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Abstract

Multiscale analyses are widely employed for wildlife-habitat studies. In most cases, however, each scale is con-
sidered discrete and little emphasis is placed on incorporating or measuring the responses of wildlife to resources
across multiple scales. We modeled the responses of three Arctic wildlife species to vegetative resources distrib-
uted at two spatial scales: patches and collections of patches aggregated across a regional area. We defined a
patch as a single or homogeneous collection of pixels representing 1 of 10 unique vegetation types. We em-
ployed a spatial pattern technique, three-term local quadrat variance, to quantify the distribution of patches at a
larger regional scale. We used the distance at which the variance for each of 10 vegetation types peaked to define
a moving window for calculating the density of patches. When measures of vegetation patch and density were
applied to resource selection functions, the most parsimonious models for wolves and grizzly bears included
covariates recorded at both scales. Seasonal resource selection by caribou was best described using a model con-
sisting of only regional scale covariates. Our results suggest that for some species and environments simple
patch-scale models may not capture the full range of spatial variation in resources to which wildlife may re-
spond. For mobile animals that range across heterogeneous areas we recommend selection models that integrate
resources occurring at a number of spatial scales. Patch density is a simple technique for representing such
higher-order spatial patterns.

Introduction

Ecologists are beginning to develop an appreciation
for the influences of spatial and temporal scale on
ecological processes �Wiens 1989; Levin 1992; Dun-
gan et al. 2002�. Although we recognize that ecologi-
cal phenomena vary in space and time, we struggle to
identify the effects of that variation on the processes
of interest. Wildlife ecologists are not immune to the

challenges of scalar relationships, especially given the
wide-ranging nature of many of their study species
�Bergin 1992; Schaefer and Messier 1995; Saab 1999;
Johnson et al. 2002a�. Their goal is often an under-
standing of animal fitness as it relates to population
productivity, but the complexity of the problem
results in studies that address one or two scales of
analysis assumed to correspond with some ecologi-
cally meaningful scale. Less typical are examples in-
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tegrating behaviors across scales or attempts to
delineate ecologically based breaks in scalar pro-
cesses �Viswanathan et al. 1996; Johnson et al.
2002a�.

A common objective for wildlife studies is the
identification of important resources which may
include specific diet items or, more generally, habi-
tats which constitute the broad range of life requisites
�Hall et al. 1997�. For some study designs, a differ-
ential ratio of used to available resources suggests se-
lection and importance of a particular resource.
Recognizing that selection may vary according to the
definition of availability, studies are conducted at
several discrete spatial and temporal scales
�McLoughlin et al. 2002�. Researchers have looked to
Johnson’s �1980� hierarchical orders of selection to
define those scales of analysis. Others have analyzed
selection at a number of arbitrary scales searching for
patterns or changes across scale �Apps et al. 2001�.

Depending on species and environment and contin-
gent on the correct definition of scale, resource selec-
tion studies conducted at a number of discrete orders
or scales of selection can be more informative than
single scale designs. However, understanding and in-
ferences of multiscale studies are limited by several
fundamental flaws in study design, analysis, and con-
ceptualization of the underlying processes. First, it is
assumed that animal movement and behavior is
related to individual patches of resources as defined
in a GIS. Researchers often ignore the fundamentals
of landscape ecology and assume that patches of re-
sources occur in isolation of other and like patches.
For many systems, vegetation will scale in response
to climate or topography, processes that may not in-
fluence the movements and behavior of the study
species directly �McIntyre and Wiens 2000�. The
patch is likely only a representative resource unit
across small homogenous study areas with little re-
gional gradient in vegetation. Second, discrete multi-
scale resource selection analyses provide little empir-
ical insight into the relative importance of habitats at
each scale. Statistical tests, selection coefficients, and
measures of precision allow one to infer selection or
avoidance of habitats at each scale, but there is no
means to compare the strength of selection across
scales. With the exception of guiding hypotheses,
managers are left to prioritize the management or
conservation of resources identified at each scale
�Rettie and Messier 2000�. Such problems are espe-
cially apparent when selection coefficients are used to
map areas for conservation emphasis �Mladenoff et al.

1995; Carroll et al. 2001�. Third, there is good reason
to question the ecological premise upon which most
discrete multiscale resource selection studies are
based. Such studies assume that selection is hierarchi-
cal and that one scale of selection is conditional upon
another �Johnson 1980�. This may be a necessary ex-
pectation for statistical tractability, but it fails to re-
present cross-scale linkages. In reality, it is unlikely
that selection at any one scale is independent of any
other �Huston 1999�.

