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SUMMARY

The widespread use of spatial planning tools in con-
junction with increases in the availability of geo-
graphic information systems and associated data has
led to the rapid growth in the exploration and applica-
tion of species distribution models. Conservation
professionals can choose from a considerable number
of modelling techniques, but there has been relatively
little evaluation of predictive performance, data
requirements, or type of inference of these models.
Empirical data for woodland caribou Rangifer tarandus
caribou was used to examine four species distribution
models, namely a qualitative habitat suitability
index and quantitative resource selection function,
Mahalanobis distance and ecological niche models.
Models for three sets of independent variables were
developed and then a temporally independent set of
caribou locations evaluated predictive performance.
The similarity of species distribution maps among
the four modelling approaches was also quantified.
All of the quantitative species distribution models
were good predictors of the validation data set,
but the spatial distribution of mapped habitats
differed considerably among models. These results
suggest that choice of model and variable set could
influence the identification of areas for conservation
emphasis. Model choice may be limited by the type
of species locations or desired inference. Conservation
professionals should choose a model and variable set
based on the question, the ecology of the species and
the availability of requisite data.
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INTRODUCTION

Species distribution models are a powerful tool for achieving
conservation objectives (Carroll et al. 2001; Raxworthy
et al. 2003; Johnson et al. 2004c). When linked to geographic
information systems (GIS), predictive models illustrate
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the distribution and infer the suitability and capability of
habitats (Rivieccio et al. 2003; Gibson et al. 2004). Maps
of habitats are an effective communication medium and
serve to highlight areas where conservation professionals
might focus efforts to mitigate human development and
disturbance, or guide reserve placement, habitat remediation
and species reintroduction (Abbitt et al. 2000; Treves et al.
2004). Some models can also serve as devices to explore
ecological relationships. Although it is impossible to infer
causation from correlation, strength of prediction, magnitude
and sign of coefficients, and model selection uncertainty can
reveal functional responses to components of the environment
(Austin 2002). Examples of such relationships include
selection of vegetation types, avoidance of habitats disturbed
by humans, or responses to other risk factors such as predation
(Compton et al. 2002; Johnson et al. 2002; Zabel et al. 2003).

The propagation of broad-scale spatial data in conjunction
with the increased availability of GIS, statistical software
and computing power have improved the ability and choices
available, to model and map complex species-environment
relationships (Rushton et al. 2004). Although increased choice
enables us to tailor a model to a particular species or
research question, selection of the most appropriate modelling
technique can be daunting (Austin 2002). Following the
selection of a technique, there are still numerous decisions
about data sampling, model formulation, scales of analysis and
validation. Review articles and texts (for example Buckland &
Elston 1993; Guisan & Zimmermann 2000; Manly et al. 2002)
provide some guidance as to the scope, strength and limitations
of individual modelling approaches, but often differences can
be subtle and relative performance is rarely compared (but see
Loiselle et al. 2003; Brotons et al. 2004). Furthermore, even
given advances in quantitative techniques, there is still a role
for expert-based models for circumstances in which empirical
data is absent or difficult to collect (Clevenger et al. 2002;
Johnson & Gillingham 2004).

Recognizing the dearth of studies critically evaluating
model performance, we performed a relative comparison
of four species distribution models that can be applied in
a GIS to rank and map habitats. We chose contemporary
models commonly cited in the conservation and ecology
literature that represent the range of data requirements. We
acknowledge that conservation professionals may choose from
a larger number of species distribution models (Guisan &
Zimmermann 2000). When considering the range of options
inherent to each modelling technique that choice set expands
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considerably (see Loiselle et al. 2003). We leave the questions
specific to uncertainty and sensitivity of each technique to
other researchers (for example Pearce & Ferrier 2001; Parra
et al. 2004; Johnson & Gillingham 2004).

We compared the predictions generated from four species
distribution models commonly reported in the conservation
literature: a habitat suitability index, logistic regression-based
resource selection function, Mahalanobis distance and an
ecological niche model. As a brief review of those approaches,
habitat suitability indices (HSI) formalize the application
of expert knowledge and meta-analyses to the identification
and ranking of wildlife-habitat relationships (United States
Fish and Wildlife Service 1981). Typically, a HSI is an
equation of an additive, multiplicative or logical form, with
coefficients ranging from 0 to 1 representing the relative value
of environmental features (such as forest type, shrub cover,
availability of water). In conjunction with a GIS, a HSI can
generate maps of ranked habitat units (Li et al. 2002; Larson
et al. 2003; Store & Jokimaki 2003). Researchers have
developed hundreds of indices, typically for situations where
quantitative data documenting the distribution of a species
do not exist or are difficult to collect (for example Schroeder
& Vangilder 1997; Oldham et al. 2000; Storch 2002; Larson
et al. 2003).

