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Abstract: Wildlife ecologists often use the Kaplan-Meier procedure or Cox proportional hazards model to estimate
survival rates, distributions, and magnitude of risk factors. The Andersen–Gill formulation (A–G) of the Cox pro-
portional hazards model has seen limited application to mark–resight data but has a number of advantages, includ-
ing the ability to accommodate left-censored data, time-varying covariates, multiple events, and discontinuous
intervals of risks. We introduce the A–G model including structure of data, interpretation of results, and assess-
ment of assumptions. We then apply the model to 22 years of radiotelemetry data for grizzly bears (Ursus arctos) of
the Greater Yellowstone Grizzly Bear Recovery Zone in Montana, Idaho, and Wyoming, USA. We used Akaike’s
Information Criterion (AICc) and multi-model inference to assess a number of potentially useful predictive mod-
els relative to explanatory covariates for demography, human disturbance, and habitat. Using the most parsimo-
nious models, we generated risk ratios, hypothetical survival curves, and a map of the spatial distribution of high-
risk areas across the recovery zone. Our results were in agreement with past studies of mortality factors for
Yellowstone grizzly bears. Holding other covariates constant, mortality was highest for bears that were subjected to
repeated management actions and inhabited areas with high road densities outside Yellowstone National Park.
Hazard models developed with covariates descriptive of foraging habitats were not the most parsimonious, but they
suggested that high-elevation areas offered lower risks of mortality when compared to agricultural areas. 
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Relocation data collected from free-ranging
animals can be used to estimate survival and
cause-specific mortality (White and Garrott
1990). A common application is the Kaplan-
Meier procedure (Kaplan and Meier 1958) mod-
ified by Pollock et al. (1989a) to estimate survival
distributions for radiomarked animals that enter
the study at different times. Researchers also have
applied the Cox proportional hazards model but
with the added flexibility of addressing continu-
ous covariates and multivariable relationships
(Riggs and Pollock 1991, Conroy et al. 1996). The
A–G formulation of the Cox proportional haz-
ards model is a more flexible approach to mod-
eling survival distributions (Andersen and Gill
1982). The Cox model is suitable only for right-
censored data, but the A–G formulation will
accommodate left- and right-censored observa-
tions, continuous and categorical covariates that
may vary during monitoring, and discontinuous
intervals of risk. Numerous examples of the A–G

model exist in the health sciences, but A–G has
been used infrequently in wildlife biology and
ecology (but see Boyce et al. 2001). 

Scientists have used radiotelemetry to monitor
grizzly bears in the Greater Yellowstone Grizzly
Bear Recovery Zone since the early 1970s. This
work addressed questions of population dynam-
ics and survival, but no previous research focused
on the spatial variation in risk factors across the
recovery zone (e.g., Knight and Eberhardt 1985,
Knight et al. 1988, Eberhardt et al. 1994, Eber-
hardt and Knight 1996). Pease and Mattson
(1999) modeled survival based on numerous
demographic and nonspatial habitat variables,
but they employed a complex project-specific
maximum likelihood procedure that may have
resulted in faulty statistical inference (Eberhardt
and Cherry 2000). In contrast to Pease and Matt-
son’s (1999) methods, the A–G model is easy to
interpret, available in many statistics packages,
and can accommodate spatial covariates that cor-
relate with grizzly bear behavior.

We illustrate use of A–G models with an appli-
cation to a subset of radiotelemetry data for griz-
zly bears of the Greater Yellowstone Grizzly Bear
Recovery Zone. We used AICc to assess a small
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number of ecologically plausible predictive mod-
els relative to explanatory covariates for demog-
raphy, human disturbance, and habitat (Burn-
ham and Anderson 1998). Because the A–G
model has been cited only rarely in the wildlife
literature, we provide a brief explanation of data
structure, interpretation of results, assessment of
assumptions, and compare our results to previous
survival anaylses of Yellowstone grizzly bears.
Also, we present a map of the hazard function
across the recovery zone highlighting areas of
potentially high-mortality “sink” areas for grizzly
bears (Knight et al. 1988). 

METHODS

Andersen–Gill Model
The A–G model, a derivation of the Cox pro-

portional hazards model as a counting process,
accommodates left- and right-censored data,
time-dependent covariates, measurements on
covariates over a large number of time intervals,
multiple events, and discontinuous intervals of
risk (Fleming and Harrington 1991, Therneau
and Grambsch 2000). For an accessible introduc-
tion to the Cox model see Klein and Moeschberg-
er (1997). Left-censored observations result from
subjects entering the study at different times.
When the fate of marked subjects is unknown,
right-censored data occur. If uncorrected, right-
and left-censored data bias survival estimates.
Time-dependent covariates accommodate effects
that may vary in magnitude with time. The ability
of the A–G model to accommodate multiple
events per individual is irrelevant to studies
assessing survival but has application to other
areas of wildlife research such as infection rate or
natality. Discontinuous intervals of risk are the
product of missed observations or measure-
ments; for example, disappearance, but eventual
relocation of a radiomarked animal would con-
stitute a discontinuity in the risk measurement.