We developed and assessed resource selection
models that integrated vegetation resources distrib-
uted at multiple spatial scales. As our working hypo-
thesis, we expected wide-ranging species to select
vegetative resources distributed as patches and
collections of patches aggregated across regional ar-
eas. To explore that relationship, we evaluated veg-
etation types found across a 191 000-km2 area of the
Canadian central Arctic for multiple patterns or scales
of distribution. We used measures of patch density to
parameterize the distribution of vegetation available
to Arctic wildlife at scales greater than the individual
patch, which we defined as a single or homogeneous
collection of pixels representing 1 of 10 unique veg-
etation types. We included variables for vegetation
occurrence at the scales of the patch and region in re-
source selection models for barren-ground caribou
�Rangifer tarandus groenlandicus�, wolf �Canis lu-
pus�, and grizzly bear �Ursus arctos�. For each spe-
cies, we identified the most parsimonious resource
selection model inclusive of covariates for vegetation
parameterised at the scale of the patch, the region
�i.e., patch density�, and both the patch and region.
Selection of the model including terms for vegetation
distributed at the scale of the patch and region pro-
vided evidence supporting our working hypothesis.

Methods

Study area description

The study area was centred at Contwoyto Lake �65°
30� N, 110° 30� W� approximately 400 km northeast
of Yellowknife, Northwest Territories, Canada and
encompasses 191 000 km2 of the Taiga Shield and
Southern Arctic ecozones �ESWG 1996; Figure 1�.
Treeline, the absence of open stunted forests of black
�Picea mariana� and white spruce �P. glauca�,
demarks the northern extent of the Taiga Shield. Per-
mafrost, forest fires, and soil productivity dictate the
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mosaic of plant communities found across that area.
Forested sites are characterised by white and black
spruce, pine �Pinus banksiana�, and in the south larch
�Larix laricina�. Understory is dependent on site pro-
ductivity, but typically consists of some combination
of lichen and shrub. Wet, riparian, or recently
disturbed sites are devoid of tree cover and accom-
modate plant communities dominated by sedge
�Carex spp.�, birch �Betula spp.�, willow �Salix spp.�,
and alder �Alnus spp.�. Peatlands occur across
wetland areas of discontinuous permafrost.

The majority of the study area is contained within
the Southern Arctic ecozone. Landform geomorphol-
ogy was shaped by past glacial actions and includes
esker complexes, boulder moraines, outwash aprons

of sand and gravel, glacial erratics, and raised ridges
of ancient beaches. Permafrost is continuous through
the zone and numerous lakes dot the landscape.
Drainages are the most productive growing sites ac-
commodating birch and willow of 2–5 m in height.
Vast shrub communities of willow, shrub birch, and
Labrador tea �Ledum decumbens� dominate areas
with adequate soil development. Extensive mats of
lichens, mosses, and low shrubs are found across ex-
posed rocky sites.

Defining scale

Vegetation is distributed as patches within an
environmental matrix of unsuitable growing condi-

Figure 1. Location of study area across the Canadian central Arctic. Treeline represents the northern extent of coniferous forest.
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tions. Patch size and aggregation is dictated by a
number of factors including competitors, nutrient and
moisture conditions, climate, disturbance history, and
topography �Bengtsson et al. 1994�. Often, the spatial
pattern of patches occurs as an integrated nested hi-
erarchy from individual plants, to groups of individu-
als of the same species, to collections of species that
share a similar ecological niche and vary in preva-
lence across an ecological gradient defined by coarser
scale factors �Diaz et al. 1998; Pausas and Austin
2001; Francis and Currie 2003�. Animals will choose
individual patches at some scale in the hierarchy to
access vegetative or proteinaceous foods or avoid
predators and competitors. Within a regional context,
animals wishing to maximise the availability of
resources or minimise intra and interspecific interac-
tions may choose areas dominated by patches of a
particular vegetation type. Our analyses were con-
ducted at two spatial scales within this hierarchy: the
patch and the region. A patch was a single or homo-
geneous collection of pixels representing one vegeta-
tion type. Minimum patch size was the 25 � 25-m �1
ha� grain of the raster vegetation maps; extent varied
depending on vegetation type, but was limited to the
mapped area. The regional scale represented the den-
sity of patches of like vegetation types calculated us-
ing a moving window algorithm. The size of the
moving window was a function of the spatial pattern-
ing of patches of each vegetation type.

