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Abstract

Applications of logistic regression in a used–unused design in wildlife habitat studies often suffer from asymmetry of errors: used resource units

(landscape locations) are known with certainty, whereas unused resource units might be observed to be used with greater sampling intensity.

More appropriate might be to use logistic regression to estimate a resource selection function (RSF) tied to a use–availability design based on

independent samples drawn from used and available resource units. We review the theoretical motivation for RSFs and show that sample

‘‘contamination’’ and the exponential form commonly assumed for the RSF are not concerns, contrary to recent statements by Keating and

Cherry (2004; Use and interpretation of logistic regression in habitat-selection studies. Journal of Wildlife Management 68:774–789). To do this,

we re-derive the use–availability likelihood and show that it can be maximized by logistic regression software. We then consider 2 case studies

that illustrate our findings. For our first case study, we fit both RSFs and resource selection probability functions (RSPF) to point count data for 4

bird species with varying levels of occurrence among sample blocks. Drawing on our new derivation of the likelihood, we sample available

resource units with replacement and assume overlapping distributions of used and available resource units. Irrespective of overlap, we

observed approximate proportionality between predictions of a RSF and RSPF. For our second case study, we evaluate the classic use-

availability design suggested by Manly et al. (2002), where availability is sampled without replacement, and we systematically introduce

contamination to a sample of available units applied to RSFs for woodland caribou (Rangifer tarandus caribou). Although contamination

appeared to reduce the magnitude of one RSF beta coefficient, change in magnitude exceeded sampling variation only when .20% of the

available units were confirmed caribou use locations (i.e., contaminated). These empirically based simulations suggest that previously

recommended sampling designs are robust to contamination. We conclude with a new validation method for evaluating predictive performance

of a RSF and for assessing if the model deviates from being proportional to the probability of use of a resource unit. (JOURNAL OF WILDLIFE

MANAGEMENT 70(2):347–357; 2006)
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In their provocative review of logistic regression in habitat-

selection studies, Keating and Cherry (2004) stated that using

logistic regression with a use–availability design for estimating

resource selection functions (RSF) ‘‘does not guarantee max-

imum-likelihood estimates, valid probabilities, or valid like-

lihoods.’’ Indeed, Manly et al. (2002) clearly indicated that use–

availability designs result in an RSF, which is proportional to the

probability of use, not a resource selection probability function

(RSPF). To obtain ‘‘valid’’ selection probabilities, it would be

necessary to change designs or know sampling fractions so that an

RSPF could be estimated. More important, Keating and Cherry’s

(2004) criticism of using logistic regression with a use–availability

design centers on the fact that the statistical likelihood defined in

Manly et al. (2002:100) can, in some cases, increase above 1.0

when the underlying RSPF is assumed to have an exponential

form. They then correctly argue that the likelihood is not valid in

these cases and that the resulting RSF might not provide values

that are proportional to the true underlying RSPF. They suggest

that these problematic cases arise when a large proportion of the

resource units in the population are used, resulting in a

contaminated sample with some resource units appearing both
in the sample of used and sample of available units.

Despite some correctly qualified statements, Keating and Cherry’s
(2004) paper is easily misinterpreted to imply that estimating an
RSF based on a use–availability design is generally flawed or
inappropriate. Instead, for data collected in wildlife habitat studies,
we argue that use–availability is often the most correct design.
Applications of used–unused data are burdened by an asymmetry of
errors meaning that used points are known with certainty but
unused points are not and may become used if monitored more
intensively or for a longer period. When constraints on sampling
used and unused units exaggerate the asymmetry of errors and
excessively restrict the domain of inference, it may be more
appropriate to draw 2 independent samples: a sample of used
resource units and a sample of random or available resource units, to
estimate a RSF. Often, these RSFs assume an exponential form, a
fact that was criticized by Keating and Cherry (2004). While careful
interpretation is necessary, we show that the exponential form of the
RSF is appropriate and that the method does not suffer from sample
contamination, which we might find with case-control designs
(Keating and Cherry 2004). We argue that the use–availability
design for estimating an RSF remains a valuable method for
studying wildlife–habitat relationships.1 E-mail: johnsoch@unbc.ca
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In this paper, we briefly review the motivation and limitations of
use–availability designs for estimating an RSF. We present a new
derivation of the method that is different from that of Manly et al.
(2002), but nonetheless arrives at the same conclusion. We then
describe 2 case studies to illustrate a lack of bias in use–availability
RSFs when confronted with sample overlap and contamination.
We conclude by proposing a new evaluation method designed to
detect poor fit of a RSF. Our validation method evaluates the
predictive ability of the model and also whether model predictions
deviate from being proportional to the probability of use as
required for an RSF.

Theoretical Motivation

Logistic regression is a powerful, robust method that has seen
much use in wildlife habitat studies (Manly et al. 2002). The
interpretation of results from logistic regression must be
considered carefully and are highly dependent on sampling design
(Manly et al. 2002, Keating and Cherry 2004). If we have a single
random sample of resource units that are inspected for use or
nonuse, logistic regression clearly can be applied directly. We call
these sampling situations 1-sample used–unused or presence–
absence designs. For such designs, statistical inference procedures
have been developed (Hosmer and Lemshow 2000) and logistic
regression can provide estimates of the probability of use for a
resource unit (i.e., the RSPF).

However, many wildlife habitat studies cannot provide unbiased
assessments of which resource units are unused, or to do so the
inferences from these studies are restrictive. Sampled resource
units observed to be used can be identified with some certainty,
but unused units can be difficult or impossible to identify within
most practical sampling frames. For example, one might obtain a
sample of resource units used by animals—say with radio-
telemetry—but it might be impractical or impossible to know all
of the resource units that could have been used to assign an unused
designation with any certainty. One might still estimate a logistic
regression model, but its application and interpretation must be
constrained by the temporal and spatial domain of the sampling.
We might be willing to state that estimates from surveys
conducted during a certain week during specified times of day at
particular sampling locations produce a RSPF, but the sampling
constraints might severely limit the scope of application.