Data for the A–G model are structured so that
each animal is treated as 1 to many observations
(rows in spreadsheet). The interval of risk for each
observation is defined by variables describing the
start and end times of successive relocations. An
event variable is coded as “1” for mortality or “0”
for right-censored intervals. Right-censored inter-
vals are not considered as incomplete data, but as
subjects whose event counts are still 0. Any num-
ber of continuous or categorical variables repre-
sents the behavior or condition of the animal
during the corresponding interval of risk. A stra-

tum variable, if included, represents group mem-
bership and allows the calculation of a unique
baseline hazard for each stratum. 

Statistical Assumptions
Several types of residuals are available to assess

model fit and identify poorly predicted subjects
and influential points. Deviance residuals are
analogous to the Pearson residual of generalized
linear models and, when plotted, reveal individ-
ual cases that fit the survival model poorly. A uni-
form distribution of residuals around 0 also sug-
gests good model fit to the sample data. Score
residuals can be derived from Schoenfeld residu-
als and used to assess each subject’s leverage on
parameter estimates (Therneau et al. 1990). 

As with the Cox model, the principal assump-
tion of the A–G approach is that the hazard or
risk ratio is proportional over time. The hazard
ratio represents the proportionate change in the
mortality rate due to a unit change in the respec-
tive covariate. Proportional hazards are main-
tained if the influence of some treatment or
other independent variable remains consistent
across the duration of the study (i.e., βj(t) = β for
all t). The assumption can be assessed using plots
of the logarithms of the estimated cumulative
hazard functions for different treatment groups
(Andersen 1982). Convergence of curves indi-
cates that the hazard function has a different
effect on each group across time. For variables
that are continuous or have many levels, a more
powerful technique is to plot the scaled Schoen-
feld residuals for each variable against time
(Grambsch and Therneau 1994). Following
inspection of residuals for a uniform distribution,
a line can be fit to the plot and tested for a nonze-
ro slope. A significant fit suggests rejection of the
proportional hazards assumption. 

STUDY AREA
Our study area was constrained to the nearly

24,000-km2 Greater Yellowstone Grizzly Bear
Recovery Zone that includes Yellowstone Nation-
al Park and extends across portions of southern
Montana, northern Wyoming, and eastern Idaho,
USA (U.S. Fish and Wildlife Service 1993). The
central portion of the recovery zone is rolling
plateau surrounded by mountainous terrain with
elevations ranging from 1,600 to 4,200 m. Lodge-
pole pine (Pinus contorta) is the dominant canopy
species across forested areas. Forest stands con-
sisting of Douglas-fir (Pseudotsuga menziesii),
Engelmann spruce (Picea engelmannii), subalpine
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fir (Abies lasiocarpa), or whitebark pine (Pinus
albicaulis) also occur but are less widespread.
Non-forest grass and shrublands occur below
2,125 m and often contain Idaho fescue (Festuca
idahoensis), big sagebrush (Artemisia tridentata), and
bluebunch wheatgrass (Agropyron spicatum; see
Blanchard and Knight [1991] for further descrip-
tion and references). Fire is a natural disturbance
agent of both grassland and forested ecosystems
with the largest contemporary event occurring in
1988 when approximately 5,600 km2 were burned.
The recovery area supports some of the highest
ungulate densities in North America (Mattson
1997). Elk (Cervus elahpus) and bison (Bison bison)
are the most widespread and abundant species
followed by smaller, more localized populations
of mule deer (Odocoileus hemionus), moose (Alces
alces), and bighorn sheep (Ovis canadensis).

Animal Capture and Monitoring
From 1975 to 1997, researchers captured 101

female and 123 male grizzly bears and fitted them
with VHF radiocollars. Some bears were caught
through research activities (research bears) while
other individuals were actively sought and
radiomarked following a bear–human interac-
tion (management bears). After radiomarking,
researchers relocated bears once every 7 to 14
days via fixed-wing aircraft. For survival analyses,
we excluded all observations associated with bear

capture, transport, and release as well as all loca-
tions recorded for den sites and dropped collars;
we included only “known” and “probable” mor-
talities (Craighead et al. 1988). We calculated
movement distances and speeds for successive
relocations in an effort to identify incorrectly
recorded data.

Spatial Descriptors of Survival
We developed Geographic Information System

(GIS) routines or used available spatial data to
identify environmental and human activity fea-
tures that may influence the survival of grizzly
bears across the recovery zone (Table 1). Many of
the spatial attributes were taken from the Yellow-
stone Cumulative Effects Model (CEM) spatial
database (Dixon 1997). We conducted GIS analy-
ses with Idrisi32 (Clark Labs 2002) and ArcView
(Environmental Systems Research Institute 2000).

Habitat Type.—We used digital maps of habitat
type from the Yellowstone CEM spatial database
(Dixon 1997). These maps were developed from
aerial photographs and detailed field investiga-
tions and were updated using satellite imagery
following the fires of 1988. We used pre- and post-
fire maps to assign habitat attributes to bear loca-
tions according to their date of location. Mattson
et al. (1999) redefined the many original habitat
types into 18 super classes. We used knowledge of
grizzly bear mortality factors to consolidate the

Table 1. Independent variables and categorical coding used to describe variation in survival of grizzly bears of the Greater Yel-
lowstone Grizzly Bear Recovery Zone in Idaho, Wyoming, and Montana, USA, 1975–1997.