A number of techniques are available for exploring
patterns in spatial data. Based on the recommenda-
tions of Dale �1999; 2000�, we used three-term local
quadrat variance �3TLQV� to identify various scales
of pattern for vegetation found across our study area
�Rosenberg 2002�. Application of 3TLQV first
requires the delineation of random transects across
the vegetation type of interest. For each quadrat, or
in this case pixel, along the transect, an overlapping
moving window consisting of three terms or blocks
of size b calculates a variance �Dale et al. 2002�. The
average variance across all pixels is the squared dif-

ference of the sum of the first and third blocks minus
two times the sum of the second �Equation 1�.

V3�b� �
�
i�1

n�1�3b � �
j�i

i�b�1

xj � 2 �
j�i�b

i�2b�1

xj � �
j�i�2b

i�3b�1

xj�2

8b�n � 1 � 3b�
�1�

The moving window progresses across the transect
multiple times successively increasing the size �b� of
the three blocks during each iteration. The average
variance is calculated and plotted for a range of block
sizes or scales. Peaks in variance relative to block size
indicate the dominant spatial scales of patch aggrega-
tion and distribution for the vegetation type bisected
by the transect. For our analyses, each vegetation type
was mapped as a simple binary layer of 1s and 0s. A
patch was identified as a collection of 1s and the sup-
porting matrix was identified by 0s.

Given the range of techniques available, we first
explored 3TLQV to ensure that we could identify
predefined scales of pattern. We simulated data con-
sisting of patches in a hierarchy of three successively
larger scales. Patterns of alternating 1s and 0s repre-
sented patch boundaries at the 2nd, 18th and 186th lo-
cation repeated across a transect of 1000 quadrats
�Figure 2�. We used a randomization procedure to il-
lustrate the magnitude of that spatial pattern. Loca-
tions of quadrats for the simulated data were
randomly reassigned and the 3TLQV statistic was re-
calculated. The randomization procedure was re-
peated 500 times and the mean and 95% confidence
intervals for the variance statistic were calculated for
each block size.

For our analyses of resource selection, vegetation
data were derived from a supervised classification of
a number of Landsat Thematic Mapper images
�25�25-m pixels; Matthews et al. 2001�. To ensure
statistically tractable resource selection models, we
recombined the 23 original vegetation classes into 10
super classes �Table 1�. We created binary images and
randomly situated 10 transects across the range of

Figure 2. Simulated data representing hierarchically structured patches �white� occurring at the 2nd, 18th, and 187th quadrat.
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each vegetation type. We assumed that the dominant
ecological gradient occurred from south to north and
thus we oriented transects in that direction. Transect
length varied �170–295 km� according to the geo-
graphic distribution of each vegetation type across the
study area. We used 3TLQV to quantify the average
variance for each scale of heterogeneity �b� for each
type. Because of computational constraints analyses
were conducted at a pixel resolution of 100�100 m.
We plotted the median variance for the 10 sample
transects and identified the major peak in variance as
one scale at which availability of vegetation differed
beyond that of individual patches. We used that scale
�i.e., distance� to identify the length and width of a
moving window which calculated the density of pix-
els for each vegetation type across the study area.
Density of vegetation pixels served as a covariate by
which to evaluate selection by our focal species for
aggregations of patches at the regional scale.

Statistical definition of resource selection

We used resource selection functions �RSF� to quan-
tify the relationship between the observed seasonal
distribution of caribou, wolves, and grizzly bears and
covariates representative of vegetation at the patch
and regional scale �Table 1�. A RSF is any
mathematical function that is proportional to the
probability of use of a resource or habitat unit �Manly
et al. 2002�. Typically, an RSF consists of a number
of coefficients ��i� that quantify selection for some
environmental variable �Equation 2�.

w � exp�ß1x1 � ß2x2 � � � ßixi� �2�

Coefficient sign and strength is a function of vari-
ation in the distribution of environmental features
measured at a sample of animal locations and a com-
parison set of random sites.

Resource selection analyses were based on animal
locations collected during previous studies of caribou,
wolf, and grizzly bear �Gunn et al. 2001; Walton et
al. 2001; McLoughlin et al. 2002�. All animals were
fitted with satellite collars which remotely calculated
and transmitted locations with an error radius of 150,
350, and 1000 m �Ballard et al. 1995�. The
geographic extent of capture efforts, relocation
frequency, and the distribution of monitored animals
varied amongst studies. In total, 28 individual female
caribou of the Bathurst herd were collared and moni-
tored from April 1996 to December 2000. Animals
were fitted with satellite collars which, depending on
season, transmitted locations daily, at 5-day intervals
or weekly. Twenty-three wolves in 19 different packs
were captured and monitored between June of 1997
and August 1999. Location interval was typically 24
h during summer and, depending on year, 4, 5 or 14
days for other months. Between June 1995 and June
1999, 42 female and 39 male grizzly bears were cap-
tured and monitored. Collars were programmed to
transmit locations every two days.