A resource selection function (RSF) is any mathematical
function that provides predictions of resource or habitat use
that are proportional to the true probability of use (Manly
et al. 2002). The model is premised on the theory of habitat
selection; where use of a habitat exceeds availability, selection
is inferred and where use is less than availability, we conclude
that habitats are avoided. Resource selection functions can
take many mathematical forms (Manly et al. 2002).

Mahalanobis distance is a multivariate dissimilarity
statistic. When applied as a species distribution model, the
mean conditions of a set of habitat variables are typically
contrasted, as described by a number of plant or animal
locations, with locations found across the broader landscape
(Clark et al. 1993; Knick & Dyer 1997). Larger values of the
statistic indicate a relatively greater distance from the mean
habitat conditions described by the reference locations.

Ecological niche models are conceptually similar to the
other approaches presented here, but niche models are
explicitly linked to niche theory and typically address distri-
bution across broad regional scales (Anderson et al. 2002).
The set of environmental factors that dictate where a
species can and cannot maintain a population are based on
evolutionary constructs and, depending on that set, reveal
the fundamental or realized niche (Peterson & Vieglais 2001).
Niche theory has a long history in ecology and has spurred the
development of numerous approaches to quantify and map
species’ niche dimensions (for example Austin et al. 1990;
Rutherford et al. 1995, Hirzel et al. 2002).

We used three sets of vegetation variables and a HSI, a
RSF, Mahalanobis distance and an ecological niche model
to predict the distribution of habitats for a population
of woodland caribou Rangifer tarandus caribou. Woodland

caribou are sensitive to habitat alteration and loss and are
listed as a threatened species across much of Canada (Johnson
et al. 2004b). Thus, this species is a good candidate for
distribution models that can help direct conservation efforts.
Across models, we measured differences in the distribution
of ranked habitats, as well as the ability of each model to
predict the occurrence of habitats that correlated with a set
of independent caribou locations. We discuss the type and
strength of inference inherent to each model and provide
general recommendations for selection of the most appropriate
model.

METHODS

Study animals

We developed species distribution models for a population of
woodland caribou known as the Wolverine Herd (Heard &
Vagt 1998). As part of another study, 16 individual female
caribou were collared and monitored between March 1996 and
March 1999 (Johnson et al. 2002). Caribou were located with
differentially correctable global positioning system (GPS)
collars (GPS 1000, Lotek Engineering, Newmarket, Ontario,
Canada) scheduled to record one location every third or fourth
hour.

We assessed model predictions with a temporally
independent validation set of caribou locations. Between
February 1991 and March 1996, 33 caribou from the Herd
were captured and fitted with VHF radio-collars (Model
LMRT-4, Lotek Engineering, Newmarket, Ontario, Canada).
From April 1991 to March 1997, biologists used a Cessna 182
fixed-wing aircraft to locate collared caribou (Terry & Wood
1999; Wood & Terry 1999).

Study area

The Wolverine Herd is found approximately 250 km north-
west of Prince George (British Columbia, Canada). The cari-
bou’s altitudinal range varies from valley bottoms at c. 900 m
to alpine summits at c. 2050 m and is characterized by
numerous vegetation associations. Forest types below 1100 m
altitude are dominated by lodgepole pine (Pinus contorta),
white spruce (Picea glauca), hybrid white spruce (P. glauca ×
P. engelmannii) and subalpine fir (Abies lasiocarpa). Between
1100 and 1600 m altitude, a moist cold climate prevails
with forest types consisting primarily of Engelmann spruce
(P. engelmannii) and subalpine fir. Areas at altitudes > 1600 m
are alpine tundra, distinguished by gentle to steep windswept
slopes vegetated by shrubs, herbs, bryophytes and lichens,
with occasional trees in krummholz form (Meidinger & Pojar
1991).

Modelling approaches

We selected species distribution models for comparison
according to three criteria, namely contemporary and broad
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prevalence in the literature, potential for application within a
GIS to generate species distribution maps, and representation
of the data types necessary to parameterize models. Models
chosen for the comparison were dependent on both qualitative
and quantitative data. We evaluated a HSI constructed
from expert opinion, a logistic regression-based resource-
selection function dependent on use and availability data,
and Mahalanobis distance and ecological niche models that
required presence-only data.

