
Chapter 2:

Java Fundamentals

2-2

Chapter Topics

Chapter 2 discusses the following main topics:

 The Parts of a Java Program

 The print and println Methods

 The Java API

 Variables and Literals

 Primitive Data Types

 Arithmetic Operators

 Combined Assignment Operators

2-3

Chapter Topics (2)

 Creating named constants with final

 The String class

 Scope

 Comments

 Programming style

 Using the Scanner class for input

 Dialog boxes

2-4

Parts of a Java Program

 A Java source code file contains one or more
Java classes.

 If more than one class is in a source code file,
only one of them may be public.

 The public class and the filename of the source
code file must match.

ex: A class named Simple must be in a file named Simple.java

 Each Java class can be separated into parts.

2-5

Parts of a Java Program

 See example: Simple.java

 To compile the example:
 javac Simple.java

 Notice the .java file extension is needed.

 This will result in a file named Simple.class being created.

 To run the example:
 java Simple

 Notice there is no file extension here.

 The java command assumes the extension is .class.

Simple.java

2-6

Analyzing The Example

public class Simple

{

}

This area is the body of the class Simple.

All of the data and methods for this class

will be between these curly braces.

// This is a simple Java program.
This is a Java comment. It is

ignored by the compiler. It is

part of the program header

This is the class definition

for the class Simple

2-7

Analyzing The Example

// This is a simple Java program.

public class Simple

{

}

public static void main(String[] args)

{

}

This area is the body of the main method.

All of the actions to be completed during

the main method will be between these curly braces.

This is the method definition

for the main method. The

main method is where a Java

application begins.

2-8

Analyzing The Example

// This is a simple Java program.

public class Simple

{

}

public static void main(String [] args)

{

 System.out.println("Programming is great fun!");

}

This is the Java Statement that

is executed when the program runs.

2-9

Parts of a Java Program

 Comments
 The line is ignored by the compiler.
 The comment in the example is a single-line comment.

 Class Declaration
 The class declaration tells the compiler things about the

class such as what other classes can use it (public) and that
it is a Java class (class), and the name of that class
(Simple).

 Curly Braces
 When associated with the class , they define the scope of

the class.
 When associated with a method, they define the scope of

the method.

2-
10

Parts of a Java Program

 The main Method
 This line must be exactly as shown in the example (except

the args variable name can be programmer defined).

 This is the line of code that the java command will run first.

 This method starts the Java program.

 Every Java application must have exactly one main
method.

 Java Statements
 When the program runs, the statements within the main

method will be executed.

 Can you see what the line in the example will do?

2-
11

Java Statements

 If we look back at the previous example, we can
see that there is only one line that ends with a
semi-colon.

 System.out.println("Programming is great fun!");

 This is because it is the only Java statement in
the program.

 The rest of the code is either a comment or other
Java framework code.

2-
12

Java Statements

 Comments are ignored by the Java compiler so they
need no semi-colons.

 Other Java code elements that do not need semi
colons include:

 class headers
 Terminated by the code within its curly braces.

 method headers
 Terminated by the code within its curly braces.

 curly braces
 Part of framework code that needs no semi-colon termination.

2-
13

Short Review

 Java is a case-sensitive language.

 All Java programs must be stored in a file with a
.java file extension.

 Comments are ignored by the compiler.

 A .java file may contain many classes but may
only have one public class.

 If a .java file has a public class, the class must
have the same name as the file.

2-
14

Short Review

 Java applications must have one main method.

 For every left brace, or opening brace, there
must be a corresponding right brace, or closing
brace.

 Statements are terminated with semicolons.

 Comments, class headers, method headers, and
braces are not considered Java statements.

2-
15

Special Characters

// double slash
Marks the beginning of a single line

comment.

() open and close parenthesis
Used in a method header to mark the

parameter list.

{ } open and close curly braces
Encloses a group of statements, such

as the contents of a class or a method.