We used our understanding of the focal species to
identify ecologically relevant seasons �Johnson and
Boyce 2004�. Our intent was an analysis of the vari-
ation in resource selection across spatial scales not a
complete assessment of seasonal resource selection
patterns. Therefore, for each species we developed
resource selection models for the season with the
greatest number of animal relocations. To control for

Table 1. Vegetation types used to model resource selection of caribou, wolves, and grizzly bears across the Canadian central Arctic.

Vegetation Type Description

Esker density/patch1 sparsely vegetated sand and gravel esker complexes
Forest density/patch continuous or discontinuous forested areas of dwarf white spruce, black spruce, and tama-

rack
Heath rock density/patch open mat heath tundra interspersed with bedrock and boulders
Heath tundra density/patch closed mat of heath found on moderate to well drained soils on upland areas
Lichen veneer density/patch windswept, dry, flat topography covered with a continuous mat of lichen
Low shrub density/patch extensive areas of low birch and willow found on moist well-drained soils
Peat bog density/patch mosaic of uplands and lowlands with fens, bogs, mixed-wood forest, and peatlands
Riparian shrub density/patch active stream courses or areas of water seepage with a shrub layer of birch, willow, and

alder
Rock association density/patch large areas of windswept bedrock or boulders with little vegetative cover
Sedge association density/patch wetland complexes of wet sedge meadow and drier hummock sites

1Vegetation was modeled at two scales: the percent area per type and the mean density representative of the regional distribution of each
vegetation type.
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the possible confounding effects of location quality,
we used only those locations with an expected error
radius of 350 m.

We used conditional fixed-effects logistic regres-
sion – also known as discrete choice, paired and
matched case-control logistic regression – to estimate
coefficients for the RSF analyses. Fixed-effects logis-
tic regression allows one to statistically control for
responses that characterize clustered data �Pendergast
et al. 1996; Hosmer and Lemeshow 2000; Compton
et al. 2002; Manly et al. 2002�. In this case, we clus-
tered the fixed effects regression on each animal lo-
cation to statistically control for temporal and spatial
variation in resource availability. Each animal loca-
tion was paired with five randomly selected compari-
son sites that served to quantify the availability of
vegetation. We sampled comparison sites from within
a circle that was centred on the preceding animal lo-
cation, and had a radius equal to the 95th percentile
movement distance for that particular relocation in-
terval �e.g., 48 h, 2 day etc.� for that species �Arthur
et al. 1996�. We considered the resource selection
models to be representative of the range of behaviours
the monitored animals demonstrated over their mean
relocation interval. Mean time between relocation
was 272.09 �SE � 57.47�, 39.02 �SE � 10.50�, and
49.52 �SE � 1.82� hours, for caribou, wolves, and
grizzly bears, respectively.

We used a logit link function to relate vegetation
covariates to the dependent variable of used and ran-
dom locations �Hardin and Hilbe 2001�. Used and
available resources were sampled from under an er-
ror polygon centered on the focal location with a ra-
dius equal to an assumed accuracy of 350 m.
Covariates represented the percent occurrence and
mean density of each vegetation type for the patch
and regional scales, respectively. Although our mod-
els represented the distribution of vegetation at two
spatial scales, the scale of resource selection was de-
fined by animal movements and associated availabil-
ity radii.

Model development, selection, and evaluation

For each species, we developed three resource selec-
tion models, which included covariates for vegetation
parameterised at either the scale of the patch, the re-
gion �i.e., density� or both the patch and region. We
used the Akaike information criterion difference ad-
justed for small sample sizes �AICc ��, and Akaike
weights �w� to evaluate and choose the most