Habitat suitability index
A HSI was developed to rank and map seasonal woodland
caribou habitats across the study area (Madrone Consultants
1999a). Information sources of caribou-habitat relationships
included published literature, agency reports and expert
opinion. Rankings were developed for mapped polygons
that represented unique ecological associations (Resources
Inventory Committee 1998a; Madrone Consultants 1999b).
Some of the constituent attributes of those ecological
associations served as variables in the HSI. Biologists ranked
the suitability of polygons as foraging habitat according to
slope, aspect, elevation, stand age, site disturbance history,
soil, terrain type, vegetation composition of the understorey
and the biomass of terrestrial lichen. Rankings conformed
to a six-class scale (high, moderately high, moderate, low,
very low, nil) that was bench-marked with the best woodland
caribou habitat in British Columbia (Resources Inventory
Committee 1998b).

Resource selection function
We used conditional fixed-effects logistic regression to
estimate coefficients for the RSF model:

w(x) = exp(β1x1 + β2x2 + · · · + βn xn )

where β1 . . . βn are coefficients generated from a logistic
regression model and w(x) represents the relative probability
of species occurrence. Compared to conventional logistic
regression, the fixed-effects approach performs a paired
analysis. Thus, model coefficients were generated with
matched use and available points allowing the technique
to statistically control for temporal and spatial variation
in resource availability (Pendergast et al. 1996; Hosmer &
Lemeshow 2000). We paired each caribou location with five
randomly selected sites that represented the availability of
resource variables. We sampled these comparison sites from
within a circle that was centred on the animal’s preceding
location, and had a radius equal to the 95th percentile
movement distance for that particular relocation interval
(Arthur et al. 1996).

Mahalanobis distance
We calculated the Mahalanobis distance at each cell in our
GIS using the formula:

D2 = (x − m )TC−1(x − m )

where D2 is the Mahalanobis distance, x is a vector of habitat
characteristics (i.e. variables) associated with each cell, m is
a mean vector of habitat characteristics recorded at cells of
known animal or plant locations (T indicates that the vector
should be transposed), and C−1 is the covariance matrix for the
same vector of habitat characteristics. The distance statistic is
simply the difference between mean habitat characteristics at
cells where animals or plants were observed and not observed
scaled by the variance and covariance of the descriptive
variables.

When habitat variables are normally distributed, the
Mahalanobis distance statistic follows a χ 2 distribution and
can be converted to probability values. In most cases,
however, the assumption of normality is difficult to satisfy
and the distance values are considered dimensionless (Knick
& Rotenberry 1998). We assumed that monitored caribou
selected the highest quality habitats. Therefore, increases
in the distance statistic were interpreted as habitats of a
progressively lower quality.

We used the ArcView (ESRI [Environmental Systems
Research Institute] 2000) extension Mahalanobis Distances
(http://www.jennessent.com/arcview/mahalanobis.htm) to
calculate the mean vector and covariance matrix for habitat
features recorded at caribou locations. Then, we used the
raster GIS IDRISI (Clark Labs 2002) to perform the necessary
matrix algebra and calculate the Mahalanobis distance surface
of habitat quality for caribou.

Ecological niche
We adopted the Genetic Algorithm for Rule-Set Prediction
(GARP) computational approach for modelling the funda-
mental niche of woodland caribou (for example Raxworthy
et al. 2003; http://www.lifemapper.org/desktopgarp/). For
our vegetation and caribou location data we allowed GARP to
employ an iterative machine-learning process to develop rule
sets that best identified the distribution of monitored caribou.
We adopted the protocol of Anderson et al. (2003) when fitting
unique GARP models to the caribou location data.

Model variables

Analysis of the HSI was retrospective; therefore, this defined
model definition, area and time of year for the three
quantitative approaches. For consistency, we adopted the
ecosystem maps used for the HSI. Maps portrayed large-
scale (1:20 000–1:50 000) ecological units developed within
a hierarchical framework of climate, topography, vegetation
and soil attributes (Resources Inventory Committee 1998a).
Using past caribou research, the large number of ecological
associations were combined into 11 land-cover types
(Madrone Consultants 1999b; Johnson et al. 2003; Table 1).
To provide variables in a metric suitable for calculation of the
Mahalanobis distance, we quantified land-cover occurrence as
the density of each type and the distance of each cell across
the study area from each type. Patch density represented the
variation in the availability of each land-cover type across the
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Table 1 Description and area of
land-cover types found across the
study area in north-central British
Columbia, Canada, used to assess
four species distribution models.