“ ” quotation marks

Encloses a string of characters, such

as a message that is to be printed on

the screen

; semi-colon
Marks the end of a complete

programming statement

2-
16

Console Output

 Many of the programs that you will write will
run in a terminal or console window.

2-
17

Console Output

 The console window that starts a Java
application is typically known as the standard
output device.

 The standard input device is typically the
keyboard.

 Java sends information to the standard output
device by using a Java class stored in the
standard Java library.

2-
18

Console Output

 Java classes in the standard Java library are
accessed using the Java Applications
Programming Interface (API).

 The standard Java library is commonly referred
to as the Java API.

2-
19

Console Output

 The previous example uses the line:
System.out.println("Programming is great fun!");

 This line uses the System class from the
standard Java library.

 The System class contains methods and objects
that perform system level tasks.

 The out object, a member of the System class,
contains the methods print and println.

2-
20

Console Output

 The print and println methods actually
perform the task of sending characters to the
output device.

 The line:
System.out.println("Programming is great fun!");

is pronounced: System dot out dot println
…

 The value inside the parenthesis will be sent to
the output device (in this case, a string).

2-
21

Console Output

 The println method places a newline
character at the end of whatever is being
printed out.

 The following lines:
System.out.println("This is being printed out");

System.out.println("on two separate lines.");

Would be printed out on separate lines since the first
statement sends a newline command to the screen.

2-
22

Console Output

 The print statement works very similarly to the
println statement.

 However, the print statement does not put a
newline character at the end of the output.

 The lines:
System.out.print("These lines will be");

System.out.print("printed on");

System.out.println("the same line.");

Will output:
These lines will beprinted onthe same line.

Notice the odd spacing? Why are some words run
together?

2-
23

Console Output

 For all of the previous examples, we have been
printing out strings of characters.

 Later, we will see that much more can be printed.

 There are some special characters that can be put
into the output.
System.out.print("This line will have a newline at the end.\n");

 The \n in the string is an escape sequence that
represents the newline character.

 Escape sequences allow the programmer to print
characters that otherwise would be unprintable.

2-
24

Java Escape Sequences

\n newline Advances the cursor to the next line for subsequent printing

\t tab Causes the cursor to skip over to the next tab stop

\b backspace Causes the cursor to back up, or move left, one position

\r carriage return
Causes the cursor to go to the beginning of the current line, not

the next line

\\ backslash Causes a backslash to be printed

\’ single quote Causes a single quotation mark to be printed

\” double quote Causes a double quotation mark to be printed

2-
25

Java Escape Sequences

 Even though the escape sequences are comprised of
two characters, they are treated by the compiler as a
single character.

System.out.print("These are our top sellers:\n");

System.out.print("\tComputer games\n\tCoffee\n ");

System.out.println("\tAspirin");

 Would result in the following output:
 These are our top seller:

 Computer games

 Coffee

 Asprin

 With these escape sequences, complex text output
can be achieved.

2-
26

Variables and Literals

 A variable is a named storage location in the
computer’s memory.

 A literal is a value that is written into the code of
a program.

 Programmers determine the number and type of
variables a program will need.

 See example:Variable.java

Variable.java
Variable.java
Variable.java

2-
27

Variables and Literals

This line is called

a variable declaration.
 int value;

The following line is known

 as an assignment statement.
 value = 5;

System.out.print("The value is ");

System.out.println(value);

This is a string literal. It will be printed as is.

The integer 5 will

be printed out here.

Notice no quote marks?

0x000

0x001

0x002

0x003

5

The value 5

is stored in

memory.

2-
28

The + Operator

 The + operator can be used in two ways.
 as a concatenation operator

 as an addition operator

 If either side of the + operator is a string,
the result will be a string.
 System.out.println("Hello " + "World");

 System.out.println("The value is: " + 5);

 System.out.println("The value is: " + value);

 System.out.println("The value is: " + ‘/n’ + 5);

2-
29

String Concatenation

 Java commands that have string literals must be
treated with care.

