
Chapter 3:

Decision Structures

3-2

Chapter Topics

Chapter 3 discusses the following main topics:
 The if Statement

 The if-else Statement

 Nested if statements

 The if-else-if Statement

 Logical Operators

 Comparing String Objects

3-3

Chapter Topics

Chapter 3 discusses the following main topics:

 More about Variable Declaration and Scope

 The Conditional Operator

 The switch Statement

 The DecimalFormat Class

 The printf Method

3-4

if-else Statement Flowcharts

Wear a coat.

Yes Is it cold

outside?

Wear shorts.

No

3-5

if-else Statements

 The if-else has the ability to conditionally
execute some code when the if condition is
true and some other code when the condition is
false. It is the basic building block of our
Selection construct.
 if (expression){

 statementOrBlockIfTrue;

 }else{

 statementOrBlockIfFalse;

}

 See example: Division.java

Division.java

3-6

The if Statement

 The if statement decides whether a section of
code executes or not.

 The if statement uses a boolean to decide
whether the next statement or block of
statements executes.

if (boolean expression is true)

 execute next statement.

3-7

Flowcharts

 If statements can be modeled as a flow chart.

Wear a coat.

Yes Is it cold

outside?

if (coldOutside)

 wearCoat();

3-8

Flowcharts

 A block if statement may be modeled as:

Wear a coat.

Yes Is it cold

outside?

Wear a hat.

Wear gloves.

if (coldOutside)

{

 wearCoat();

 wearHat();

 wearGloves();

}

Note the use of curly

braces to block several

statements together.

3-9

Programming Style and if
Statements

 An if statement can span more than one line;
however, it is still one statement.

if (average > 95)

 grade = ′A′;

is functionally equivalent to

if(average > 95) grade = ′A′;

3-10

Programming Style and if
Statements

 Rules of thumb:

 The conditionally executed statement should be on
the line after the if condition.

 The conditionally executed statement should be
indented one level from the if condition.

 If an if statement does not have the block curly
braces, it is ended by the first semicolon encountered
after the if condition.
if (expression)

 statement; No semicolon here.

Semicolon ends statement here.

3-11

Block if Statements

 Conditionally executed statements can be
grouped into a block by using curly braces {} to
enclose them.

 If curly braces are used to group conditionally
executed statements, the if statement is ended
by the closing curly brace.
if (expression)

{

 statement1;

 statement2;

} Curly brace ends the statement.

3-12

Block if Statements

 Remember that when the curly braces are not used, then only the
next statement after the if condition will be executed
conditionally.
if (expression)

 statement1;

 statement2;

 statement3;

Only this statement is conditionally executed.

3-13

Flags

 A flag is a boolean variable that monitors some
condition in a program.

 When a condition is true, the flag is set to true.

 The flag can be tested to see if the condition has
changed.
if (average > 95){

 highScore = true;

}

 Later, this condition can be tested:
if (highScore){

 System.out.println("That′s a high score!");

}

3-14

Comparing Characters

 Characters can be tested with relational operators.

 Characters are stored in memory using the Unicode character
format.

 Unicode is stored as a sixteen (16) bit number.

 Characters are ordinal, meaning they have an order in the
Unicode character set.

 Since characters are ordinal, they can be compared to each
other.

char c = ′A′;

if(c < ′Z′)

 System.out.println("A is less than Z");

3-15

Nested if Statement Flowcharts

Wear a jacket.

Yes Is it cold

outside?

Wear shorts.

Is it

snowing?

Wear a parka.

No

No Yes

3-16

Nested if Statements

 If an if statement appears inside another if
statement (single or block) it is called a nested
if statement.

 The nested if is executed only if the outer if
statement results in a true condition.

 See example: LoanQualifier.java

LoanQualifier.java

3-17

Nested if Statements

if (coldOutside)

{

 if (snowing)

 {

 wearParka();

 }

 else

 {

 wearJacket();

 }

}

else

{

 wearShorts();

}

3-18

if-else Matching

 Curly brace use is not required if there is only one
statement to be conditionally executed.

 However, curly braces help make the program
more readable and you WILL use them.

 Additionally, proper indentation makes it much
easier to match up else statements with their
corresponding if statement.

3-19

Alignment and Nested if
Statements

if (coldOutside)

{

 if (snowing)

 {

 wearParka();

 }

 else

 {

 wearJacket();

 }

}

else

{

 wearShorts();

}

This if and
else

go together.
This if and

else

go together.

3-20

if-else-if Statements

if (expression_1)

{

 statement;

 statement;

 etc.

}

else if (expression_2)

{

 statement;

 statement;

 etc.

}

Insert as many else if clauses as necessary

else

{

 statement;

 statement;

 etc.

}

If expression_1 is true these statements are

executed, and the rest of the structure is ignored.

Otherwise, if expression_2 is true these statements are

executed, and the rest of the structure is ignored.

These statements are executed if none of the

expressions above are true.