A more practical and perhaps more honest approach is to draw a
sample of used resource units and a sample of available resource
units (which might be either used or unused) and to estimate an
RSF that is proportional to the probability of use. From this
simple design, the likelihood of a unit being used given that it
appears in either the used or available sample can be defined (see
Appendix and Manly et al. 2002:eq. 5.8) and maximum likelihood
estimation, with all its desirable properties, can be performed.

Maximum likelihood estimation of the RSF is the most desired
solution except that maximizing the general likelihood requires
specialized nonlinear maximization software such as SAS’s Proc
NLIN or S-Plus’s NLMINB. The mathematics behind these
procedures, and the ability to run them, is simply unapproachable
for most biologists. This is the main reason why Manly et al.
(2002) advocate a ‘‘short-cut,’’ which allows the likelihood to be
maximized using ubiquitous and easy-to-run logistic regression

routines. The ‘‘short-cut,’’ however, requires one to assume that
the underlying RSPF (and RSF) has the exponential form

w�ðxÞ ¼ C expðb0 þ b1x1 þ b2x2 þ . . . bkxkÞ ¼ C expðb0xÞ ð1Þ

for a vector, x, of k predictor covariates with coefficients, bi, and
where C is a scaling constant to make w*(x) a valid probability.
With this assumption, Manly et al. (2002) showed that standard
logistic regression software can be used to maximize the likelihood
to obtain estimates of the b’s assuming a small fraction of the
available population is used.

The exponential form for w*(x) is at the center of Keating and
Cherry’s (2004) criticisms of the method. They correctly pointed
out that if the argument of the exponential is positive (i.e., b0x .

0), w*(x) is not a valid probability because it is .1.0, and that
nothing in the method guarantees a positive argument in all cases.
They then claimed the estimated RSF is not proportional to the
RSPF in all cases. However, they failed to point out that the
likelihood of Manly et al. (2003) is always valid provided 0 �
w*(x) � 1 for all x, that a proper scaling constant C always exists
even if we do not know its value, and that perfectly valid
maximum likelihood estimates of a nonexponential w*(x), or of a
function proportional to it, can be obtained from this likelihood by
some maximization method other than logistic regression.

Over and above the theoretical issues surrounding the
exponential form of w*(x), the only other significant objection
raised by Keating and Cherry (2004) is that ‘‘contamination’’ of
the available sample biases RSF estimates. Contamination is a
legitimate issue in a case-control setting because it means that the
control sample has a mixture of cases and noncases. Keating and
Cherry (2004) claimed the same issue arises in use–availability
designs, again implying systemic problems with logistic regression
applied to use–availability designs.

In fact, there are no systemic problems in applying logistic
regression to the use–availability design caused by the exponential
form of w*(x) or contamination, even though the derivation of
Manly et al. (2003) contains an assumption that is not satisfied in
all situations. We provide an alternative derivation of the
likelihood (Appendix) that closely parallels that of logistic
discriminate analysis (Seber 1984:308–319) that does not require
b0x , 0, yet arrives at the conclusion that logistic regression can be
employed to maximize the use–availability likelihood when the
RSF is assumed to have an exponential form. The price paid for
eliminating the constraint on b0x is that the RSPF cannot be
estimated unless a census of both the available and used
populations is taken. From this alternative derivation (Appendix)
and subsequent empirical simulations, we conclude that applica-
tions of logistic regression to use–availability data yield useful,
robust, and valid RSFs under relatively mild assumptions.

Contamination and Overlap

In this section, we address practical issues of contamination and the
overlap in the distribution of used and available resource units. We
define contamination to be obtaining a mixture of used and unused
resource units in the sample of available units. In contrast, overlap
occurs when a used resource occurs in both the sample of available
units and sample of used units. For example, when monitoring the
movements of woodland caribou, we might sample resource
availability across a landscape and remove all animal locations that
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correspond spatially with a sampled available unit. Following this
design, the sample of available locations might contain future, past, or
unrecorded locations of a caribou producing a contaminated sample.
If we were to retain the animal locations that corresponded with the
available unit, then we would observe overlap between the 2 samples.

Contamination is a concern for case-control studies, but case-
control studies are designed to differentiate between cases with a
characteristic (i.e., have a disease) and controls without a
characteristic (i.e., do not have a disease). This objective is
fundamentally different from the objective of use–availability
designs. Use–availability designs are designed to estimate a
function (i.e., w*[x] or w[x]), which when multiplied by the
frequency of x in the available population produces the frequency
of x in the used population. This function is the weighting
function that transforms the available distribution into the used
distribution as defined in the literature on weighted distribution
theory (see Patil and Rao 1978).

Extending the contamination argument from case-control studies
to use–availability studies is inappropriate. Use–availability designs
allow for the possibility of contamination. In fact, prohibiting
contamination by requiring that the available sample contain only
unused units biases the RSF. To see this, consider the extreme
example where the entire population of available units is used. In
this case, the true RSPF is 1.0 and the sample of available units
would consist entirely of used units (100% contamination). Apart
from sampling error, use of logistic regression as advocated here will
estimate a RSF that also is constant because the distribution of x on
units in the used sample will be the same as the distribution of x on
units in the available sample. This is the correct function.

A separate but related issue is sample overlap. The design
envisioned by Manly et al. (2002:99) does not admit the possibility
of overlap because the available sample is selected first without
replacement. If a unit happens to be included in both the used and
available samples, Manly et al. (2002:101–102) state that the unit
should be dropped from the used sample. Envisioning that the used
sample was drawn first without replacement, McDonald (2003)
derived a similar likelihood assuming overlap units are dropped
from the available sample. If sampling actually is done with
replacement, it is not hard to imagine that application of either of

these methods for dealing with overlap will result in bias if the
probability of overlap is large (see case 2 below). Nonetheless, when
sampling is with replacement, application of logistic regression to
data where overlap units are retained in both the used and available
samples yields unbiased estimates of coefficients (see Appendix).
When overlap occurs, the variance estimates reported by the
logistic regression procedure for coefficients are not correct, even
though coefficients estimates are. If no overlap occurs, variance
estimates are correct. Coefficient variances in the case of overlap
should be estimated by bootstrap methods that resample distinct
units. While application of logistic regression to cases with
significant overlap is justified theoretically, we verify that estimates
are unbiased in the following 2 case studies.