 A string literal value cannot span lines in a Java
source code file.
 System.out.println("This line is too long and now it

has spanned more than one line, which will cause a

syntax error to be generated by the compiler. ");

2-
30

String Concatenation

 The String concatenation operator can be used
to fix this problem.

System.out.println("These lines are " +

 "are now ok and will not " +

 "cause the error as before.");

 String concatenation can join various data types.
System.out.println("We can join a string to " +

 "a number like this: " + 5);

2-
31

String Concatenation

 The Concatenation operator can be used
to format complex String objects.

System.out.println("The following will be printed " +

 "in a tabbed format: " +

 \n\tFirst = " + 5 * 6 + ", " +

 "\n\tSecond = " (6 + 4) + "," +

 "\n\tThird = " + 16.7 + ".");

 Notice that if an addition operation is
also needed, it must be put in
parenthesis.

2-
32

Identifiers

 Identifiers are programmer-defined names for:

 classes

 variables

 methods

 Identifiers may not be any of the Java reserved
keywords.

2-
33

Identifiers

 Identifiers must follow certain rules:
 An identifier may only contain:

 letters a–z or A–Z,

 the digits 0–9,

 underscores (_), or

 the dollar sign ($)

 The first character may not be a digit.

 Identifiers are case sensitive.
 itemsOrdered is not the same as itemsordered.

 Identifiers cannot include spaces.

2-
34

Java Reserved Keywords
The following character sequences, formed from ASCII letters, are reserved for

use as keywords and cannot be used as identifiers:

 abstract continue for new switch

 assert default if package synchronized

 boolean do goto private this

 break double implements protected throw

 byte else import public throws

 case enum instanceof return transient

 catch extends int short try

 char final interface static void

 class finally long strictfp volatile

 const float native super while

The keywords const and goto are reserved, even though they are not

currently used. This may allow a Java compiler to produce better error

messages if these C++ keywords incorrectly appear in programs.

While true and false might appear to be keywords, they are technically

Boolean literals. Similarly, while null might appear to be a keyword, it is

technically the null literal.

2-
35

Variable Names

 Variable names should be descriptive.

 Descriptive names allow the code to be more
readable; therefore, the code is more
maintainable.

 Which of the following is more descriptive?
double tr = 0.0725;

double salesTaxRate = 0.0725;

 Java programs should try be self-documenting.

2-
36

Java Naming Conventions

 Variable names should begin with a lower case letter
and then switch to title case thereafter:

Ex: int caTaxRate

 Class names should be all title case.
Ex: public class BigLittle

 More Java naming conventions can be found at:
http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html

 A general rule of thumb about naming variables and
classes are that, with some exceptions, their names
tend to be nouns or noun phrases.

http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html

2-
37

Primitive Data Types

 byte

 short

 int

 long

 float

 double

 boolean

 char

• Primitive data types are built into the Java language
and are not derived from classes.

• There are 8 Java primitive data types.

2-
38

Numeric Data Types

byte 1 byte Integers in the range

-128 to +127

short 2 bytes Integers in the range of

-32,768 to +32,767

int 4 bytes Integers in the range of

-2,147,483,648 to +2,147,483,647

long 8 bytes Integers in the range of

-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

float 4 bytes Floating-point numbers in the range of

±3.4x10-38 to ±3.4x10+38, with 7 digits of accuracy

double 8 bytes Floating-point numbers in the range of

±1.7x10-308 to ±1.7x10+308, with 15 digits of accuracy

2-
39

Variable Declarations

 Variable Declarations take the following form:

 DataType VariableName;

 byte inches;

 short month;

 int speed;

 long timeStamp;

 float salesCommission;

 double distance;

2-
40

Integer Data Types

 byte, short, int, and long are all integer
data types.

 They can hold whole numbers such as 5, 10, 23,
89, etc.