Variable Description and categorical code  

Demography/season   
Age + Age2 Quadratic function for age of bear at time of location  
Sex Male (1) or female (0)  

Human disturbance   
(Distance to development) Quadratic function describing distance (m) of bear relocation to major development

+ (Distance to development)2 (e.g., town, park facility)  
No. of management actions Cumulative number of management actions experienced by a bear at time of

radiotelemetry location  
In park Bear location inside (1) or outside (0) Yellowstone National Park  
(Road density) + (Road density)2 Quadratic function describing density of high-use roads (1-km2 area)
Trail density Density of trails (1-km2 area)  

Habitat   
Agriculture Low-elevation agricultural lands  
High-elevation open habitats Rocky convex lithic ridges, talus and scree, and high-elevation forest openings
Low-elevation open and forested Low-elevation dry and mesic meadows, grasslands, forest openings, marshes, fens

habitats and stands of Douglas-fir, lodgepole pine, and spruce
Whitebark pine High-elevation sites dominated by whitebark pine
High-elevation fir/whitebark High-elevation sites dominated by subalpine fir with a component of whitebark pine
Mid-elevation fir/pine Mid-elevation stands of subalpine fir, lodgepole pine, and whitebark pine
Other All habitat classes found across the study area, but not coded with unique identifiers
In elk winter range Bear location inside (1) or outside (0) elk winter range  
In bison winter range Bear location inside (1) or outside (0) bison winter range  
In trout spawning Bear location inside (1) or outside (0) area associated with spawning trout  
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habitat classes identified by Mattson et al. (1999)
into 7 new classes (Table 1). We defined these 7
classes with the objective of investigating bear
mortality relative to variation in the elevation of
habitats, and thus distance from human contact,
and the availability of whitebark pine seeds,
which are associated with the movements and
behaviors of bears. We used deviation coding to
parameterize habitat type as a single categorical
variable. Deviation coding differs from indicator
coding in that the effect of each variable in the
set is contrasted against the overall effect of the
independent variable, not an arbitrary reference
class (Menard 1995). 

Ungulate Winter Range.—Maps of elk and bison
winter range were taken from the Yellowstone
CEM. Those spatial data did not quantify ungu-
late density or fine-scale distribution patterns but
represented the generalized spatial extent of elk
and bison populations during the winter over a
number of years (Dixon 1997). Bear locations
were coded as inside (1) or outside (0) each of
the winter ranges. 

Cutthroat Trout.—Spawning habitat for cut-
throat trout (Onchorhynchus clarki) is restricted to
tributaries of Yellowstone Lake. Past researchers
(e.g., Mattson and Reinhart 1995) identified and
investigated bear behavior in those areas and that
information was spatially collated within the sup-
plemental habitat data used for the Yellowstone
CEM (Dixon 1997). During the spawning season,
Mattson and Reinhart (1995) reported that bears
concentrated within 2,000 m of trout-bearing
streams. We buffered the inland shoreline of
spawning streams 2,000 m to represent the larger
zone of influence of trout on bear behavior. Bear
locations were coded as inside (1) or outside (0)
those buffered areas. We also included an inter-
action term representing the linear distance of
bears and bear mortalities from major human
developments located within the buffered trout
spawning areas.

Human Access.—We used a moving-window algo-
rithm to generate spatial surfaces of road and trail
density. The final maps represented the number
of pixels of linear features within 1-km2 portions
of the study area. The road and trail data were
taken from spatial coverages developed for the
Yellowstone CEM (Dixon 1997). Linear features
from that database were classified according to
amount and type of use. We generalized the clas-
sification system to a road layer of relatively high
use (>1 vehicle/day) and all trails used for non-
motorized activities. In the case of roads, separate

coverages were used to represent seasonal clo-
sures. Road and trail access and use changed over
the 22 years of bear monitoring, but we did not
have sufficient data to represent that variation. 

Major Human Developments.—Major human
developments were defined as any concentration
of human activity that included ≥30 facilities or
the capacity for ≥100 persons to overnight within
a 1-km radius of the source (Mattson et al. 1999).
Those locations were taken from the Yellowstone
CEM spatial database (Dixon 1997). We assessed
bear survival relative to the distance from the
nearest major human development.

Location within Yellowstone National Park.—We
assessed the location of each bear and mortality
record relative to the boundary of Yellowstone
National Park. A categorical variable was used to
code all bear locations or mortality sites that
occurred within (1) or outside (0) the boundary
of the park. 