parsimonious model of the three for each species �i.e.,
the fewest variables to explain the greatest amount of
variation�. Akaike weights provide a normalised
comparative score for all specified models and are in-
terpreted as the approximate probability that each
model is the best model of the set of proposed mod-
els �Anderson et al. 2000�. For confirmatory purposes,
we present log likelihood �2 statistics for assessment
of overall model fit. Also, we evaluated the predic-
tive success of each model. We applied a k-fold cross
validation procedure five times, withholding 20% of
the data during each iteration �Boyce et al. 2002�. A
spearman-rank correlation was used to assess the re-
lationship between predicted occurrence for withheld
animal locations and their frequency within 10
ordered bins of equal size as defined by the range of
predicted data. A predictive model will have a strong
mean correlation indicating a greater number of with-
held locations in bins with relatively larger values.
We used 95% confidence intervals to assess the
strength of effect of each predictor covariate on the
dependent variable. We used the Pregibon � � and
leverage �i.e., hat� statistics as well as the Hosmer and
Lemeshow � �2 statistic to identify cases and clus-
ters that had a large influence on the parameters of
the model �Hosmer and Lemeshow 2000�. We
assessed each model for excessive collinearity �Me-
nard 1995�.

Results

In agreement with our expectation, application of
3TLQV to our simulated data indicated three scales
of pattern �Figure 3�. Maximum average variance
across all scales peaked at a window size �b� of 2, 14,
and 121. The latter two scales drifted from the true
scale we defined at the 18th and 186th quadrats on the
transect �Dale 1999�. Randomization of those data
resulted in a near constant mean variance increasing
linearly from 0 to 0.051 across window sizes �Figure
3�. Serving as a null model, the randomization proce-
dure illustrated the magnitude of the spatial pattern in
the scaled data.

Results of the 3TLQV analyses for each of the 10
vegetation types revealed patterns we assumed repre-
sented various scales of patch structure across the
study area. The strength of spatial patterning differed
among the vegetation types; heath tundra and esker
demonstrated the highest and lowest peaks in
variance, respectively �Figure 4�. The magnitude of
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results also were variable across transects for each
vegetation type, but in general patterns were consis-
tent across replicates. In some cases, graphs sug-
gested a number of scales of vegetation patchiness to
which our focal species might be influenced. For in-
stance, heath rock and lichen veneer demonstrated
several peaks in variance. The relationship was less
complex for other vegetation types such as heath tun-
dra �Figure 4�. We used the scale at which the vari-
ance was greatest to calculate patch densities for each
of the vegetation types. Those peaks occurred at the
following distances: esker � 73 km; forest � 64.1
km; heath rock � 40.5 km; heath tundra � 55.2 km;
lichen veneer � 17.7 km; low shrub � 42.2 km; peat
bog � 11.6 km; riparian shrub � 77.2 km; rock as-
sociation � 97.4 km; and sedge association � 94.9
km.

We used 377, 666, and 633 animal relocations to
generate candidate resource selection models for
caribou, wolves, and grizzly bears, respectively. AIC
weights suggested little model selection uncertainty
and strong evidence that the most parsimonious mod-
els were the best of their respective sets �Table 2�. The
most parsimonious model for caribou during the
post-calving season �15 June–31 August� consisted of
covariates for density of vegetation patches represent-
ing the distribution of the various vegetation types at
the regional scale �Table 2�. That model was statisti-

cally significant and suggested that caribou selected
portions of the study area dominated by the lichen
veneer, heath tundra, and rock vegetation types �Table
3; �2�10� � 87.21, P � 0.001�. Predictive capacity
of the three models ranked equally with the results of
the AIC analyses. Although differences were small,
the mean Spearman rank correlation across 5 repli-
cates was greatest for the vegetation density, followed
by the vegetation patch and density, and finally the
vegetation patch model �Table 2�.

During denning �18 April–3 November�, resource
selection by collared wolves was best explained by a
model consisting of vegetation covariates quantified
at the patch and regional scales �Table 2; �2�18� �
144.35, P � 0.001�. That model also was the most
predictive of the three �Table 2�. The model consist-
ing exclusively of patch-scale covariates was more
parsimonious and predictive than a model represent-
ative of regional-scale selection, but fell well below
the more complex multiscale model. Coefficients
suggested that wolves selected for areas dominated by
the heath rock and heath tundra vegetation types and
patches of sedge, lichen veneer, and rock �Table 3�.
The esker vegetation type was important at both
scales, but confidence intervals indicated imprecision
in coefficient estimates.

Resource selection by grizzly bears during early
summer �21 June–31 July� was best modeled using

Figure 3. Variance of simulated data with three scales of structure �see Figure 2� calculated using 3TLQV. For comparison purposes the mean
variance and 95% confidence intervals were calculated for the simulated data randomised 500 times.
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patch and density covariates �Table 2�. The most par-
simonious model was statistically significant and the
best predictor of bear occurrence ��2�20��99.94,
P � 0.001; r̄s � 0.701�. Bears selected areas with a
high density of patches of the esker and low shrub
vegetation types and a low density of forest and sedge
patches �Table 3�. Holding vegetation density statis-
tically constant, monitored bears also were associated

with patches of heath tundra, low shrub, riparian
shrub, and sedge.