 Integer data types cannot hold numbers that
have a decimal point in them.

 Integers embedded into Java source code are
called integer literals.

 See Example: IntegerVariables.java

IntegerVariables.java

2-
41

Floating Point Data Types

 Data types that allow fractional values are called
floating-point numbers.

 1.7 and -45.316 are floating-point numbers.

 In Java there are two data types that can
represent floating-point numbers.
 float - also called single precision (7 decimal

points).

 double - also called double precision (15 decimal
points).

2-
42

Floating Point Literals

 When floating point numbers are embedded into
Java source code they are called floating point
literals.

 The default type for floating point literals is
double.

 29.75, 1.76, and 31.51 are double data types.

 Java is a strongly-typed language.

 See example: Sale.java

Sale.java

2-
43

Floating Point Literals

 A double value is not compatible with a float
variable because of its size and precision.
 float number;

 number = 23.5; // Error!

 A double can be forced into a float by
appending the letter F or f to the literal.
 float number;

 number = 23.5F; // This will work.

2-
44

Floating Point Literals

 Literals cannot contain embedded currency symbols
or commas.
 grossPay = $1,257.00; // ERROR!

 grossPay = 1257.00; // Correct.

 Floating-point literals can be represented in scientific
notation.
 47,281.97 == 4.728197 x 104.

 Java uses E notation to represent values in scientific
notation.
 4.728197X104 == 4.728197E4.

2-
45

Scientific and E Notation

Decimal Notation Scientific Notation E Notation

247.91 2.4791 x 102 2.4791E2

0.00072 7.2 x 10-4 7.2E-4

2,900,000 2.9 x 106 2.9E6

See example: SunFacts.java

SunFacts.java

2-
46

The boolean Data Type

 The Java boolean data type can have two
possible values.
 true

 false

 The value of a boolean variable may only be
copied into a boolean variable.

See example: TrueFalse.java

TrueFalse.java

2-
47

The char Data Type

 The Java char data type provides access to single
characters.

 char literals are enclosed in single quote marks.

 ‘a’, ‘Z’, ‘\n’, ‘1’

 Don’t confuse char literals with string literals.

 char literals are enclosed in single quotes.

 String literals are enclosed in double quotes.

See example: Letters.java

Letters.java

2-
48

Unicode

 Internally, characters are stored as numbers.

 Character data in Java is stored as Unicode
characters.

 The Unicode character set can consist of 65536
(216) individual characters.

 This means that each character takes up 2 bytes
in memory.

 The first 256 characters in the Unicode character
set are compatible with the ASCII* character set.

See example: Letters2.java
*American Standard Code for Information Interchange

Letters2.java

2-
49

Unicode

A

00 65

B

00 66

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

2-
50

Unicode

A

00 65

B

00 66

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

Characters are

stored in memory

as binary numbers.

2-
51

Unicode

A

00 65

B

00 66

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

The binary numbers

represent these

decimal values.

2-
52

Unicode

A

00 65

B

00 66

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

The decimal values

represent these

characters.

2-
53

Some more Unicode

亀

20096

औ

2324

0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0

The decimal values

represent these

characters.

2-
54

Variable Assignment and
Initialization

 In order to store a value in a variable, an
assignment statement must be used.

 The assignment operator is the equal (=) sign.

 The operand on the left side of the assignment
operator must be a variable name.

 The operand on the right side must be either a
literal or expression that evaluates to a type that
is compatible with the type of the variable.

2-
55

Variable Assignment and
Initialization

// This program shows variable assignment.

public class Initialize
{
 public static void main(String[] args)
 {
 int month, days;

 month = 2;
 days = 28;
 System.out.println("Month " + month + " has " +
 days + " Days.");
 }

}

The variables must be declared before they can be used.