Model Development and Assessment
We developed A–G models from 11 categorical

and 5 continuous behavioral and demographic
variables that we assumed explained variation in
survival among bears (Table 1). We structured
data so that each row represented 1 relocation
interval for an animal and columns described the
interval length in days, whether a mortality (i.e.,
event) occurred, and the demographic charac-
teristics and habitat and disturbance features of
the relocation interval. Mortality events occurred
at the end of each radiotelemetry interval, thus
we attributed each relocation interval with the
GIS or demographic values for that end location.
Covariates, particularly spatial covariates, likely
varied with bear movements and could in theory
be sampled at any point during the relocation
interval. We developed 2 additional datasets to
assess the sensitivity of the analyses to our sam-
pling protocol. We repeated our analyses for
covariate values queried from locations at the
beginning of the observation interval and for
locations selected randomly from a circular area
centered on the first location in the interval with
a radius equal to the distance between successive
locations. For the latter 2 datasets, we maintained
the end location as the most sensible query point
for intervals in which mortalities were recorded.
We truncated all intervals >30 days and consid-
ered those as discontinuous intervals of risk. We
used the exact partial likelihood method to parti-
tion deaths with tied mortality times between com-
peting risk pools (Therneau and Grambsch 2000). 
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The large number of independent variables
and the potential for thousands of explanatory
models required that we develop models based
on a priori knowledge of bear behavior and what
we assumed to be causative factors. We developed
subsets of models according to 3 explanatory
themes: grizzly bear demography, human activity,
and habitat. Sample size limitations prevented
evaluation of models with the full suite of vari-
ables. Thus, we made comparisons among the 3
explanatory themes, but we do not suggest that
we captured the full range of model possibilities.
Because we recorded few deaths, we calculated
the corrected AICc for small sample sizes (Ander-
son et al. 2000). We calculated Akaike weights (w)
and interpreted those values as the approximate
probability that each model is the best model of
the set of proposed models. Although we had
some prior knowledge to suspect a nonlinear
effect, we initially used AICc to assess hazard as a
quadratic function of distance to development
and road and trail density (Carroll et al. 2001,
Boyce and Waller 2003). Thus, our models
should be considered exploratory. We used toler-
ance scores to assess variables within each model
for excessive collinearity (<0.1; Menard 1995).
Collinear polynomial terms were transformed;
each case was represented by the difference from
the mean value for that variable for both the lin-
ear and squared term. 

We provide likelihood ratio χ2 statistics for
assessment of goodness-of-fit for the most highly
parameterized model for each explanatory theme.
We plotted deviance residuals versus time to
assess the fit of the sample data to the corre-
sponding model and to identify aberrant cases.
We statistically and graphically evaluated the pro-
portional hazards assumption for each variable
and aggregate model. We used the Receiver
Operating Characteristic (ROC) to assess the pre-
dictive capacity of the most parsimonious models
(Fielding and Bell 1997). We had insufficient
data to cross-validate the ROC analysis, and there-
fore the ROC score represents a liberal assess-
ment of classification accuracy. 

We graphically presented the A–G model as a
map of risk. We applied the β coefficients gener-
ated with the A–G models to a logistic equation
and then calculated the predicted relative proba-
bility of mortality at each 30 × 30-m cell of the
recovery zone. The probability of mortality varied
according to habitats and disturbance at each cell
and the strength and sign of the respective β
coefficient. Instead of using β coefficients from

the single most parsimonious model, we used
Akaike weights (w) to calculate aggregate coeffi-
cients for all covariates contained within models
with w > 0 (i.e., multi-model inference; Anderson
et al. 2000). We also adjusted standard errors for
variance due to uncertainty in model selection.
We truncated all continuous GIS data (e.g.,
roads, distance to developments) to values equal
to maximum observed bear behaviors (e.g., high-
est road density occupied by a bear) and thus pre-
vented extrapolation of model results beyond the
data used to estimate coefficients. All statistical
analyses were performed with Stata (Stata Corpo-
ration 2002) and S-Plus 2000 (Mathsoft 2001).

RESULTS

Model Fit
We recorded 63 grizzly bear mortalities and

9,485 monitoring intervals, and we used those
data to fit 13 A–G models (Table 2). Intervals had
a median duration of 6 days for right-censored
and 5 days for mortality observations. Of the
models relating grizzly bear survival to demo-
graphic factors, the model including a term for
sex and both linear and quadratic terms for age
had the lowest AICc score and was statistically sig-
nificant (χ2 = 15.55, df = 3, P = 0.001; Table 2).
The linear and quadratic terms for age were
highly correlated, and therefore we used a mean
age of 8 to transform that variable. The A–G mod-
els describing the effects of human developments
and disturbance on bear survival had small AICc
scores and therefore provided best inference of
the set of candidate models (Table 2). The most
highly parameterized model of that set was statis-
tically significant (χ2 = 125.60, df = 10, P < 0.001).
Corrected Akaike weights suggested model-selec-
tion uncertainty when choosing between the
model consisting of terms for road density, num-
ber of management actions, sex, and age (AICc w
= 0.558) and the larger model consisting of the
former covariates and location of bears relative to
Yellowstone National Park, major developments,
and trail density (AICc w = 0.442). We used the
mean distance of bear locations from major
developments (10,992 m) to reduce collinearity
between the linear and squared terms for the dis-
tance to major development variable. Both mod-
els had large areas under their ROC curves
(0.807, SE = 0.033; 0.858, SE = 0.026) suggesting
good predictive capacity for identifying high-risk
areas of the recovery zone. The best of the set of
habitat models controlled for differences in sex
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and age while quantifying variation in survival
associated with occupancy of patches of the 6
habitat types (ROC = 0.705, SE = 0.036) but had a
much larger AICc score (∆AICc = 83.45) than
models including covariates representative of
human presence. The most complex of the habi-
tat models was statistically significant (χ2 = 50.79,
df = 13, P < 0.001).