Case Study 1: Proportionality of RSFs
and RSPFs

In our first case study, we use biological data to demonstrate that
an estimated RSF remains approximately proportional to an RSPF
over a wide range of overlap. For this case, we draw on
unpublished 1-sample presence–absence data for 4 species of
forest birds to estimate both RSFs and RSPFs. We then examine
the proportionality of the resulting RSF–RSPF predictions under
various levels of overlap. Data were observations of 4 bird species
obtained at 1,637 randomly selected 6-ha sites in the Bighorn
Mountains of Wyoming, USA. We chose to analyze 4 species that
1) showed selection for landscape covariates, and 2) for which the
percentage of used sites ranged from low (4%) to high (67%;
Table 1). We used a cover map developed from satellite TM
imagery to estimate forest extent to the nearest ha within the 6-ha
sample site and to derive 3 forest configuration measures: mean
forest patch size (MPS), mean fractal dimension of forest patches
(FMPFD), and distance to the nearest adjacent forest patch
(MNN) using Fragstats (McGargil and Marks 1995). Elevation
was recorded to the nearest 100 m at the center of the plot from a
digital elevation model and ranged from 2,050 to 3,089 m.
Occurrence (use) was defined as observing the bird species during
at least 1 of 2 replicate visits to the site during the breeding season.
Nonoccurrence (unused) for the RSPF analyses was defined as the
failure to observe the species on any visit to the site. Available sites

Table 1. Parameters of resource selection functions (RSFs) and resource selection probability function (RSPFs) for 4 forest bird species sampled near Wyoming,
USA, derived using logistic regression and either a used and unused (RSPF) or a used and available (RSF) design. Bird use of a site was indicated by its presence
(used) during either of 2 visits or absence (unused). Available sites included both the used and unused sites. Sample size (n) used to develop the RSF included the
number of available sites (used and unused) plus the number of used sites, while percent used of the available indicates contamination rates.

Species RSPF RSF
No.

used sites
No.

unused sites
No.

available sites RSF n
% Used

of available

Western
flycatcher

b0

b1

�3.7001
0.1418 Foresta 0.1467 Forest 68 1,569 1,637 1,705 4.2

Gray
jay

b0

b1

b2

�8.0747
0.3110
0.0019

Forest
Elevation

0.2820
0.0017

Forest
Elevation

165 1,472 1,637 1,802 10.1

Mountain
chickadee

b0

b1

b2

�2.2577
0.1554
1.1108

Forest
FMPFD

0.1060
0.8922

Forest
FMPFD

530 1,107 1,637 2,167 32.4

Ruby-
crowned
kinglet

b0

b1

b2

�0.2086
0.4729
�0.2658

Forest
FMPS

0.1239
�0.0517

Forest
FMPS

1,097 540 1,637 2,734 67.0

aForest is the extent (ha) of forest cover recorded to the nearest 1 ha in a 6-ha plot; elevation is m to nearest 100 m at center of plot; FMPS is the mean
forest patch size; FMPFD is the mean forest patch fractal dimension.
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for all RSF analyses were defined to be the entire set of 1,637 sites.
Treating the entire set of sites as available induced overlap
between the used and available samples of between 4% and 67%;
as a component of our evaluation, we ignored this overlap when
fitting RSFs via logistic regression and all used resource units also
were in the sample of available resource units.

We used logistic regression software to estimate both a RSF and
RSPF model containing �2 covariates. The RSPF estimated
assuming a used–unused design had the form

w�ðxÞ ¼ expðb0 þ b1x1 þ b2x2 þ . . .Þ
1þ expðb0 þ b1x1 þ b2x2 þ . . .Þ ; ð2Þ

while the RSF estimated for a used–available design had the form

wðxÞ ¼ expðb1x1 þ b2x2 þ . . .Þ: ð3Þ

We used AIC to choose the most parsimonious RSF from 10 a
priori models that included variations of forest extent, elevation,
and the 3 forest configuration indices (Anderson et al. 2000). When
DAIC among models were ,2, we used the most parsimonious
model (Burnham and Anderson 2002). The same a priori models
were used to select a RSF for each of the 4 species, and the covariates
included in the chosen RSF then were used to develop the
respective RSPF for each species. Following estimation, we plotted
the predicted RSF for each site against the predicted RSPF for the
same site (Fig. 1). We also plotted a least-squares linear regression
line to evaluate proportionality. If the estimated RSF is propor-
tional to the estimated RSPF, points in this plot will lie close to or
along the straight line.

We found the extent (ha) of forest present within the 6-ha sample
site to be the best predictor of the relative probability of selection

for all 4 species (Table 1), and the only variable in the model for the

western flycatcher (Empidonax difficilis). Mean forest patch fractal

dimension (FMPFD) was included in the mountain chickadee
(Parus gámbeli) model. Forest patch size (FMPS) was included in

the ruby-crowned kinglet model (Regulus calendula). Elevation was
included in the gray jay (Perisoreus canadensis) model (Table 1).

Despite overlap in used and available sites of 4%, 10%, and

32%, the estimated RSF was closely proportional to the RSPF for
3 of the 4 species analyzed except at the tails (Fig. 1), which is

where the nonlinear effect of Eq. 2 compared to Eq. 3 is expected
to be greatest. The remaining species (ruby-crowned kinglet) was

very common, yielding an overlap of 67%. At high overlap, our

range of observed RSPF values is wide compared to the previous
examples, and again the deviation is expected to be greater because

of the asymptotic nature of the RSPF. Nonetheless, even with this

high overlap (.50%), the RSF remained approximately propor-
tional to the RSPF.

Case Study 2: Influence of Contamination on
Beta Values

We recognize that past applications of RSF were formulated
according to Manly et al.’s (2002) classic definition, where

available resource units are drawn without replacement and the

sample of used and available resource units are not permitted to
overlap. Under such a design, extreme levels of contamination

could bias RSF beta coefficients. To test this assertion, we develop
a second case exploring the range of values in RSF b coefficients

resulting from introduced contamination. As with the previous

case study, we conducted our analyses using actual data typical of

Figure 1. Relationship between predicted values for resource selection functions (RSF, y-axis) and resource selection
probability functions (RSPF, x-axis) for bird species varying in occurrence sampled near Wyoming, USA. The least-squares
straight line illustrates approximate proportionality between the RSF and RSPF values.
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use–availability studies of wildlife habitats, in this instance for data
obtained from radiocollared animals.