Discussion

We are not the first to recognize the role of scale in
understanding and predicting ecological processes.
Senft et al. �1987� concluded that ‘...useful foraging

Figure 4. Median variance and interquartile range calculated using 3TLQV for 10 transects randomly oriented across the heath tundra, esker,
heath rock, and lichen veneer vegetation types.

876



theory must explain how foraging behaviour varies
with ecological scale.’; Wiens �1989� stated that we
‘...must go further, to consider scaling issues as a pri-
mary focus of research efforts.’; and Levin �1992� as-
serted that ‘...it is �scale� I will argue, the fundamental
conceptual problem in ecology, if not in all of
science.’ Consistent with these seminal works are
dozens of empirical studies that concluded with state-
ments advocating the necessity of multiscale ap-
proaches. Although many of these studies were

premised on hierarchical designs, relatively few
implemented methods that allowed for an integration
and analysis of processes across scale �but see Morris
1987; Johnson et al. 2001; Bakker et al. 2002�. Wild-
life ecologists often refer to Johnson’s �1980� orders
of selection when conducting multiscale habitat
selection studies. The focus of that much cited work
has been largely forgotten, but researchers continue to
premise their inferences on several discrete orders or
scales of selection that approximate use of a study

Figure 4. Continued.
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area, home range, patches within the home range, and
food items within patches. Assuming that those orders
are meaningful to the study species, effects measured
at multiple scales in a discontinuous hierarchy illumi-
nate differences in resource importance, but fail to
enlighten mechanisms that vary continuously across
scales �Andrzejewski 2002�. Although the absence of
an organism or nonlinearities in the importance of a
resource suggests a holon, many processes and sys-

tems function along a scalar continuum �Allen and
Starr 1982�. In the context of animal behaviour, we
can define selection of a regional area for a particular
individual or population, but that observed distribu-
tion is likely a function of activities occurring at a
number of interconnected scales from components of
plants, to plants, to patches of plants and upwards.
Patch density is a straightforward summary measure
of vegetation distribution and aggregation that occurs

Table 2. Mean Spearman rank correlation �r̄s� as an index of predictive success and differences in Akaike’s information criterion �AICc�
scores ��� and AICc weights �w� for candidate selection models developed for monitored caribou, wolves, and grizzly bears of the Canadian
central Arctic.

Prediction

Species Model k AICc �i AICc wi r̄s SE

Caribou Vegetation patch 11 42.46 � 0.001 0.683 0.063
Vegetation patch � Vegetation density 11 4.51 0.095 0.689 0.105
Vegetation density 21 0.00 0.905 0.706 0.066

Wolf Vegetation density 10 79.94 � 0.001 0.538 0.058
Vegetation patch 10 41.46 � 0.001 0.648 0.119
Vegetation patch � Vegetation density 19 0.00 1.000 0.734 0.062

Grizzly Bear Vegetation patch 11 26.14 � 0.001 0.664 0.102
Vegetation density 11 13.81 0.001 0.468 0.144
Vegetation patch � Vegetation density 21 0.00 0.999 0.701 0.066

Table 3. Coefficients ��� and 95% confidence intervals from the most parsimonious resource selection models for monitored caribou, wolves,
and grizzly bears of the Canadian central Arctic.

