
Chapter 4:

Loops and Files

4-2

Chapter Topics

Chapter 4 discusses the following main topics:

 The Increment and Decrement Operators

 The while Loop

 Using the while Loop for Input Validation

 The do-while Loop

 The for Loop

 Running Totals and Sentinel Values

4-3

Chapter Topics

Chapter 4 discusses the following main topics:

 Nested Loops

 The break and continue Statements

 Deciding Which Loop to Use

 Introduction to File Input and Output

 The Random class

4-4

The Increment and Decrement
Operators

 There are numerous times where a variable must
simply be incremented or decremented.
number = number + 1;

number = number – 1;

 Java provide shortened ways to increment and
decrement a variable’s value.

 Using the ++ or -- unary operators, this task can be
completed quickly.
number++; or ++number;

number--; or --number;

 Example: IncrementDecrement.java

IncrementDecrement.java

4-5

Differences Between Prefix and
Postfix

 When an increment or decrement are the only
operations in a statement, there is no difference
between prefix and postfix notation.

 When used in an expression:
 prefix notation indicates that the variable will be

incremented or decremented prior to the rest of the
equation being evaluated.

 postfix notation indicates that the variable will be
incremented or decremented after the rest of the equation
has been evaluated.

 Example: Prefix.java

Prefix.java

The Construction of a Loop

 All loops in Java have the following pieces.

 A keyword to indicate which kind of loop it is

 A condition (a boolean expression) that should
ultimately evaluate to false

 Progress toward failure of the condition.

 A body, remember the { }, of zero or more
statements that do something.

4-7

The while Loop

 Java provides three different looping structures.

 The while loop has the form:
while(condition)

{

statements;

}

 While the condition is true, the statements will
execute repeatedly.

 The while loop is a pretest loop, which means that
it will test the value of the condition prior to
executing the loop.

4-8

The while Loop

 Care must be taken to set the condition to false
somewhere in the loop so the loop will end.

 Loops that do not end are called infinite loops.

 A while loop executes 0 or more times. If the
condition is false, the loop will not execute.

 Example: WhileLoop.java

WhileLoop.java

4-9

The while loop Flowchart

statement(s)

true
boolean

expression?

false

4-
10

Infinite Loops

 In order for a while loop to end, the condition must
become false. The following loop will not end:

int x = 20;

while(x > 0)

{

System.out.println("x is greater than 0");

}

 The variable x never gets decremented so it will
always be greater than 0.

 Adding the x-- above fixes the problem.

4-
11

Infinite Loops

 This version of the loop decrements x
during each iteration:

int x = 20;

while(x > 0)

{

 System.out.println("x is greater than 0");

 x--;

}

4-
12

Block Statements in Loops

 Curly braces are required to enclose block
statement while loops. (like block if
statements)

while (condition)

{

 statement;

 statement;

 statement;

}

4-
13

The while Loop for Input
Validation

 Input validation is the process of ensuring that user
input is valid.
System.out.print("Enter a number in the " +

 "range of 1 through 100: ");

number = keyboard.nextInt();

// Validate the input.

while (number < 1 || number > 100)

{

 System.out.println("That number is invalid.");

 System.out.print("Enter a number in the " +

 "range of 1 through 100: ");

 number = keyboard.nextInt();

}

 Example: SoccerTeams.java

SoccerTeams.java

4-
14

The do-while Loop

 The do-while loop is a post-test loop, which means
it will execute the loop prior to testing the condition.

 The do-while loop (sometimes called called a do
loop) takes the form:
do

{

 statement(s);

}while (condition);

 Example: TestAverage1.java

TestAverage1.java

4-
15

The do-while Loop Flowchart

statement(s)

true
boolean

expression?

false

4-
16

The for Loop

 The for loop is a pre-test loop.

 The for loop allows the programmer to initialize a
control variable, test a condition, and modify the
control variable all in one line of code.

 The for loop takes the form:
for(initialization; condition; update)

{

statement(s);

}

 See example: Squares.java

Squares.java

4-
17

The for Loop Flowchart

statement(s)
true boolean

expression?

false

update

4-
18

The Sections of The for Loop

 The initialization section of the for loop allows
the loop to initialize its own control variable.

 The test section of the for statement acts in the
same manner as the condition section of a
while loop.

 The update section of the for loop is the last
thing to execute at the end of each loop.