We used location data previously reported for woodland caribou
in central British Columbia, Canada (Johnson et al. 2002), to
develop RSF models of the exponential form (eq. 3). Between
December 1996 and March 1999, Johnson et al. (2002) fitted 8
female caribou with GPS radiocollars and recorded animal
locations on a 3- or 4-hr schedule. To maintain simplicity of
model interpretation, we used locations only from animals that
spent the entire winter in forested habitats (Johnson et al. 2002).
In total, we used 2,178 locations for estimating RSF models for
woodland caribou.

For each animal location, we chose 1 random site to represent
resource availability. Each random site was selected from a circular
area (buffer) centered on the preceding animal location with a
radius equal to the 95% movement distance for that GPS collar
relocation interval (e.g., 4, 8, 12 hr, etc.; see Arthur et al. 1996).
Resource use and availability were related to 12 categorical
vegetation variables (Johnson et al. 2003) and 1 continuous
variable for predation risk. We calculated predation risk as the
weighted distance of a caribou location or random site from a patch
of vegetation selected by radiocollared wolves (Johnson et al. 2002).

We assessed the impacts of contaminated availability data on
RSF model parameters (i.e., bis) by generating 10 new sets of use–
availability data that ranged in contamination from 5% to a
maximum of 50%, in 5% increments. Generation of these
contaminated data sets required a number of manipulations of the
original caribou use–availability data. First, we split our original
sample of 4,356 caribou use and availability locations and units
into 4 equal parts: 2 sets of caribou use locations and 2 sets of
corresponding availability units. We designated 1 set of caribou
locations and 1 set of available resource units (n = 2,178) for
constructing the RSF and the remaining set of used locations (n =
1,089) for replacement. For each complete contamination data set,
we randomly selected a percentage of caribou use locations (5–
50%) and recoded them as available units, effectively contami-

nating the availability sample with locations that were visited by
monitored caribou. As the final step in the simulation, we deleted
the same number of availability sites as were contaminated and we
randomly selected and added an equal number of used locations
from the second set of 1,089 caribou locations. The randomly
selected use locations served as replacements for the ‘‘contami-
nated’’ use locations and thus maintained an equal sample size of
use locations and availability units across simulated levels of
contamination. In reality, we might have observed this type of
contamination if a GPS collar was unsuccessful in obtaining a
location for a caribou occupying a resource unit, and that unit was
then selected randomly as an available unit. Because this work is
dependent on true not simulated data, our original sample of
available resource units is burdened by some inherent contami-
nation. Thus, our reported levels likely under-represent the true
level of contamination in the caribou use data resulting in a
relative not absolute comparison.

For each new data set with consistently higher contamination
levels, we used a logistic model with the 12 categorical vegetation
variables and 1 continuous variable for predation risk to estimate
RSF coefficients. A discrete-choice model (Compton et al. 2002,
Johnson et al. 2004) was more appropriate for our paired sampling
design, but for consistency with the other case study, we used the
more widely applied logistic model. When generating coefficients
for the 10 RSF data sets containing introduced contamination,
some sampling variation occurred due to the random selection of
contaminated and replacement caribou use locations. We
generated 500 data sets for each contamination level; calculated
logistic regression models; and graphed the 5th, 50th (median),
and 95th percentile coefficients. This procedure allowed a relative
comparison of the potential range of coefficient values following
5–50% contamination of availability sites. We identified a
significant effect when the 95th percentile coefficients of
simulated data sets no longer overlapped the original data with
an assumed contamination level of 0%.

Figure 2. Effects of introduced contamination on magnitude of RSF coefficients calculated for woodland caribou of north-
central British Columbia, Canada. Availability locations were contaminated in 5% increments from a hypothetical 0–50%.
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Contamination of availability sites influenced the magnitude of
the RSF b coefficients, although generally the deviation was small
(Fig. 2). Change in the magnitude of coefficient values was
greatest for pine lichen woodland, the covariate with the largest
selection coefficient (Fig. 2). Given sampling variation, however,
we observed significant differences for that covariate only
following an introduction of 25% contamination. In all cases,
change in coefficient value was oriented toward zero; thus, the
maximum amount of change resulting from contamination was
limited by the proximity of the coefficient to zero.

In an effort to place hypothetical and unobserved contamination
rates into the context of actual use–availability data, we calculated
the number of resource units (i.e., pixels) that would need to be
visited by unobserved caribou over the course of our study to
achieve a 5% contamination rate. Considering the 95th percentile
movement radii for the caribou use locations (all caribou locations
n¼ 2,178) the total area of available habitats equaled 7,200 km2 or
11,520,000 25 3 25-m pixels. A 5% contamination rate would
require the presence of at least 1 caribou in a minimum of 576,000
cells over the course of the study. Considering that our source
population consisted of approximately 361 caribou (6136; Terry
and Wood 1996) and that caribou travel in small groups during
the winter, this extent of contamination is highly unlikely. As a
final point of comparison, even if the approximate maximum
number of caribou in the population (n = 497) visited a new and
different pixel every hour for the 3-month winter period across the
3-year study duration, this population could contaminate a
maximum of only 3,220,560 pixels (28%).

Model Evaluation

Resource selection function models are frequently used to predict
maps of the relative probability of occurrence, especially since the
integration of Geographic Information Systems (GIS) in wildlife
ecology (e.g., Johnson et al. 2004, Treves et al. 2004). The
predictive capacity or validation of maps produced by these models
is often neglected, despite their widespread application in
conservation and management. As Boyce et al. (2002) pointed
out, however, there is a lack of statistical tests for assessment of
model fit and accuracy for use–availability RSF models. The
typical approaches for assessing logistic regression (e.g., ROC,
Hosmer-Lemeshow goodness-of-fit, percent correctly classified,
etc.) are inappropriate for the use–availability design. Boyce et al.
(2002) suggested instead that RSFs should be evaluated on
predictive performance using k-fold cross validation (Fielding and
Bell 1997, Hastie et al. 2001). For each data fold, the withheld set
can be assessed against the model predictions of the training data
set using correlations between bin rank of the RSF values and the
frequency of independent, withheld observations in the same bin
rank standardized for area. Here, we modify this method to
increase the precision of the evaluation technique and to assess the
assumption that the RSF model is approximately proportional to
probability of use.