Caribou Wolf Grizzly Bear

Covariate � 95% CI � 95% CI � 95% CI

Esker den. � 4.188 � 18.561 10.185 10.236 � 4.179 24.652 21.674 11.288 32.059
Esker patch NIa NI 0.029 � 0.004 0.063 � 0.006 � 0.032 0.021
Forest den. 1.272 � 3.988 6.533 3.638 � 6.135 13.411 � 34.788 � 57.181 � 12.395
Forest patch NI NI 0.026 � 0.019 0.071 0.055 � 0.013 0.124
Heath rock den. 0.108 � 3.546 3.762 8.242 5.166 11.317 � 1.548 � 4.033 0.937
Heath rock patch NI NI � 0.005 � 0.010 0.001 0.005 � -0.001 0.011
Heath tundra den. 4.256 0.962 7.551 7.443 4.226 10.661 � 0.761 � 3.257 1.735
Heath tundra patch NI NI � 0.001 � 0.003 0.004 0.006 0.001 0.010
Lichen veneer den. 11.114 7.642 14.586 � 8.362 � 17.264 0.540 � 3.445 � 7.487 0.597
Lichen veneer patch NI NI 0.027 0.001 0.053 � 0.005 � 0.023 0.013
Low shrub den. 4.168 � 0.675 9.011 NI NI 2.598 0.367 4.829
Low shrub patch NI NI NI NI 0.010 0.001 0.019
Peat bog den. � 16.737 � 44.865 11.391 18.597 � 0.049 37.244 � 1.123 � 11.269 9.023
Peat bog patch NI NI 0.022 � 0.110 0.153 0.019 � 0.031 0.068
Riparian shrub den. � 10.445 � 21.706 0.816 � 1.014 � 7.583 5.555 1.194 � 2.855 5.244
Riparian shrub patch NI NI 0.020 � 0.008 0.048 0.027 0.007 0.048
Rock den. 3.047 1.152 4.942 � 3.501 � 7.333 0.332 1.320 � 0.660 3.300
Rock patch NI NI 0.018 0.006 0.031 0.005 � 0.004 0.013
Sedge den. 3.383 � 1.041 7.806 � 0.595 � 5.437 4.248 � 4.580 � 9.012 � 0.148
Sedge patch NI NI 0.031 0.024 0.039 0.010 0.004 0.017

acovariate excluded during model selection process or absent from range of monitored animals.
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at one scale greater than the patch, as identified by
our GIS. In conjunction with a generalized linear
model, measures of vegetation density allow re-
searchers to objectively integrate and assess multiple
scales of patchiness within resource selection models.

Our application of patch density to seasonal
resource selection models for caribou, wolf, and griz-
zly bear suggested that wide-ranging species respond
to vegetation at scales greater than the patch.
Integrated multiscale models not only account for a
greater percentage of variation in resource selection,
but allow one to assess nonlinearities in selection
across scale. When interpreting such models one must
consider that each coefficient represents the effect of
a covariate while holding other covariates statistically
constant �Hardin and Hilbe 2001�. Thus, we may
model avoidance or selection of a vegetation type
across scales or observe selection at one scale and
avoidance at another. The latter would suggest a non-
linear scalar response. Grizzly bears, for example,
demonstrated avoidance of areas of the study area
dominated by sedge, but when ranging across those
areas selected for patches of that vegetation type. In-
teractions across scale can be challenging to interpret,
but nonlinearities in natural systems should not be
unexpected �Pascual and Levin 1999�.

Quantification of regional scale vegetation covari-
ates was dependent on the identification of distances
over which vegetation layers in our GIS demonstrated
scalar patterns. A number of alternative techniques are
available for exploring patterns in spatial data includ-
ing lacunarity, fractal, spectral, and wavelet analyses
�Ripley 1978; Palmer 1988; Plotnick et al. 1993; Dale
and Mah 1998; Dale 1999�. Variation in the results of
pattern analyses conducted with different techniques,
but similar data and objectives, highlights the neces-
sity of considering a range of approaches �Perry et al.
2002�.

We observed some variation in results among rep-
licates for each vegetation type. Scale drift and reso-
nance also obscured the true patterns of variance
�Dale 1999�. Inferences to patterns of vegetation
across the central Arctic study area are imprecise and
predictions specific to absolute values of vegetation
density should be interpreted carefully. However, re-
source use versus availability analyses model relative
differences in patch density between animal and
paired random locations and thus should be robust to
such sources of imprecision. Nine-term local quadrat
variance �9TLQV� is similar to 3TLQV except that
variance calculations occur in two dimensions across

a surface �Dale 1990�. Such an approach eliminates
the need for multiple transects and is likely a supe-
rior technique for mapped vegetation data. Lengthy
computation time prevented application to our large
study area.

We modelled the influence of vegetation on
resource selection at two scales. Results of the
3TLQV analyses, however, suggested that several
scales of patchiness characterized some vegetation
types. Researchers may wish to investigate the inclu-
sion of vegetation covariates quantified at alternative
or additional scales. Such higher order models should
be evaluated for excessive collinearity, a condition
that will reduce model parsimony and inflate standard
errors �Menard 1995�. We also anticipate that some
resources will fail to demonstrate scales of aggrega-
tion beyond the individual patch. The esker vegeta-
tion type occurred as narrow linear features across the
study area. Variance measures for that type were rela-
tively small suggesting that the individual patch was
the dominant scale of pattern �Figure 4�.