 Example: UserSquares.java

UserSquares.java

4-
19

The for Loop Initialization

 The initialization section of a for loop is
optional; however, it is usually provided.

 Typically, for loops initialize a counter variable
that will be tested by the test section of the loop
and updated by the update section.

 The initialization section can initialize multiple
variables.

 Variables declared in this section have scope only
for the for loop.

4-
20

The Update Expression

 The update expression is usually used to increment
or decrement the counter variable(s) declared in the
initialization section of the for loop.

 The update section of the loop executes last in the
loop.

 The update section may update multiple variables.

 Each variable updated is executed as if it were on a
line by itself.

4-
21

Modifying The Control Variable

 You should avoid updating the control variable of
a for loop within the body of the loop.

 The update section should be used to update the
control variable.

 Updating the control variable in the for loop
body leads to hard to maintain code and difficult
debugging.

4-
22

Multiple Initializations and
Updates

 The for loop may initialize and update multiple
variables.
for(int i = 5, int j = 0; i < 10 || j < 20; i++, j+=2)

{

 statement(s);

}

 Note that the only parts of a for loop that are
mandatory are the semicolons.
for(;;)

{

 statement(s);

} // infinite loop

 If left out, the test section defaults to true.

4-
23

Running Totals

 Loops allow the program to keep running totals
while evaluating data.

 Imagine needing to keep a running total of user
input.

 Example: TotalSales.java

TotalSales.java

4-
24

Logic for Calculating a Running
Total

4-
25

Sentinel Values

 Sometimes the end point of input data is not known.

 A sentinel value can be used to notify the program to stop
acquiring input.

 If it is a user input, the user could be prompted to input data
that is not normally in the input data range (i.e. –1 where
normal input would be positive.)

 Programs that get file input typically use the end-of-file
marker to stop acquiring input data.

 Example: SoccerPoints.java

SoccerPoints.java

4-
26

Nested Loops
 Like if statements, loops can be nested.

 If a loop is nested, the inner loop will execute all of
its iterations for each time the outer loop executes
once.
for(int i = 0; i < 10; i++){

for(int j = 0; j < 10; j++){

loop statement;

loop statement;

…

}

}

 The loop statements in this example will execute 100
times.

 Example: Clock.java

Clock.java

4-
27

The break Statement

 The break statement can be used to
abnormally terminate a loop.

 The use of the break statement in loops
bypasses the normal mechanisms and makes the
code hard to read and maintain.

 It is considered bad form to use the break
statement in this manner.

4-
28

The continue Statement

 The continue statement will cause the currently
executing iteration of a loop to terminate and the
next iteration will begin.

 The continue statement will cause the evaluation
of the condition in while and for loops.

 Like the break statement, the continue
statement should be avoided because it makes the
code hard to read and debug.

4-
29

Deciding Which Loops to Use

 The while loop:
 Pretest loop

 Use it where you do not want the statements to
execute if the condition is false in the beginning.

 The do-while loop:
 Post-test loop

 Use it where you want the statements to execute at
least one time.

 The for loop:
 Pretest loop

 Use it where there is some type of counting variable
that can be evaluated.

4-
30

File Input and Output

 Reentering data all the time could get tedious for
the user.

 The data can be saved to a file.
 Files can be input files and/or output files.

 Files:
 Files have to be opened.

 Data is then written to the file.

 The file must be closed prior to program termination.

 In general, there are two types of files:
 binary

 text

4-
31

Writing Text To a File

 To open a file for text output you create an
instance of the PrintWriter class.

PrintWriter outputFile = new PrintWriter("StudentData.txt");

Pass the name of the file that you

wish to open as an argument to the

PrintWriter constructor.

Warning: if the file

already exists, it will be

erased and replaced with

a new file.

4-
32

The PrintWriter Class

 The PrintWriter class allows you to write
data to a file using the print and println
methods, as you have been using to display
data on the screen.

 Just as with the System.out object, the
println method of the PrintWriter class
will place a newline character after the written
data.

 The print method writes data without writing
the newline character.

4-
33

The PrintWriter Class

PrintWriter outputFile = new PrintWriter("Names.txt");

outputFile.println("Chris");

outputFile.println("Kathryn");

outputFile.println("Jean");

outputFile.close();

Open the file.

Write data to the file.