The exponentiated linear coefficients from an
A–G model are interpreted as risk ratios relating
the magnitude of a covariate to grizzly bear sur-
vival. Using multi-model inference, the weighted
aggregate coefficients from the set of disturbance
models suggested that the risk of dying was 3.4
(exp[4 × 0.302]) times greater for bears with 4
management actions when compared to bears
with no recorded human interaction (Table 3).
Similarly, when statistically controlling for other
variables in the model, bears were 1.5 times more
likely to die when ranging outside the park, and
male bears experienced a risk of death 1.8 times
greater than that for females. Quadratic terms
revealed that bears experienced greater risks of
mortality as road density increased, but mortality
decreased at very high densities (>11.7 km/km2).
A convex response curve illustrated that mortality
was greatest near and far from major human devel-
opments. Likewise, the quadratic relationship with
age was J-shaped indicating that younger and
older bears experienced higher rates of mortality. 

Although not the most parsimonious of the
complete set of models, we generated Akaike
weights for the habitat models (Table 2) and cal-
culated aggregate coefficients adjusted for model
selection uncertainty. When controlling for sex
and age, bears experienced the greatest risk of
mortality when occupying agricultural lands and
the lowest risk when inhabiting patches of high
elevation whitebark pine (Table 4). Confidence
interval coverage for the other habitat covariates

Table 2. Candidate Andersen–Gill models, number of parameters (K), log-likelihood, Akaike’s Information Criterion (AICc) scores,
differences among AICc scores (∆), and AICc weights (w) for subsets of demographic, human disturbance, and habitat variables
for grizzly bears of the Greater Yellowstone Grizzly Bear Recovery Zone in Idaho, Wyoming, and Montana, USA, 1975–1997.

Model K        Log-likelihood AICc ∆AICc w

Demography       
Age2a + Sex 3 –165.18 336.77 92.70 <0.001  
Sex 1 –169.37 340.81 96.74 <0.001  
Age2 2 –168.47 341.14 97.07 <0.001  

Human disturbance       
(Road density)2 + (No. of management actions) + Sex + Age2 6 –115.29 244.07 0 0.558  
(Road density)2 + (No. of management actions) + (Outside park) 10 –110.15 244.54 0.47 0.442
+ (Distance to development)2 + (Trail density) + Sex + Age2

(Distance to development)2 + (No. of management actions) 6 –129.95 273.40 29.33 <0.001
+ Sex  + Age2

(Outside park) + (No. of management actions) + Sex + Age2 5 –138.17 287.40 43.33 <0.001  
(Trail density) + (No. of management actions) + Sex + Age2 5 –144.55 300.16 56.09 <0.001  
(No. of management actions) + Sex + Age2 4 –146.09 300.87 56.80 <0.001  

Habitat       
Vegetation + Sex + Age2 10 –153.06 327.52 83.45 <0.001  
Vegetation + (Winter range) + (Trout spawning) + (Distance to 13 –147.56 328.55 84.48 <0.001

development × Trout spawning) + Sex + Age2

(Trout spawning) + (Distance to development × Trout spawning) 11 –161.19 333.43 89.36 <0.001
+ Sex + Age2

(Winter range) + Sex + Age2 4 –162.44 335.93 91.86 <0.001  

a Squared term represents full quadratic function inclusive of a linear term.

Table 3. Coefficients, standard errors, and 95% confidence
intervals of Andersen–Gill models representing the effects of
demography and human disturbance on survival of grizzly
bears radiomarked in the Greater Yellowstone Grizzly Bear
Recovery Zone in Idaho, Wyoming, and Montana, USA,
1975–1997. Akaike weights were used to adjust coefficients
and variance for model selection uncertainty.

Variable              Coefficienta SE 95% CI

No. of management 0.302 0.107 0.092 to 0.512
actions 

In park –0.410 0.507 –1.404 to 0.584  
Distance to development –0.020 0.030 –0.078 to 0.038  
(Distance to development)2 0.001 0.002 –0.002 to 0.005  
Road density 1.440 0.307 0.839 to 2.041  
(Road density)2 –0.124 0.033 –0.188 to –0.059  
Trail density 0.159 0.236 –0.305 to 0.622  
Age –0.026 0.035 –0.094 to 0.043  
Age2 0.009 0.004 0.002 to 0.017  
Sex 0.606 0.334 –0.049 to 1.260  

a Positive coefficient indicates increased hazard for categor-
ical variables coded as 1 vs. 0.
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included risk ratios of 1 suggesting imprecise esti-
mates and weak inference. 