Density measures also may serve as a scale-sensi-
tive index of the distribution of environmental
features other than vegetation. Resource selection
models designed to assess disturbance responses of
carnivores often incorporate road density as an index
of human occurrence �Mace et al. 1999; Merrill et al.
1999; Carroll et al. 2001�. Typically, that measure is
calculated as the length of road within an arbitrary
area of 1 km2. At coarser scales, animals may orient
their seasonal distribution to avoid areas of high road
density. As with vegetation, alternative scales of
measurement would capture such relationships. Ani-
mal movement parameters or home range estimates
could guide the size of moving windows used to
quantify the density of human disturbance features at
scales larger than a 1-km2 area �Blundell et al. 2001�.

Vegetation density is just one approach for
addressing the influence of landscape pattern on ani-
mal movement and patch occupancy. Numerous tech-
niques and associated software programs are avail-
able for quantifying the shape, spatial configuration,
and diversity of patch types �Baskent and Jordan
1995; McGarigal and Marks 1995; Gustafson 1998;
Mladenoff and DeZonia 1999�. Such metrics are ap-
plied to resource selection studies, but the bewilder-
ing choice and often high correlation among indices
suggests that inclusion within models should be care-
fully guided by the research question and ecology of
the system being studied �Riitters et al. 1995; Saab
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1999; Johnson et al. 2002a; Kie et al. 2002; Fernan-
dez et al. 2003�.

Scale is an often used, but poorly defined and un-
derstood term �Csillag et al. 2000�. Scaling principles
can be applied to a number of research constructs and,
therefore, need to be considered context specific.
When representing scalar processes, one could con-
sider the scale of the phenomenon or the scale of
measurement, statistical summary, and modelling
�Turner et al. 1989; Dugan et al. 2002�. Behavior, for
example, is a nonlinear phenomenon based scalar
process: animals choose different resources relative to
specific activities �Johnson et al. 2002b�. Our defini-
tion of used and available habitats encompassed a
wide range of selection behaviors that occurred over
numerous observation periods. Thus, our data did not
allow us to control for variation in behavioral or ob-
servational scales.

Our definition of resource availability was a func-
tion of the frequency of animal observation and likely
influenced model results. Caribou were relocated less
frequently and, therefore, had a larger area from
which to sample available vegetation. Congruent with
those measures, the model consisting of regional
vegetation covariates was the most parsimonious and
the best predictor of resource selection by monitored
caribou. Measured patterns in vegetation data also
were influenced by scales of observation and meth-
ods of analysis. The 3TLQV analyses were conducted
at a grain of 100 m and an extent that did not exceed
the distribution of each vegetation type across the 190
000-km2 study area. Furthermore, the GIS data rep-
resented one scale of patch that was a function of
spectral reflectance, sensor resolution, the supervised
classification protocol, and interpretation by opera-
tors.

Landscape ecology is evolving. A discipline once
largely focused on describing pattern now recognizes
the importance of relating pattern to process �Hobbs
1997�. Habitat ecologists can apply many of those
lessons to their area of study. Here, we related animal
movements recorded across a large ecologically
diverse area to vegetation occurring at two spatial
scales. Unlike other studies, scale was not a function
of the availability of individual patches, but instead
represented the aggregation and distribution of
patches across space. Where others have noted a dis-
crepancy between pattern and process, model fit for
the three focal species indicated that resource use was
correlated with vegetation patchiness �McIntyre and
Wiens 2000�.

Our approach is easily implemented and will pro-
vide added insight into the distribution of habitat re-
sources and the response of animals to resources
occurring at multiple spatial scales. Patch density as
an index of scale also offers distinct advantages to
conservation planning. Model results provide quanti-
tative evidence of the importance of responses at each
scale and coefficients from each scale are included in
single predictive resource selection models which can
be used to map and identify high-quality habitats
�Mladenoff et al. 1995; Carroll et al. 2001�. However,
more work is needed to develop unified theories and
methods for habitat ecology as well as a greater ap-
preciation for the confounding effects of variation in
scale as a true product of the process of interest and
an artifact of our observations �Levin 1992�. Although
we integrated the responses of animals at two scales
of resource availability, an understanding of finer and
larger scale factors, such as feeding site selection and
metapopulation dynamics, is necessary to place
results in the larger ecological and evolutionary con-
text. We acknowledge that complete integration of
animal-resource responses is untenable. Individual
studies within a discontinuous hierarchy still have a
role in understanding complex ecological phenomena.
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