Close the file.

4-
34

The PrintWriter Class

 To use the PrintWriter class, put the
following import statement at the top of the
source file:

 import java.io.*;

 import java.io.PrintWriter;

 See example: FileWriteDemo.java

FileWriteDemo.java

4-
35

Exceptions

 When something unexpected happens in a Java
program, an exception is thrown.

 The method that is executing when the
exception is thrown must either handle the
exception or pass it up the line.

 Handling the exception will be discussed later.

 To pass it up the line, the method needs a
throws clause in the method header.

4-
36

Exceptions

 To insert a throws clause in a method header,
simply add the word throws and the name of the
expected exception.

 PrintWriter objects can throw an
IOException, so we write the throws clause
like this:

public static void main(String[] args) throws IOException

4-
37

Appending Text to a File

 To avoid erasing a file that already exists, create
a FileWriter object in this manner:

FileWriter fw =

 new FileWriter("names.txt", true);

 Then, create a PrintWriter object in this
manner:
 PrintWriter pw = new PrintWriter(fw);

4-
38

Specifying a File Location

 On a Windows computer, paths contain
backslash (\) characters.

 Remember, if the backslash is used in a string
literal, it is the escape character so you must use
two of them:

PrintWriter outFile =

 new PrintWriter("A:\\PriceList.txt");

4-
39

Specifying a File Location

 This is only necessary if the backslash is in a
string literal.

 If the backslash is in a String object then it will
be handled properly.

 Fortunately, Java allows Unix style filenames
using the forward slash (/) to separate
directories:
PrintWriter outFile = new

 PrintWriter("/home/rharrison/names.txt");

4-
40

Reading Data From a File

 You use the File class and the Scanner class
to read data from a file:

File myFile = new File("Customers.txt");

Scanner inputFile = new Scanner(myFile);

Pass the name of the file as an

argument to the File class

constructor.

Pass the File object as an

argument to the Scanner

class constructor.

4-
41

Reading Data From a File

Scanner keyboard = new Scanner(System.in);

System.out.print("Enter the filename: ");

String filename = keyboard.nextLine();

File file = new File(filename);

Scanner inputFile = new Scanner(file);

 The lines above:
 Creates an instance of the Scanner class to read from the keyboard

 Prompt the user for a filename

 Get the filename from the user

 Create an instance of the File class to represent the file

 Create an instance of the Scanner class that reads from the file

4-
42

Reading Data From a File

 Once an instance of Scanner is created, data can be read
using the same methods that you have used to read
keyboard input (nextLine, nextInt, nextDouble,
etc).

// Open the file.

File file = new File("Names.txt");

Scanner inputFile = new Scanner(file);

// Read a line from the file.

String str = inputFile.nextLine();

// Close the file.

inputFile.close();

4-
43

Exceptions

 The Scanner class can throw an
IOException when a File object is passed
to its constructor.

 So, we put a throws IOException clause
in the header of the method that instantiates
the Scanner class.

 See Example: ReadFirstLine.java

ReadFirstLine.java

4-
44

Detecting The End of a File

 The Scanner class’s hasNext() method will
return true if another item can be read from the
file.
// Open the file.

File file = new File(filename);

Scanner inputFile = new Scanner(file);

// Read until the end of the file.

while (inputFile.hasNext())

{

 String str = inputFile.nextLine();

 System.out.println(str);

}

inputFile.close();// close the file when done.

4-
45

Detecting the End of a File

 See example: FileReadDemo.java

FileReadDemo.java

4-
46

The Random Class

 Some applications, such as games and simulations,
require the use of randomly generated numbers.

 The Java API has a class, Random, for this purpose.
To use the Random class, use the following import
statement and create an instance of the class.
import java.util.Random;

Random randomNumbers = new Random();

4-
47

Some Methods of the
Random Class

Method Description

nextDouble() Returns the next random number as a double. The number

will be within the range of 0.0 and 1.0.

nextFloat() Returns the next random number as a float. The number

will be within the range of 0.0 and 1.0.

nextInt() Returns the next random number as an int. The number

will be within the range of an int, which is –2,147,483,648

to +2,147,483,648.

nextInt(int n) This method accepts an integer argument, n. It returns a
random number as an int. The number will be within the

range of 0 to n.

See example: MathTutor.java

MathTutor.java