Instead of relying on rank correlations between RSF bins and
animal-use frequencies (Boyce et al. 2002), we propose the
following approach:

1. Partition data into model-training and model-testing data (or
k-fold groups).

2. Use logistic regression to estimate a RSF with the model-

training data or alternatively for each training set in the k-

folded data.
3. Predict RSF values in a GIS and reclassify pixels into ordinal

classes or rank bins of a specified number.
4. Determine midpoint value of raw RSF scores for each ordinal

RSF bin.
5. Determine the utilization U(xi) value for each bin i using the

formula

UðxiÞ ¼ wðxiÞAðxiÞ=
X
j

wðxjÞAðxjÞ ð4Þ

where w(xi) is the midpoint RSF of bin i and A(xi) the area of

bin i (Boyce and McDonald 1999).

6. Count the number of used observations in the withheld test

data that fall in each RSF bin.
7. Estimate the expected number of validation observations

within each bin (Ni) using,

Ni ¼ N3UðxiÞ ð5Þ

where N is the total number of testing-data validation

observations used and U(xi) the utilization function from eq. 4.

8. Compare expected (from step 7) to observed number (from step

6) of observations using linear regression and chi-square tests.

First, assess the slope of the regression line for a significant

difference from a slope of zero where use would equal

availability and therefore indicate that the model is not

different from that of a random or neutral model. Second,

assess whether the slope is different from 1.0, which is the slope

expected for a model that is proportional to the probability of

use. Third, assess the constant for an intercept of zero, the

intercept expected for a model that is approximately propor-

tional to probability of use. And finally, use both the R2 of the

model and a v2 goodness-of-fit test to assess fit. A model that

was proportional to probability of use would have a slope

different from 0, but not different from 1, an intercept of 0, and

a high R2 value with a nonsignificant v2 goodness-of-fit value.

Finally, v2 tests for each observed and expected proportion can

be used to determine in which RSF bins the observed frequency

differs from expected. If these conditions are not satisfied, the

user might consider revisiting the process starting at step 3

(reclassify the RSF using a different model), rebinning the RSF

values, or estimating a model with different environmental

factors.

We demonstrate these metrics using the caribou RSF model

with 0% contamination (see previous section) and an independent

testing dataset of 267 caribou observations from 8 animals

monitored by VHF radiotelemetry (Terry and Wood 1996). We

used Spatial Analyst (Environmental Systems Research Institute

2004) to apply the coefficients from the caribou RSF model (Fig.

2) to the respective GIS covariate layers. We used quantile

breakpoints to then reclassify the continuous RSF scores into 10

ordinal bins representing progressively more strongly selected
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habitat classes. Total area (number of pixels) for each ordinal bin
was queried from the resulting GIS map to estimate A(xi). Based
on the breakpoint values of the reclassification we determined the
midpoint RSF value w(xi) for each bin i, thus allowing us to
calculate an expected utilization function U(xi). With U(xi) and
known sample size of 267 caribou observations for independent
validation (N), we calculated the number of expected observations
within each ordinal bin (Ni). The number of observed observa-
tions, however, was simply the number of independent observa-
tions falling within each ordinal RSF bin on the predicted RSF
map. We converted expected and observed numbers into
proportions and assessed the relationship between expected and
observed frequencies using linear regression. In addition, we
assessed overall fit using a v2 goodness-of-fit test, as well as
individual bin fit using v2 tests of observed to expected
frequencies.

For the caribou example, the regression model suggested that
the RSF model was reasonable overall, with a slope significantly
different from 0, but not different from 1, and with an intercept
close to 0 (Table 2, Fig. 3). However, model fit was lower than
expected (R2 ¼ 0.699) suggesting that some RSF bins were
different than expected from a model that was approximately
proportional to the probability of use. Similarly, the chi-square
goodness-of-fit test confirmed a relatively weak fit between
observed and expected values (v2 ¼ 15.81, p ¼ 0.071). Further
assessments of individual bin fit using chi-square tests indicated
that 5 of 10 bins were significantly different from expected (Fig.
3). Such differences might warrant the pooling of bins, or
alternatively, an entirely different RSF model structure, because
the model revealed inconsistencies and was not proportional to
probability of use for an independent data set. Finally, assessments
of individual animals revealed substantial variation suggesting that
population-level predictions were not always useful for individual-
level predictions (Table 3).

Discussion

Keating and Cherry (2004) raised 2 concerns over use of logistic
regression for estimating resource selection functions. Their first
was a theoretical concern stemming from application of logistic
regression to maximize the general use–availability likelihood.
Their second concern was that contamination of the samples can
introduce bias into the parameter estimates and compromise the

predictions from RSF and RSPF models. As a solution, they
presented a novel likelihood developed by Lancaster and Imbens
(1999) that explicitly accommodates contamination. Unfortu-
nately, the likelihood of Lancaster and Imbens (1999) can be
difficult to program and is unstable under certain conditions
rendering it generally impractical (Keating and Cherry 2004).

We have made the point that Keating and Cherry’s concerns are
technically legitimate, but that these issues by no means render
current or past RSFs estimated from use–availability designs
invalid and useless. With regard to their first concern, we point
out that the general use–availability likelihood usually is valid,
although in some instances, when assuming an exponential RSPF,
unbounded estimation via logistic regression might result in RSPF
values .1.0. In these cases, the likelihood is no longer a true
likelihood by classic definition. However, even when the like-
lihood is not a true likelihood in the classic sense, it can remain
useful and yield coefficient estimates with negligible bias. There
are many cases in statistics where nontrue or ‘‘quasi’’ likelihoods
are useful and appropriate as the best or only analysis of collected
data. McCullagh and Nelder (1989:325) note that most first-
order, asymptotic theory connected with maximum likelihood is

Table 2. Resource Selection Function (RSF) bins where observed number of
caribou locations from central British Columbia, Canada, differed (based on a
v2 test) from the expected number of locations (indicated by x) based on
U(xi)3N, with N being the total number of telemetry locations for an animal and
U(xi) the expected proportion within bin of i.