2-
56

Variable Assignment and
Initialization

// This program shows variable assignment.

public class Initialize
{
 public static void main(String[] args)
 {
 int month, days;

 month = 2;
 days = 28;
 System.out.println("Month " + month + " has " +
 days + " Days.");
 }

}

Once declared, they can then receive a value (initialization);

however the value must be compatible with the variable’s

declared type.

2-
57

Variable Assignment and
Initialization

// This program shows variable assignment.

public class Initialize
{
 public static void main(String[] args)
 {
 int month, days;

 month = 2;
 days = 28;
 System.out.println("Month " + month + " has " +
 days + " Days.");
 }

}

After receiving a value, the variables can then be used in

output statements or in other calculations.

2-
58

Variable Assignment and
Initialization

// This program shows variable initialization.

public class Initialize
{
 public static void main(String[] args)
 {
 int month = 2, days = 28;

 System.out.println("Month " + month + " has " +
 days + " Days.");
 }

}

Local variables can be declared and initialized on

the same line.

2-
59

Variable Assignment and
Initialization

 Variables can only hold one value at a time.

 Local variables do not receive a default value.

 Local variables must have a valid type in order to be
used.

 public static void main(String [] args)

{

 int month, days; //No value given…

 System.out.println("Month " + month + " has " +

 days + " Days.");

}

Trying to use uninitialized variables will generate a Syntax
Error when the code is compiled.

2-
60

Arithmetic Operators

 Java has five (5) arithmetic operators.

Operator Meaning Type Example

+ Addition Binary total = cost + tax;

- Subtraction Binary cost = total – tax;

* Multiplication Binary tax = cost * rate;

/ Division Binary salePrice = original / 2;

% Modulus Binary remainder = value % 5;

2-
61

Arithmetic Operators

 The operators are called binary operators because
they must have two operands.

 Each operator must have a left and right operator.

See example: Wages.java

 The arithmetic operators work as one would expect.

 It is an error to try to divide any number by zero.

 When working with two integer operands, the
division operator requires special attention.

Wages.java

2-
62

Integer Division

 Division can be tricky.

In a Java program, what is the value of 1/2?

 You might think the answer is 0.5…

 But, that’s wrong.

 The answer is simply 0.

 Integer division will truncate any decimal
remainder.

2-
63

Operator Precedence

 Mathematical expressions can be very complex.

 There is a set order in which arithmetic
operations will be carried out.

Operator Associativity Example Result

-

(unary negation)
Right to left x = -4 + 3; -1

* / % Left to right x = -4 + 4 % 3 * 13 + 2; 11

+ - Left to right x = 6 + 3 – 4 + 6 * 3; 23

Higher

Priority

Lower

Priority

2-
64

Grouping with Parenthesis

 When parenthesis are used in an expression, the
inner most parenthesis are processed first.

 If two sets of parenthesis are at the same level, they
are processed left to right.

 x = ((4*5) / (5-2)) – 25; // result = -19

1

3

4

2

2-
65

Combined Assignment Operators

 Java has some combined assignment operators.

 These operators allow the programmer to
perform an arithmetic operation and assignment
with a single operator.

 Although not required, these operators are
popular since they shorten simple equations.

2-
66

Combined Assignment Operators

Operator Example Equivalent Value of variable after operation

+= x += 5; x = x + 5; The old value of x plus 5.

-= y -= 2; y = y – 2; The old value of y minus 2

*= z *= 10; z = z * 10; The old value of z times 10

/= a /= b; a = a / b; The old value of a divided by b.

%= c %= 3; c = c % 3;
The remainder of the division of

the old value of c divided by 3.

2-
67

Creating Constants

 Many programs have data that does not need to be
changed.

 Littering programs with literal values can make the
program hard do read and maintain.

 Replacing literal values with constants remedies this
problem.

 Constants allow the programmer to use a name
rather than a value throughout the program.

 Constants also give a singular point for changing
those values when needed.

2-
68

Creating Constants

 Constants keep the program organized and easier to
maintain.