3-21

if-else-if Statements

 Nested if statements can become very
complex.

 The if-else-if statement makes certain types of
nested decision logic simpler to write.

 Care must be used since else statements match up
with the immediately preceding unmatched if
statement.

 See example: TestResults.java

TestResults.java

3-22

if-else-if Flowchart

3-23

Relational Operators

 In most cases, the boolean expression, used by the
if statement, uses relational operators.

Relational Operator Meaning

> is greater than

< is less than

>= is greater than or equal to

<= is less than or equal to

== is equal to

!= is not equal to

3-24

Boolean Expressions

 A boolean expression is any variable or calculation
that results in a true or false condition.

Expression Meaning

x > y Is x greater than y?

x < y Is x less than y?

x >= y Is x greater than or equal to y?

x <= y Is x less than or equal to y.

x == y Is x equal to y?

x != y Is x not equal to y?

3-25

Logical Operators

 Java provides two binary logical operators (&&
and ||) that are used to combine boolean
expressions.

 Java also provides one unary (!) logical operator
to reverse the truth of a boolean expression.

3-26

Logical Operators

Operator Meaning Effect

&& AND

Connects two boolean expressions into one. Both

expressions must be true for the overall expression to

be true.

|| OR

Connects two boolean expressions into one. One or

both expressions must be true for the overall

expression to be true. It is only necessary for one to be

true, and it does not matter which one.

! NOT

The ! operator reverses the truth of a boolean

expression. If it is applied to an expression that is

true, the operator returns false. If it is applied to an

expression that is false, the operator returns true.

3-27

The && Operator

 The logical AND operator (&&) takes two operands that must
both be boolean expressions.

 The resulting combined expression is true if (and only if) both
operands are true.

 See example: LogicalAnd.java

Expression 1 Expression 2 Expression1 && Expression2

false false false

false true false

true false false

true true true

LogicalAnd.java

3-28

The || Operator

 The logical OR operator (||) takes two operands
that must both be boolean expressions.

 The resulting combined expression is false if (and
only if) both operands are false.

 Example: LogicalOr.java

Expression 1 Expression 2 Expression1 || Expression2

false false false

false true true

true false true

true true true

LogicalOr.java

3-29

The ! Operator

 The ! operator performs a logical NOT operation.
 If an expression is true, !expression will be false.

if (!(temperature > 100))

 System.out.println("Below the maximum temperature.");

 If temperature > 100 evaluates to false, then the output

statement will be run.

Expression 1 !Expression1

true false

false true

3-30

Short Circuiting

 Logical AND and logical OR operations perform
short-circuit evaluation of expressions.

 Logical AND will evaluate to false as soon as it
sees that one of its operands is a false
expression.

 Logical OR will evaluate to true as soon as it sees
that one of its operands is a true expression.

3-31

Order of Precedence

 The ! operator has a higher order of precedence
than the && and || operators.

 The && and || operators have a lower
precedence than relational operators like < and
>.

 Parenthesis can be used to force the precedence
to be changed.

3-32

Order of Precedence

Order of

Precedence
Operators Description

1 - ! Unary negation, logical NOT

2 * / % Multiplication, Division, Modulus

3 + - Addition, Subtraction

4 < > <= >=
Less-than, Greater-than, Less-than or

equal to, Greater-than or equal to

5 == != Is equal to, Is not equal to

6 && Logical AND

7 || Logical OR

8
= += -=

*= /= %=

Assignment and combined assignment

operators.

3-33

if Statements and Boolean
Expressions

if (x > y)

System.out.println("X is greater than Y");

if(x == y)

System.out.println("X is equal to Y");

if(x != y)

{

System.out.println("X is not equal to Y");

x = y;

System.out.println("However, now it is.");

}

Example: AverageScore.java

AverageScore.java

3-34

Comparing String Objects

 In most cases, you cannot use the relational
operators to compare two String objects.

 Reference variables contain the address of the
object they represent.

 Unless the references point to the same object, the
relational operators will not return true.

 See example: StringCompare.java

 See example: StringCompareTo.java

StringCompare.java
StringCompareTo.java

3-35

Ignoring Case in String
Comparisons

 In the String class the equals and
compareTo methods are case sensitive.

 In order to compare two String objects that
might have different case, use:
 equalsIgnoreCase, or

 compareToIgnoreCase

 See example: SecretWord.java

SecretWord.java

3-36

Variable Scope

 In Java, a local variable does not have to be declared
at the beginning of the method.

 The scope of a local variable begins at the point it is
declared and terminates at the end of the method.

 When a program enters a section of code where a
variable has scope, that variable has come into scope,
which means the variable is visible to the program.

 See example: VariableScope.java

VariableScope.java

3-37

The Conditional Operator

 The conditional operator is a ternary (three
operand) operator.

 You can use the conditional operator to write a
simple statement that works like an if-else
statement.

3-38

The Conditional Operator

 The format of the operators is:

BooleanExpression ? Value1 : Value2

 This forms a conditional expression.