RSF bin (rank) number

Caribou 1 2 3 4 5 6 7 8 9 10

041A x x x x x x x
1D1A x x x
1D2B x x x x x x x
771A x x
772B x x x x x x x x
832B x x x x x x x x
852B x x x x
E41A x x x x x x

Figure 3. Expected versus observed proportion of telemetry observations (in
10 RSF bins) for an independent sample (n = 267) of caribou observations. A
random (use = available) map would be depicted by observed values set at 0.1
(dotted line), while the gold standard (observed = expected) would occur along
a line with a slope of 1 and intercept of 0 (dashed line). The fitted regression is
shown as a dark line, while points are either black (bin observations are not
significantly different than expected) or gray (significantly different from
expected). Spearman rank correlation and overall goodness-of-fit are provided.

Table 3. Characteristics (rank correlation and regression) of the accuracy of
the global caribou Resource Selection Function (RSF) model for each individual
caribou based on conditions local (Minimum Convex Polygon) to each animal.
Caribou ranged across central British Columbia, Canada.

Rank correlation Expected vs. observed-regression

Caribou rs p b0 b1 R2

Pooled animals 0.401 0.251 –0.012 1.118 0.699
041A 0.820 0.005 –0.100a 2.001b 0.869
1D1A 0.869 0.001 0.000 0.996 0.921
1D2B 0.927 ,0.001 –0.083a 1.827b 0.830
771A 0.716 0.020 –0.050a 1.499b 0.943
772B 0.665 0.036 –0.081a 1.809b 0.451
832B 0.842 0.002 –0.053a 1.534b 0.962
852B 0.651 0.042 0.015a 0.847 0.749
E41A 0.705 0.023 –0.071a 1.710b 0.840

a Significantly different from 0.0.
b Significantly different from 1.0.
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founded on the well-known facts that 1) the expected value of the
vector of log-likelihood partial derivatives with respect to all
parameters is 0, and 2) that the negative of the expected value of
the matrix of second-order partial derivatives of the log-likelihood
is the covariance of parameters. If these properties are true for
some function of the data and parameters, we may treat the
function as if it were a true likelihood and maximize it to obtain
maximum quasi-likelihood estimates with at least approximately
the same characteristics as true maximum likelihood estimates.
These properties probably hold, at least approximately, for the
use–availability likelihood even in those cases where the argument
to the exponential is .0. While more theoretical research is
needed into the use of quasi-likelihoods in resource selection
studies, it seems clear that negligible bias in parameter estimates
can be expected even in extreme cases, and that this theoretical
concern over the likelihood does not render the method generally
useless and without merit. Furthermore, simply by interpreting
the RSF as a logistic discriminant function between a distribution
of used observations and a distribution of random sites, the b0x �0
constraint is not necessary (Keating and Cherry 2004).

With regard to Keating and Cherry’s (2004) second concern, it is
clear that overlap or contamination of available resources by used
resources does not always lead to inappropriate RSF models. We
demonstrated that the RSF is approximately a linear function of
the RSPF, even following large (.50%) amounts of sample
overlap. Evaluating Manly et al.’s (2002) classic approach for
sampling resource units, our second case study indicates that a
contaminated sample of availability locations can alter model
results potentially underestimating the true magnitude of selection
or avoidance of a resource unit. In qualifying that general
statement, our simulations reveals that contamination must be
quite extreme before coefficients will deviate beyond sampling
variation. Most coefficients were robust to contamination and only
pine–lichen woodland, the most strongly selected resource,
decreased to a level below sampling variation (5th percentile).
Coincidentally, our observed contamination threshold is similar to
the 20% value reported by Lancaster and Imbens (1999) as the
level at which their modified likelihood was most appropriate for
contaminated data. We note that our reported threshold is relative
to the inherent contamination in the baseline data. We did not
collar all caribou in the study population, nor did we monitor all
animals from birth to death. Thus, our original and unperturbed
sample of available resource units is certainly ‘‘contaminated’’ with
unobserved locations.

In an effort to put a 5% contamination rate into the context of
the study area and ecology of the woodland caribou that we
monitored, we calculated the number of resource units that would
need to be visited by unobserved animals during the study. Based
on our analyses, a trivial contamination rate of 5% would require
the presence of at least 1 caribou in an unrealistically large number
of resource units. And of course, a 5% rate is well below the 20%
threshold (at least for these data) where change in RSF coefficients
might influence our conclusions. We admit that this comparison is
crude and would be influenced by the definition of availability as
well as the resolution (i.e., pixel size) of resource units.

Our results also revealed that percentage change from the true
coefficient associated with contamination may be a function of the

strength of selection or avoidance. We can envision this effect by
considering habitat selection in the context of an uncontaminated
sample where the sampled distribution of used resource units
approximates that of the sample of available resource units,
selection coefficients should approach zero. Likewise, where a
sample of available resource units is completely contaminated by
used locations, the distributions of resource units also should be
near equal demonstrating no selection or avoidance of a resource.

Scale of observation, both temporal and spatial, should be an
important consideration when evaluating the potential for
contamination of animal use or plant occurrence data (Dungan
et al. 2002). Although our results suggest that past applications of
RSF are robust to contamination, practitioners should consider
contamination on a case-by-case basis (Keating and Cherry 2004).
The magnitude of bi coefficient, spatial and temporal scale of
observations, and the definition of resource availability might
influence contamination. We suspect that study designs consisting
of a small number of frequently used resource units relative to
dense aggregations of animals or plants might result in levels of
contamination sufficient to bias RSF models. However, based on
our experience and the published literature, such cases are the
small minority of RSF applications, not the majority.

