not only performs a
task, but also sends a value back to the code
that called it.

 int number = Integer.parseInt("700");

5-5

Defining a Method

 To create a method, you must write a definition,
which consists of a header and a body.

 The method header, which appears at the
beginning of a method definition, lists several
important things about the method, including
the method’s name.

 The method body is a collection of statements
that are performed when the method is
executed.

5-6

Parts of Method

public static void displayMesssage()

{

 System.out.println("Hello");

}

Header

Body

Definition

5-7

Parts of a Method Header

public static void displayMessage (int x)

{

 System.out.println("Hello");

}

Method

Modifiers

Return

Type

Method

Name
Parameter

List

Tell everything you know about the following method

*** Classic Test Question ***

public boolean searchString(String target, char find)

5-9

Parts of a Method Header

 Method modifiers
 public—method is publicly available to code outside

the class
 static—method belongs to a class, not a specific

object.

 Return type—void or the data type from a
value-returning method

 Method name—name that is descriptive of what
the method does

 (Parameter List)—contain a list of zero or more
variable declarations if the method is capable of
receiving arguments.

5-
10

Calling a Method

 A method executes when it is called.

 The main method is automatically called when a
program starts, but other methods are executed
by method call statements.

 displayMessage(3);

 Notice that the method modifiers and the void
return type are not written in the method call
statement. Those are only written in the method
header.

 Examples: SimpleMethod.java, LoopCall.java,
CreditCard.java, DeepAndDeeper.java

SimpleMethod.java
LoopCall.java
CreditCard.java
DeepAndDeeper.java

5-
11

Documenting Methods

 A method should always be documented by
writing comments that appear just before the
method’s definition.

 The comments should provide a brief
explanation of the method’s purpose.

 The documentation comments begin with /**
and end with */.

5-
12

Passing Arguments to a Method

 Values that are sent into a method are called
arguments.

 System.out.println("Hello");

 number = Integer.parseInt(str);

 The data type of an argument in a method call must
correspond to the variable declaration in the parentheses of
the method declaration. The parameter is the variable that
holds the value being passed into a method.

 By using parameter variables in your method declarations,
you can design your own methods that accept data this way.
See example: PassArg.java

PassArg.java

5-
13

Passing 5 to the
displayValue Method

displayValue(5);

public static void displayValue(int num)

{

 System.out.println("The value is " + num);

}

The argument 5 is copied into the

parameter variable num.

The method will display The value is 5

5-
14

Passing 5 to the
displayValue Method

displayValue(5);

public static void displayValue(int num)

{

 num = num+6;

 System.out.println("The value is " + num);

}

The argument 5 is copied into the

parameter variable num.

The method will display The value is 11

5-
15

Argument and Parameter Data
Type Compatibility

 When you pass an argument to a method, be
sure that the argument’s data type is compatible
with the parameter variable’s data type.

 Java will automatically perform widening
conversions, but narrowing conversions will
cause a compiler error.

 double d = 1.0;

 displayValue(d); Error! Can’t convert

double to int

5-
16

Passing Multiple Arguments

showSum(5, 10);

public static void showSum(double num1, double num2)

{

double sum; //to hold the sum

sum = num1 + num2;

System.out.println("The sum is " + sum);

}

The argument 5 is copied into the num1 parameter.

The argument 10 is copied into the num2 parameter.

NOTE: Order matters!

5-
17

Arguments are Passed by Value

 In Java, all arguments of the primitive data types are
passed by value, which means that only a copy of an
argument’s value is passed into a parameter
variable.

 A method’s parameter variables are separate and
distinct from the arguments that are listed inside the
parentheses of a method call.

 If a parameter variable is changed inside a method,
it has no affect on the original argument.

 See example: PassByValue.java

PassByValue.java

5-
18

Passing Object References to a
Method

 Recall that a class type variable does not hold the
actual data item that is associated with it, but holds
the memory address of the object. A variable
associated with an object is called a reference
variable.

 When an object such as a String is passed as an
argument, it is actually a reference to the object that
is passed.