 If BooleanExpression is true, the value of the
conditional expression is Value1.

 If BooleanExpression is false, the value of the
conditional expression is Value2.

3-39

The Conditional Operator

 Example:
z = x > y ? 10 : 5;

 This line is functionally equivalent to:
if(x > y)

 z = 10;

else

 z = 5;

3-40

The Conditional Operator

 Many times the conditional operator is used to
supply a value.
number = x > y ? 10 : 5;

 This is functionally equivalent to:
if(x > y)

 number = 10;

else

 number = 5;

 See example: ConsultantCharges.java

ConsultantCharges.java

3-41

The switch Statement

 The if-else statement allows you to make true
/ false branches.

 The switch statement allows you to use an
ordinal value to determine how a program will
branch.

 The switch statement can evaluate an integer
type or character type variable and make
decisions based on the value.

3-42

The switch Statement

 The switch statement takes the form:
switch (Integral Expression)

{

 case CaseExpression:

 {

 // place one or more statements here

 }

 break;

 case CaseExpression:

 {

 // place one or more statements here

 }

 break;

 // case statements may be repeated

 //as many times as necessary

 default:

 {

 // place one or more statements here

 }

}

3-43

The switch Statement

 The switch statement takes an ordinal value (byte,
short, int, or char) as the SwitchExpression.

switch (SwitchExpression)

{

 …
}

 The switch statement will evaluate the expression.

 If there is an associated case statement that matches that
value, program execution will be transferred to that case
statement.

3-44

The switch Statement

 Each case statement will have a corresponding
CaseExpression that must be unique.

case CaseExpression:

 // place one or more statements here

 break;

 If the SwitchExpression matches the CaseExpression,
the Java statements between the colon and the
break statement will be executed.

3-45

The case Statement

 The break statement ends the case statement.

 The break statement is optional.

 If a case does not contain a break, then program
execution continues into the next case.
 See example: NoBreaks.java

 See example: PetFood.java

 The default section is optional and will be
executed if no CaseExpression matches the
SwitchExpression.

 See example: SwitchDemo.java

NoBreaks.java
PetFood.java
SwitchDemo.java

3-46

The DecimalFormat Class

 When printing out double and float values, the
full fractional value will be printed.

 The DecimalFormat class can be used to format
these values.

 In order to use the DecimalFormat class, the
following import statement must be used at the
top of the program:
import java.text.DecimalFormat;

 See examples:

Format1.java, Format2.java, Format3.java, Format4.java

Format1.java
Format2.java
Format3.java
Format4.java

3-47

The printf Method

 You can use the System.out.printf
method to perform formatted console output.

 The general format of the method is:

System.out.printf(FormatString, ArgList);

3-48

The printf Method

System.out.printf(FormatString, ArgList);

FormatString is

a string that

contains text and/or

special formatting

specifiers.

ArgList is optional. It is a

list of additional arguments

that will be formatted

according to the format

specifiers listed in the

format string.

3-49

The printf Method

 A simple example:

System.out.printf("Hello World\n");

3-50

The printf Method

 Another example:

int hours = 40;

System.out.printf("I worked %d hours.\n", hours);

3-51

The printf Method

int hours = 40;

System.out.printf("I worked %d hours.\n", hours);

The %d format specifier indicates

that a decimal integer will be

printed.

The contents of the hours

variable will be printed in the

location of the %d format

specifier.

3-52

The printf Method

 Another example:
int dogs = 2, cats = 4;

System.out.printf("We have %d dogs and %d cats.\n",

 dogs, cats);

3-53

The printf Method

 Another example:
double grossPay = 874.12;

System.out.printf("Your pay is %f.\n", grossPay);

3-54

The printf Method

 Another example:
double grossPay = 874.12;

System.out.printf("Your pay is %f.\n", grossPay);

The %f format specifier indicates

that a floating-point value will be

printed.

The contents of the grossPay

variable will be printed in the

location of the %f format

specifier.

3-55

The printf Method

 Another example:
double grossPay = 874.12;

System.out.printf("Your pay is %.2f.\n", grossPay);

3-56

The printf Method

 Another example:
double grossPay = 874.12;

System.out.printf("Your pay is %.2f.\n", grossPay);

The %.2f format specifier indicates that a

floating-point value will be printed, rounded to

two decimal places.

3-57

The printf Method

 Another example:
String name = "Ringo";

System.out.printf("Your name is %s.\n", name);

The %s format specifier

indicates that a string will be

printed.

3-58

The printf Method

 Specifying a field width:

int number = 9;

System.out.printf("The value is %6d\n", number);

The %6d format

specifier indicates

the integer will

appear in a field

that is 6 spaces

wide.

3-59

The printf Method

 Another example:

double number = 9.76891;

System.out.printf("The value is %6.2f\n", number);

The %6.2f format specifier

indicates the number will

appear in a field that is 6

spaces wide, and be rounded

to 2 decimal places.