 Constants are identifiers that can hold only a single
value.

 Constants are declared using the keyword final.

 Constants need not be initialized when declared;
however, they must be initialized before they are
used or a compiler error will be generated.

2-
69

Creating Constants

 Once initialized with a value, constants cannot
be changed programmatically.

 By convention, constants are all upper case and
words are separated by the underscore
character.
final double CAL_SALES_TAX = 0.725;

2-
70

The String Class

 Java has no primitive data type that holds a series of
characters.

 The String class from the Java standard library is
used for this purpose.

 In order to be useful, the a variable must be created
to reference a String object.
String number = “25”;

 Notice the S in String is upper case.

 By convention, class names should always begin
with an upper case character.

2-
71

Primitive vs. Reference
Variables

 Primitive variables actually contain the value
that they have been assigned.
int number = 25;

 The value 25 will be stored in the memory
location associated with the variable number.

 Objects are not stored in variables, however.
Objects are referenced by variables.

2-
72

Primitive vs. Reference
Variables

 When a variable references an object, it contains the
memory address of the object’s location.

 Then it is said that the variable references the object.
String cityName = "Charleston";

Charleston Address to the object cityName

The object that contains the

character string “Charleston”

2-
73

String Objects

 A variable can be assigned a String literal.
String value = "Hello";

 Strings are the only objects that can be created in
this way.

 A variable can be created using the new keyword.
String value = new String("Hello");

 This is the method that all other objects must use
when they are created.

See example: StringDemo.java

StringDemo.java

2-
74

The String Methods

 Since String is a class, objects that are
instances of it have methods.

 One of those methods is the length method.

stringSize = value.length();

 This statement runs the length method on the
object pointed to by the value variable.

See example: StringLength.java

StringLength.java

2-
75

String Methods

 The String class contains many methods that
help with the manipulation of String objects.

 String objects are immutable, meaning that
they cannot be changed.

 Many of the methods of a String object can
create new versions of the object.

See example: StringMethods.java

PayrollDialog.java

2-
76

Scope

 Scope refers to the part of a program that has
access to a variable’s contents.

 Variables declared inside a method (like the main
method) are called local variables.

 Local variables’ scope begins at the declaration
of the variable and ends at the end of the
method in which it was declared.

See example: Scope.java (This program contains
an intentional error.)

Scope.java

2-
77

Commenting Code

 Java provides three methods for commenting
code.

Comment

Style
Description

//
Single line comment. Anything after the // on the line will be

ignored by the compiler.

/* … */

Block comment. Everything beginning with /* and ending with

the first */ will be ignored by the compiler. This comment type

cannot be nested.

/** … */

Javadoc comment. This is a special version of the previous block

comment that allows comments to be documented by the javadoc

utility program. Everything beginning with the /** and ending

with the first */ will be ignored by the compiler. This comment

type cannot be nested.

2-
78

Commenting Code

 Javadoc comments can be built into HTML
documentation.

 See example: Comment3.java
 To create the documentation:

 Run the javadoc program with the source file as an
argument

 Ex: javadoc Comment3.java

 The javadoc program will create
index.html and several other documentation
files in the same directory as the input file.

Payroll.java

2-
79

Commenting Code

 Example index.html:

PayrollDialog.java

2-
80

Programming Style

 Although Java has a strict syntax, whitespace
characters are ignored by the compiler.

 The Java whitespace characters are:
 space

 tab

 newline

 carriage return

 form feed

See example: Compact.java

Compact.java

2-
81

Indentation

 Programs should use proper indentation.

 Each block of code should be indented a few spaces
from its surrounding block.

 Two to four spaces are sufficient.

 Tab characters should be avoided.

 Tabs can vary in size between applications and devices.

 Most programming text editors allow the user to replace
the tab with spaces.

See example: Readable.java

Readable.java

2-
82

The Scanner Class

 To read input from the keyboard we can use the
Scanner class.