We modified the k-fold cross validation method suggested by
Boyce et al. (2002) to provide a technique that evaluates whether
an estimated RSF is proportional to the probability of use. As with
any statistical model, there can be no guarantee that the
exponential model will yield a good RSF. Indeed, we show in
our caribou example that an RSF might provide poor predictive
capability. Additionally, it is not uncommon that the relationship
between observed and predicted is nonlinear requiring an
appropriate transformation of the RSF. Previous validation
approaches (e.g., Boyce et al. 2002), although useful for evaluating
the ranking of habitats, did not provide the necessary methods for
testing the assumption of whether the RSF is proportional to
probability of use. We suggest that validation, especially when
making spatial predictions (e.g., maps), should be considered an
essential element and step in the RSF modeling process.

We agree with Keating and Cherry (2004) that the form of the
underlying model should be evaluated carefully; there is no reason
to assume that the exponential model is the correct model in all
situations, even though it is convenient and can work well. As
demonstrated, we can plot the observed frequency of used resource
units as a function of the predicted number of units to evaluate
whether the selection function is of the correct shape (Boyce et al.
2002). If observed frequencies are linear relative to the predicted
frequencies, then the RSF conforms to the important property of
being ‘‘proportional to the probability of use’’ according to the
Manly et al. (2002) definition. If not, a transformation, additional
covariates, higher polynomial terms, or a different underlying
model might be appropriate.

In practice, interpreting the exponential model as the logistic
discriminant function, which contrasts a sample of used and a
sample of available resource units is entirely consistent with the
estimation of an RSF. Following this interpretation, resource units
that appear in both the samples of used and available resource
units creates no particular problems—the existence of both a one
and a zero for these resource units means that they essentially
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cancel each other and these resource units have little influence on
the estimation of the logistic discriminant function contrasting the
2 distributions. Algorithms for estimating logistic regression
permit the estimation of coefficients for eq. 1 even when resource
units appear in both samples. When the RSF is evaluated using
the validation method that we have described, we can ensure that
the RSF is approximately proportional to the probability of use.

Management Implications

We urge researchers to consider carefully the sampling protocol
and the choice of methods when developing and interpreting
RSFs and RSPFs. For cases where one might encounter
asymmetry of errors, we argue that a RSF constructed from
use–availability data is the best choice. This sampling design is
especially appropriate for studies that monitor mobile species
discontinuously or, in general, where a census of all used units is
difficult or impossible. Even where unused units can be reliably
identified it might be impossible to confirm that those units will
remain unused in the future. Thus, for some used–unused designs,
researchers will need to constrain the scope of inference to the
sampling period; such constraints will limit the general application
of study findings.

Addressing the criticisms presented by Keating and Cherry
(2004), we re-derived the use–availability likelihood and show that
it can be maximized by logistic regression software. Application of
this likelihood, when sampling used and available units with
replacement, will produce RSFs that are robust to sample overlap
and are proportional to the true probability of using a resource
unit. As an example, we fit RSFs to use–availability data for a
number of bird species with various levels of sample overlap. We

demonstrate that the RSF can be an approximately linear function
of the RSPF even at high rates of overlap. For past or current
applications requiring model predictions that are proportional to
the true probability of use, we present a technique that allows
researchers to assess the proportionality of the predictions of RSFs
relative to RSPFs.

Recognizing that past applications of RSF might have sampled
available units without replacement (Manly et al. 2002), we
evaluated the effect of sample contamination on bi coefficients.
Following the controlled and systematic contamination of
available units for woodland caribou, some bi coefficients
converged toward zero. However, we observed a significant effect
for only 1 covariate, and that was following contamination of
approximately 25% of the available locations with use locations.
These results suggest that most past applications of RSF are
robust to sample contamination.

In summary, we demonstrate that the likelihood for calculating
RSFs using logistic regression is valid, predictions from RSFs can
be proportional to the true probability of use, and many past
applications of RSFs are robust to sample contamination.
Contrary to the conclusions of Keating and Cherry (2004), our
results suggest that when carefully evaluated, RSFs estimated
using logistic regression can be a powerful and useful tool for
wildlife management and ecology.
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Appendix

The following derivation of the use–availability likelihood and
subsequent justification for use of logistic regression closely
follows Seber’s (1984:308–315) derivation of logistic
discriminate function for the case of separate sampling. Seber
(1984) in turn credits Anderson and Blair (1982) with a key part
of the method.

We envision a finite population of Na available resource units
existing prior to animals making any selections. Each resource unit
in this population has k measurable covariates associated with it
that do not change through time. We denote these covariates as k-
dimensional vectors xi (i¼ 1, . . ., Na). The frequencies of distinct
xi among all Na available resource units defines a k-dimensional
multivariate discrete probability distribution, which we denote
fa(x). Let the set of distinct xi in the available population be
denoted Da(x), and we note that fa(x) is a jDa(x)j�celled
multinomial distribution. From this population, we take a
random sample Sa of na units without replacement and observe
xi for all units in the sample. Following sampling, all selected units
are replaced in the population and made available for use by the
organism. We note that because use has not occurred yet, there is
no concept of the available sample consisting of used and unused
units. All units in the sample were simply available for use at one
point in time.

We now envision animals selecting units in the available
population during a fixed and finite time period, say T. After
time period T, a second population of units exists that contains all
units selected at least once during T. This is the population of
used units and it contains Nu � Na units. The frequencies of
distinct xi among all Nu used resource units defines a k-
dimensional multivariate discrete probability distribution, which
we denote fu(x). From this population, we take a random sample
Su of nu units without replacement and observe xi for all units in
the sample.

The RSF, denoted w(x), is defined as,

wðxÞ ¼ fuðxÞ
faðxÞ

;

or,

fuðxiÞ ¼
wðxiÞfaðxiÞX

xj2DaðxÞ
wðxjÞfaðxjÞ

where the sum in the denominator assures that fu(xi) is a valid
probability distribution. It is clear from the latter equation that
w(x) is the function that transforms the multivariate probability

distribution of x among units in the available population into the
multivariate probability distribution of x among units in the used
population. A related function is the RSPF, denoted w*(x),
defined as the actual unequal sampling probability that transforms
fa(xi) into fu(xi). The magnitude of the RSPF depends upon
characteristics of the actual selection that are likely to be
unknown. For example, the RSPF depends upon whether the
study design was set up to allow organisms a fixed or random
number of choices. Despite the (at times) unknown nature of the
RSPF, it must be proportional to the RSF as defined above, and
estimation of the RSF will be sufficient in many applications. In
the remainder, our objective is to estimate the RSF and we denote
its dependence on b by writing w(xi, b). At this point, we have not
specified the form of w nor the relationship between xi and b. For
instance, w could be a complex non-linear function of xi and b
involving scatter plot smoothers or splines.