5-
19

Passing a Reference as an
Argument

showLength(name);

public static void showLength(String str)

{

 System.out.println(str + " is " +
str.length() + " characters
long.");

 str = "Joe" // see next slide

}

address

address

“Warren”

Both variables reference the same object

The address of the object is
copied into the str parameter.

5-
20

Strings are Immutable Objects

 Strings are immutable objects, which means that
they cannot be changed. When the line

 str = "Joe";

 is executed, it cannot change an immutable object,
so creates a new object.

 See example: PassString.java

address

address

“Warren”

“Joe”

The name variable holds the

address of a String object

The str variable holds the

address of a different
String object

PassString.java

5-
21

@param Tag in Documentation
Comments

 You can provide a description of each parameter in
your documentation comments by using the
@param tag.

 General format

 @param parameterName Description

 See example: TwoArgs2.java

 All @param tags in a method’s documentation
comment must appear after the general
description.The description can span several lines.

TwoArgs2.java

5-
22

More About Local Variables

 A local variable is declared inside a method and is not
accessible to statements outside the method.

 Different methods can have local variables with the same
names because the methods cannot see each other’s
local variables.

 A method’s local variables exist only while the method is
executing. When the method ends, the local variables
and parameter variables are destroyed and any values
stored are lost.

 Local variables are not automatically initialized with a
default value and must be given a value before they can
be used.

 See example: LocalVars.java

LocalVars.java

5-
23

Returning a Value from a Method

 Data can be passed into a method by way of
the parameter variables. Data may also be
returned from a method, back to the
statement that called it.

 int num = Integer.parseInt("700");

 The string “700” is passed into the
parseInt method.

 The int value 700 is returned from the
method and assigned to the num variable.

5-
24

Defining a Value-Returning
Method
public static int sum(int num1, int num2)

{

 int result;

 result = num1 + num2;

 return result;

}

Return type

This expression must be of the

same data type as the return type

The return statement

causes the method to end

execution and it returns a

value back to the

statement that called the

method.

5-
25

Calling a Value-Returning
Method

total = sum(value1, value2);

public static int sum(int num1, int num2)

{

 int result;

 result = num1 + num2;

 return result;

}

20 40

60

5-
26

@return Tag in Documentation
Comments

 You can provide a description of the return value in
your documentation comments by using the
@return tag.

 General format
 @return Description

 See example: ValueReturn.java

 The @return tag in a method’s documentation
comment must appear after the general description.
The description can span several lines.

ValueReturn.java

5-
27

Returning a booleanValue

 Sometimes we need to write methods to test
arguments for validity and return true or false
public static boolean isValid(int number)

{

 boolean status;

 if(number >= 1 && number <= 100)

 status = true;

 else

 status = false;

 return status;

}

Calling code:
int value = 20;

If(isValid(value))

 System.out.println("The value is within range");

else

 System.out.println("The value is out of range");

5-
28

Returning a Reference to a
String Object

customerName = fullName("John", "Martin");

 public static String fullName(String first, String last)

 {

 String name;

 name = first + " " + last;

 return name;

 }

See example:

 ReturnString.java

address

“John Martin”

Local variable name holds

the reference to the object.

The return statement sends

a copy of the reference

back to the call statement

and it is stored in
customerName.

ReturnString.java

5-
29

Problem Solving with Methods

 A large, complex problem can be solved a piece
at a time by methods.

 The process of breaking a problem down into
smaller pieces is called functional decomposition.

 See example: SalesReport.java

 If a method calls another method that has a
throws clause in its header, then the calling
method should have the same throws clause.

SalesReport.java

5-
30

Calling Methods that Throw Exceptions

 Note that the main and getTotalSales
methods in SalesReport.java have a throws
IOException clause.

 All methods that use a Scanner object to open a
file must throw or handle IOException.

 You will learn how to handle exceptions in Chapter
12.

 For now, understand that Java required any method
that interacts with an external entity, such as the file
system to either throw an exception to be handles
elsewhere in your application or to handle the
exception locally.