Survival curves illustrate variation in risk as a
function of model covariates (Therneau and
Grambsch 2000). As an example, a 3-year-old

male grizzly bear with 3 management actions
inhabiting habitats with road densities of 1.25
km/km2 experiences much higher risks of mor-
tality than a 10-year-old female bear with 1 man-
agement action occupying areas of the recovery
zone with no roads (Fig. 1). The A–G model pre-
dicts a mean survival time of 13.6 years (SE = 3.89)
for the female bear experiencing good conditions
for survival and 2.6 years (SE = 0.09) for the male
bear subjected to less favorable conditions. 

Figure 2 illustrates spatial variation in survival
across the recovery zone according to the covari-
ates and corresponding aggregate coefficients fit-
ted to the most parsimonious model for human
disturbance while controlling for demography
(Table 3). Consistent with interpretation of coef-
ficients from those models, the highest probabil-
ity of mortality is predicted to occur in areas with
many roads outside Yellowstone Park (Fig. 2).
However, based on our knowledge of grizzly bear
survival, the quadratic term for distance to major
development appeared to overpredict the risk of
mortality in the Absaroka Wilderness found in
the southeastern corner of the recovery zone. 

Testing Model Assumptions
Global tests of nonzero slopes in Schoenfeld

residuals were nonsignificant for each model sug-
gesting that our data did not violate the propor-
tional hazards assumption (maximum χ2 = 8.87,

df = 9, P = 0.45). In
accordance with those
results, plots of scaled
Schoenfeld residuals ver-
sus time for each inde-
pendent variable illus-
trated little variation in
predicted β values dur-
ing the study. Plots of
deviance residuals were
symmetrical about zero
and revealed no poorly
predicted bear locations
or mortalities. We ob-
served small differences
in aggregate coefficients
(i.e., multi-model infer-
ence) and corrected
95% confidence inter-
vals among the 3 data-
sets generated from the
end location, start loca-
tion, and a random loca-
tion of each nonmortali-

Table 4. Coefficients, standard errors, and 95% confidence
intervals of Andersen–Gill models representing the effects of
habitat occupancy on survival of grizzly bears radiomarked in
the Greater Yellowstone Grizzly Bear Recovery Zone in Idaho,
Wyoming, and Montana, USA, 1975–1997. Akaike weights
were used to adjust coefficients and variance for model selec-
tion uncertainty.

Variable            Coefficienta SE 95% CI

Agriculture 2.334 0.815 0.738 to 3.931  
High-elevation open –1.405 0.762 –2.899 to 0.089

habitats   
Low-elevation open –0.514 0.293 –1.088 to 0.060

and forested habitats   
Whitebark pine –1.202 0.485 –2.154 to –0.251  
High-elevation 0.587 0.639 –0.667to 1.840 
fir/whitebark 

Mid-elevation fir/pine –0.421 0.311 –1.031 to 0.189  
Trout spawning 0.833 1.088 –1.300 to 2.967  
Trout spawning × 

Distance to develop –0.094 0.135 –0.358 to 0.170  
Bison winter range 0.222 0.357 –0.477 to 0.921  
Elk winter range 0.124 0.246 –0.358 to 0.607  
Sex 0.568 0.294 –0.008 to 1.145  
Age –0.043 0.032 –0.105 to 0.020  
Age2 0.010 0.003 0.003 to 0.016  

a Positive coefficient indicates increased hazard for categor-
ical variables coded as 1 vs. 0.

Fig. 1. Expected survival and 95% confidence intervals for 2 hypothetical grizzly bears with dif-
ferent levels of risk: a 10-year-old female bear residing inside Yellowstone National Park, Idaho,
Wyoming, and Montana, USA, across habitats with no roads or trails (good conditions) and a 3-
year-old male bear found outside the park in areas with road and trail densities of 1.25 km/km2.
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ty interval (Figs. 3, 4). Differences in coefficients
were inconsistent in direction for both the
human disturbance and habitat models. As
expected, spatial covariates demonstrated a
greater range of variability than aspatial covari-
ates such as age. 

DISCUSSION

Model Inference
Past efforts at understanding the mortality pat-

terns of Yellowstone grizzly bears largely agree
with our findings, but these studies were encum-

Fig. 2. Spatial variation in the predicted relative risk of mortality for an 8-year-old female grizzly bear according to location across
the Greater Yellowstone Grizzly Bear Recovery Zone in Idaho, Wyoming, and Montana, USA. Weighted coefficients were gen-
erated using Andersen–Gill models representing human disturbance covariates.
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bered by multiple uni-
variate methods, are dif-
ficult to reproduce, or
failed to represent spa-
tial variation in risk fac-
tors. For example, Pease
and Mattson (1999) used
a study-specific maximum
likelihood procedure to
identify a relationship
between rates of bear
mortality and, in order
of importance, sex, man-
agement-trapping status,
and age (but see Eber-
hardt and Cherry 2000).
Mattson et al. (1992)
adopted a univariate sta-
tistical approach and con-
cluded that mortality was
related to sex, manage-
ment trappings, and
proximity of bears to
roads and human devel-
opments. Applying the
A–G model to a similar
dataset, Boyce et al.
(2001) reported that
demographic factors,
number of management
actions, occupancy of Yel-
lowstone National Park,
and bear density were
related to mortality. Using
program MARK, Harold-
son et al. (unpublished
report) found lower sur-
vival during years of
poor whitebark pine
cone production and for
management trapped
bears, male bears, and
bears with a higher pro-
portion of annual loca-
tions outside Yellowstone
National Park. 