We now define random variables yi to be 1 if the i-th unit in
the composite sample of length nu þ na appears in the sample of
used units, and 0 otherwise. Note that if the same unit appears in
both Sa and Su, yi ¼ 0 for a particular i 2 Sa, and yi ¼ 1 for a
different i 2 Su. Here, we assume that either selection of Sa and
Su was with replacement, or that Na and Nu are large enough that
Pr(unit A and unit B both selected) is well approximated by
Pr(unit A selected) Pr(unit B selected). The latter assumption on
population sizes is parallel to assuming that the binomial
distribution approximates the hypergeometric. Because Sa and
Su were drawn independently, the likelihood of observing the
composite sample is,

LðbÞ ¼
Yna
i¼1

faðxiÞ
" # Ynu

i¼1
fuðxiÞ

" #

¼
Ynaþnu
i¼1

fuðxiÞyi faðxiÞ1�yi

¼
Ynaþnu
i¼1

C
�yi
b wðxi; bÞyi faðxiÞyi faðxiÞ1�yi

¼ Cb

Ynaþnu
i¼1

wðxi; bÞyi faðxiÞ

where Cb ¼
P

xj2DaðxÞ wðxj; bÞfaðxjÞ. Note that we do not
observe all distinct xi and cannot compute Cb. We therefore
condition on the composite sample and maximize L(b) subject to
the constraints X

xi2DðxÞ
faðxiÞ ¼ 1 ðA1Þ

and X
xi2DðxÞ

fuðxiÞ ¼
X

xi2DðxÞ
wðxi; bÞfaðxiÞ ¼ 1 ðA2Þ

where D(x) is the set of distinct values of x in the composite
sample. These constraints assure that fu and fa are probability
functions on the composite sample, and we drop Cb from the
likelihood because the second constraint assures Cb ¼ 1 on D(x).

To maximize L(b) subject to constraints (A1) and (A2), we
employ Lagrange multipliers. At this point, we must assume the
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RSF has the exponential form w(x,b)¼ exp(b0þ x0b). We also let
nu(xi) be the number of units in the used sample with covariate
vector equal to xi, na(xi) be the number of units in the available
sample with covariate vector equal to xi, n(xi)¼ nu(xi)þ na(xi) be
the number of units in the composite sample with covariate vector
equal to xi. We then write log(L(b)) as

logðLðbÞÞ ¼
X

xi2DðxÞ
nuðxiÞ½b0 þ x0

ib� þ
X

xi2DðxÞ
nðxiÞlogðfaðxiÞÞ

and differentiate

logðLðbÞÞ � k1

X
xi2DðxÞ

faðxiÞ

2
4

3
5� 1

0
@

1
A

� k2

X
xi2DðxÞ

expðb0 þ xibÞfaðxiÞ

2
4

3
5� 1

0
@

1
A¼ 0 ðA3Þ

with respect to fa(xi) for all i to obtain d = jD(x)j equations of the
form,

nðxiÞ
faðxiÞ

� k1 � k2expðb0 þ x0
ibÞ ¼ 0: ðA4Þ

Multiplying through by fa(xi) and summing the d equations
givesX
xi2DðxÞ

nðxiÞ � k1

X
xi2DðxÞ

faðxiÞ � k2

X
xi2DðxÞ

expðb0 þ x0
ibÞ faðxiÞ¼ 0

which implies

n� k1 � k2 ¼ 0

by the constraints. Differentiating (A3) with respect to b0

gives, X
xi2DðxÞ

nuðxiÞ � k2

X
xi2DðxÞ

expðb0 þ x0
ibÞ faðxiÞ ¼ 0:

Solving for k2 in this equation yields k2 ¼ nu by constraint
(A2), which in turn implies k1 ¼ na in the previous equation.
Substituting k1 and k2 into the equations (A4) we obtain

f̂aðxiÞ ¼
nðxiÞ

nu expðb0 þ x0bÞ þ na
:

Substituting f̂aðxiÞ into L(b) we obtain,

L�ðbÞ ¼
Ynaþnu
i¼1

nðxiÞ
½ expðb0 þ x0

ibÞ�yi
nuexpðb0 þ x0

ibÞ þ na

¼
Ynaþnu
i¼1

nðxiÞ
expðb0 þ x0

ibÞ
nuexpðb0 þ x0

ibÞ þ na

2
4

3
5
yi

3
1

nuexpðb0 þ x0
ibÞ þ na

2
4

3
5
1�yi

¼¼
Ynaþnu
i¼1

nðxiÞ
n
yi
u

expðb0 þ lnðnu=naÞ þ x0
ibÞ

expðb0 þ lnðnu=naÞ þ x0
ibÞ þ 1

2
4

3
5
yi

3
1

expðb0 þ lnðnu=naÞ þ x0
ibÞ þ 1

2
4

3
5
1�yi

.

This is L(b) assuming w(x,b)¼ exp(b0þ x0b) subject to constraints

(A1) and (A2), and is equivalent to a logistic regression likelihood

in which the intercept is replaced by b0 þln(nu/na). L*(b) (or

log[L*fbg]) can be maximized with respect to b by use of a logistic

regression routine. In other words, maximum likelihood estimates

of b can be obtained by estimating a logistic regression model that

contains all x variables and an intercept, and recognizing that the

estimated intercept is immaterial to the RSF. The estimated RSF is,

wðx; bÞ ¼ expðx0b̂Þ ¼ expðx1b̂1 þ � � � þ xkb̂kÞ

where b̂1; . . .; b̂k come from the logistic regression routine.

Despite the fact that we know nu and na and could estimate b0,

the RSPF cannot be estimated in this case unless additional

assumptions about selection are made. For example, if the total

number of used units in the population can be assumed to be

small, the methods of Manly et al. (2002) can be applied to

estimate the RSPF in some cases.
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