 The Scanner class is defined in java.util, so
we will use the following statement at the top of our
programs:

import java.util.Scanner;

2-
83

The Scanner Class

 Scanner objects work with System.in

 To create a Scanner object:
Scanner keyboard = new Scanner (System.in);

 Scanner class methods are listed in Table 2-18
in the text.

 See example: Payroll.java

StringMethods.java

2-
84

Dialog Boxes

 A dialog box is a small graphical window that
displays a message to the user or requests input.

 A variety of dialog boxes can be displayed using
the JOptionPane class.

 Two of the dialog boxes are:
 Message Dialog - a dialog box that displays a

message.

 Input Dialog - a dialog box that prompts the user for
input.

2-
85

The JOptionPane Class

 The JOptionPane class is not automatically
available to your Java programs.

 The following statement must be before the
program’s class header:
import javax.swing.JOptionPane;

 This statement tells the compiler where to find
the JOptionPane class.

2-
86

The JOptionPane Class

The JOptionPane class provides methods to

display each type of dialog box.

2-
87

Message Dialogs

 JOptionPane.showMessageDialog
method is used to display a message dialog.
JOptionPane.showMessageDialog(null, "Hello World");

 The first argument will be discussed in Chapter 7.

 The second argument is the message that is to be
displayed.

2-
88

Input Dialogs

 An input dialog is a quick and simple way to ask
the user to enter data.

 The dialog displays a text field, an Ok button and
a Cancel button.

 If Ok is pressed, the dialog returns the user’s
input.

 If Cancel is pressed, the dialog returns null.

2-
89

Input Dialogs

String name;

name = JOptionPane.showInputDialog(

 "Enter your name.");

 The argument passed to the method is the message to
display.

 If the user clicks on the OK button, name references the
string entered by the user.

 If the user clicks on the Cancel button, name references
null.

2-
90

The System.exit Method

 A program that uses JOptionPane does not
automatically stop executing when the end of
the main method is reached.

 Java generates a thread, which is a process
running in the computer, when a JOptionPane
is created.

 If the System.exit method is not called, this
thread continues to execute.

2-
91

The System.exit Method

 The System.exit method requires an integer
argument.
System.exit(0);

 This argument is an exit code that is passed back to
the operating system.

 This code is usually ignored, however, it can be used
outside the program:
 to indicate whether the program ended successfully or as

the result of a failure.

 The value 0 traditionally indicates that the program ended
successfully.

2-
92

Converting a String to a Number

 The JOptionPane’s showInputDialog
method always returns the user's input as a
String

 A String containing a number, such as
“127.89, can be converted to a numeric data
type.

2-
93

The Parse Methods

 Each of the numeric wrapper classes, (covered in
Chapter 10) has a method that converts a string to a
number.
 The Integer class has a method that converts a string to

an int,

 The Double class has a method that converts a string to a
double, and

 etc.

 These methods are known as parse methods because
their names begin with the word “parse.”

2-
94

The Parse Methods

// Store 1 in bVar.

byte bVar = Byte.parseByte("1");

// Store 2599 in iVar.

Sting someRandomVariableName = “2599”;

int iVar = Integer.parseInt(somerandomvariablename);

// Store 10 in sVar.

short sVar = Short.parseShort("10");

// Store 15908 in lVar.

long lVar = Long.parseLong("15908");

// Store 12.3 in fVar.

float fVar = Float.parseFloat("12.3");

// Store 7945.6 in dVar.

double dVar = Double.parseDouble("7945.6");

2-
95

Reading an Integer with an Input Dialog

int number;

String str;

str = JOptionPane.showInputDialog(

 "Enter a number.");

number = Integer.parseInt(str);

2-
96

Reading a double with an Input Dialog

double price;

String str;

str = JOptionPane.showInputDialog(

 "Enter the retail price.");

price = Double.parseDouble(str);

See example: PayrollDialog.java

PayrollDialog.java