Our results also sup-
port the widely held
assertion that grizzly bear
mortality and persis-
tence is directly related to
human presence (Matt-
son and Merrill 2002).
Areas of high road densi-

Fig. 4. Influence of sampling protocol on strength of weighted β coefficients representing habi-
tat and demography covariates for grizzly bears of the Greater Yellowstone Grizzly Bear
Recovery Zone in Idaho, Wyoming, and Montana, USA. For non-death records, covariate val-
ues were queried from locations at the end of the observation interval, the beginning of the
interval, and for locations selected randomly within the interval.

Fig. 3. Influence of sampling protocol on strength of weighted β coefficients representing
human disturbance and demography covariates for grizzly bears of the Greater Yellowstone
Grizzly Bear Recovery Zone in Idaho, Wyoming, and Montana, USA. For non-death intervals,
covariate values were queried from locations at the end of the observation interval, the begin-
ning of the interval, and for locations selected randomly within the interval.
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ty were correlated with recorded grizzly bear mor-
talities or management removals from the recov-
ery zone. In general, road density is positively
related to human access and facilities increased
bear–human interactions (Mace et al. 1996).
Human activities associated with facilities, roads,
and trails had a negative affect on bear survival
across the recovery zone, but the type of human–
bear interaction or the resulting response favored
bears that resided inside Yellowstone National
Park. Those bears had less exposure to livestock,
other human attractants, and illegal hunting (see
Knight et al. 1988). 

Our models of bear mortality and habitat use
were not the most parsimonious of the total set,
but they had good predictive power and provided
insight into spatial variation in grizzly bear sur-
vival. In agreement with our understanding of
cause-specific mortality, bears that occupied agri-
cultural areas experienced greatly increased like-
lihood of human encounter and overall risk
(Knight et al. 1988). Alternatively, bears at high
elevations foraging on foods such as army cut-
worm moths (Euxoa auxiliaris) or whitebark pine
seeds had fewer opportunities to interact with
humans and lower mortality relative to occupan-
cy of other habitat types (Mattson et al. 1991,
1992; Table 4). Inference and prediction gener-
ated from the majority of habitat coefficients is
limited, however, by considerable sampling vari-
ance and model-selection uncertainty. 

Maps representing risk of mortality can be used
to plan or prioritize remediation or other man-
agement activities designed to enhance survival, a
major limiting factor for grizzly bear populations
(McLellan et al. 1999). Maps of risk also can be
compared with maps of selection to identify habi-
tats or features of the landscape that are attrac-
tant sinks for bears (Mace and Waller 1998, Matt-
son and Merrill 2002). In addition, review of risk
maps may illuminate the predictive limitations of
models. For example, we believe that the distur-
bance model overpredicted the risk of mortality
to bears occupying the Absaroka Wilderness in the
southeastern portion of the recovery zone (Fig.
2). Although the predictions are consistent with
the convex function suggesting that mortality was
greatest near point sources of human contact
and less developed portions of the recovery zone
where hunting occurs, little mortality has been
recorded for either radiomarked or unmarked
bears in the Absaroka Wilderness (Knight et al.
1988, Schwartz et al. 2002). We suspect that an
interaction term of distance to human develop-

ments and elk hunting areas would better repre-
sent the nonlinear relationship. 

One limitation of the A–G model is that it does
not accommodate covariates that are invariant
across mortality intervals. When a subject is mon-
itored frequently, we expect short time intervals
and little variation in covariates that change only
over larger periods. Andersen–Gill models statis-
tically control for inter-pool variation but do not
allow estimation of a corresponding coefficient.
As examples, we attempted to fit variables that
assessed the effects of season and size of whitebark
pine seed crop on survival, but those data were
invariant across the 63 risk pools (i.e., recorded
bear deaths). Researchers have reported decreased
survival during periods when bears are most active
and when bears are attracted to low-elevation habi-
tats; typically, those behaviors occur during late
summer and autumn and during years of small
seed crops (Mattson et al. 1992; Pease and Matt-
son 1999; Haroldson et al., unpublished report). 

Management policies and ecological conditions
across the park and the wider recovery zone
changed considerably over the 22 years of data
collection (Gunther 1994, Murphy and Kaeding
1998). We treated many of our spatial covariates
(e.g., roads, trails) as constant, but their influ-
ence likely varied in location and effect across the
duration of the study. Our review of the propor-
tional hazards assumption suggested that our
models were robust to temporal variation in the
factors that we assumed influenced bear survival.
We suggest caution, however, when our models are
used to predict bear survival into the future. On-
going recovery efforts and anticipated ecosystem
change may influence grizzly bear survival in ways
that are not comparable to the historical condi-
tions and management regimes reflected by the
coefficients in our models (Reinhart et al. 2001). 

Model Strengths, Application, and
Assumptions

For many short-duration studies (e.g., 2 yr),
complexity of hypothesized models and power of
statistical tests will be limited by sample size (Con-
roy et al. 1996). Our dataset included an unusu-
ally large number of radiomarked animals (226)
over a long period (22 yr), yet we recorded only
75 mortalities while animals were being moni-
tored, 63 of which occurred in the recovery zone.
In the context of the A–G model, the number of
events—mortalities in our case—determines sam-
ple size. For studies of long-lived species, ade-
quate sample sizes may be a problem. An approx-
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imate indicator of poor power is large risk ratios
(>2 or <0.5) coinciding with confidence interval
coverage that bounds 1 (Riggs and Pollock 1991).
Schoenfeld (1983) provides a formula to calcu-
late the number of subjects necessary to identify
statistically significant differences in treatment
effects (i.e., power analysis). Application, howev-
er, is limited to trials where subjects can be ran-
domized to different treatment groups.

Where large effect sizes or liberal α indicate suf-
ficient power, parameter estimates may be com-
promised by too many covariates for the available
sample. We are unaware of any literature directly
discussing the implications of too few data for
Cox or A–G models, but some guidelines exist for
conventional logistic regression. In general, little
is known about the small-sample behavior of max-
imum likelihood estimators, but a rule of thumb
is that true estimates of standard errors require
10 events per model parameter (Peduzzi et al.
1996, Hosmer and Lemeshow 2001). Because spa-
tial databases offer researchers a large number of
potential variables and sample sizes may be low
for survival models, we encourage practitioners
to carefully consider the number of covariates
included in their models. We violated that rule in
an effort to more fully describe grizzly bear sur-
vival and control for confounding factors, but we
avoided fitting hypothetical models with the
potential for 22 covariates. Deviance residuals and
consistency of coefficients from the 3 datasets sug-
gested that our set of models was stable. 

The A–G approach offers a great deal of flexi-
bility, but a number of data-related issues should
be considered during study design, data prepara-
tion, model development, and interpretation. Of
primary concern is the identification of a moni-
toring interval that is sensitive to the behavior of
interest. Some covariates such as age or sex will
change infrequently or not at all during a sam-
pling interval or the course of a study. Other
covariates such as occupancy of a habitat patch or
distance from an object, such as roads, may
change frequently or continuously within a sam-
pling interval. For each interval of risk, we chose
the radiotelemetry location marking the end of
the interval as representative of behavior across
the entire interval. Sensitivity analyses consisting
of alternative sampling protocols did not reveal
systematic bias or dramatic variation in coeffi-
cients (Figs. 3, 4). However, we recognize that fre-
quent animal locations generated with Global
Positioning System collars would provide a more
precise assessment of mortality factors.

Animal monitoring need not be at regular
intervals, but infrequent relocations may lead to
an inaccurate time of death or censoring. Consis-
tent overestimation of time to death or censoring
will bias survival curves and falsely inflate mean
survival times. Survival data also should be evalu-
ated to ensure censoring mechanisms are ran-
dom and are correctly identified (Pollock et al.
1989b). Biased coefficients may arise if specific
age or sex classes are more likely to drop radio-
collars or certain mortality causes, such as illegal
hunting, correspond with perceived radiotrans-
mitter failure. Other more general sampling con-
siderations are discussed by Pollock et al. (1989a)
and include random sampling of individuals
within each demographic class and ensuring that
capture and monitoring efforts do not influence
future survival.

MANAGEMENT IMPLICATIONS
Although our primary objective was illustration

of the A–G method, our results provide some
guidance for managers implementing recovery
plans for the Yellowstone grizzly bear population.
With the exception of high-elevation and agricul-
tural areas, differential use of vegetative habitat
and bison and elk winter ranges was not strongly
related to bear survival. In agreement with previ-
ous research for the Yellowstone and other popu-
lations of bears, mortality was most strongly asso-
ciated with places where bears and humans
interacted. Considering only the suite of vari-
ables we modeled and the limitations of the data,
our results suggest that bear survival would be
enhanced if management practices reduced
bear–human interactions in areas of concentrat-
ed human use. 

The flexibility of the A–G model provides
opportunities to link habitat use with survival.
With few exceptions (e.g., Hines 1987, Klinger et
al. 1989, Loegering and Fraser 1995), researchers
have failed to relate animal distribution to limit-
ing factors more directly associated with birth and
death processes. The A–G model can be used to
understand and predict survival and, when com-
bined with models of resource selection (Manly et
al. 2002), identify locations on landscapes with
both a high likelihood of animal occurrence and
mortality. Grizzly bears in Yellowstone National
Park demonstrated such risk-prone behaviors in
favor of accessing good foraging habitats (Knight
et al. 1988, Mattson et al. 1992). Conservation
efforts would be best focused at identifying and
mitigating risks at those locations. 
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