Land-cover type Area (ha) Description
Aspen/Cottonwood 384 Primarily stands of Populus tremuloides (97%), but also

Populus balsamifera across flood plains
Mixed coniferous 48894 Mid-altitude stands composed of A. lasiocarpa, P. engelmannii,

and P. contorta on moderate to steep slopes
Subalpine Fir 6532 Mid-altitude stands on moderate to steep slopes composed

primarily of A. lasiocarpa
Krummholz 768 Stunted tree cover of A. lasiocarpa on gentle to moderate slopes

at 1300–1600 m altitude
Pine 3752 Stands dominated by P. contorta with secondary components of

P. mariana or P. engelmannii × P. glauca in older stands
Pine lichen 21043 Low-altitude sites dominated by P. contorta with abundant

terrestrial lichen
Pine/Fir 1974 Mixed stands of P. contorta and A. lasiocarpa found on

moderate slopes
Pine/Spruce 1996 Mixed low-altitude stands of P. contorta and P. engelmannii ×

P. glauca
Spruce 198 Low-altitude sites dominated by P. engelmannii × P. glauca
Water 823 Permanent and ephemeral rivers and lakes
Wetlands 8750 Shrub/sedge- and forb-dominated wetlands
Other 375 Miscellaneous land-cover types of a small area

study area at spatial scales larger than the patch. We used a
moving window algorithm in the GIS to sum and calculate
the density of pixels of each land-cover type. The size of the
moving window was scale-dependent and varied according to
the distribution and clumping of the patches (i.e. GIS pixels)
of the land-cover type. We used the pattern analysis technique
nine-term local quadrat variance to identify the scale of
distribution of each land-cover type and correspondingly the
size of the moving window (Johnson et al. 2004a). Distance
from patches was a simple measure of adjacency that also
captured occupancy of patch types (i.e. distance of 0 m). RSFs
accommodate polynomial and interaction terms, whereas the
HSI, Mahalanobis distance and the niche model do not
accommodate non-linear ecological relationships. To maintain
consist comparisons among the techniques we used only linear
terms for each vegetation variable.

We parameterized the quantitative models using caribou
locations that corresponded with the seasonal breaks defined
for the HSI. Caribou of the Wolverine Herd are most abundant
in the study area during the early winter (1 November to
30 December) and occur only infrequently during other
periods (Madrone Consultants 1999a). Therefore, our models
were developed and assessed only for the early winter season.

Model construction and mapping

Species distribution maps were generated at a cell resolution
of 25 × 25 m. For consistency with the HSI maps, we adopted
a six class ranking scheme, where we assumed that class 1
habitats were of the highest and class 6 were of the lowest
quality. Resource selection function and Mahalanobis distance
models produce continuous predictions. We used 16.7%
quantiles to break the range of values into six classes that
we assumed correlated with increasing quality of habitats

for caribou (for example Knick & Dyer 1997; Erickson
et al. 1998; Carroll et al. 2001; Johnson et al. 2004c). The
genetic algorithm employed by GARP has a stochastic search
method, potentially identifying different combinations of
rules and environmental layers during each run of the model.
Adopting the protocol of Anderson et al. (2003), we generated
30 models that met predefined criteria for omission and
commission error. Maps for those models were summed and
quantiles were used to define break points for six habitat
classes. Areas of the study area that predicted presence of
caribou for > 25 models were considered as class 1 habitats
and areas with ≤ 5 models were considered as class 6 habitats.

Model evaluation and comparison

For the RSF, Mahalanobis distance and niche approaches,
we developed three sets of models that included variables for
patch density, patch distance, and both patch density and
distance. Definition of the HSI was predetermined by past
researchers. In total, we contrasted 10 species distribution
models and maps. For each map, we overlaid the validation
set of caribou locations and calculated the number of locations
within each of the six habitat classes normalized by the area of
that class. The standardization procedure effectively resulted
in a measure of density of validation locations, controlled for
variation in predicted area among classes of habitat quality.
We used the Spearman rank and Pearson correlations to
measure the relationship between the predicted habitat classes
(i.e. 1–6) or the mid-point for each quantile, respectively,
and the normalized frequency of caribou locations from the
validation data set. We assumed that models with a greater
predictive accuracy would have a greater number of validation
locations within higher-quality habitats (i.e. class 1) and
correspondingly a larger r̄s or r. We employed both correlation
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metrics because the Spearman rank is a less powerful test, only
reporting differences in ranks between the six habitat classes.
We used the Kappa index of agreement as a measure of spatial
correlation between maps developed from the four modelling
techniques (Monserud & Leemans 1992). Using the results
of the correlation analysis for guidance, we compared only
maps from the most predictive of the patch density, patch
distance or model containing both patch density and distance
covariates. We assumed that uncertainties in data, parameters
and, ultimately, model predictions, were consistent across
techniques. Therefore, we did not explore the impact of
variation in predictions on our evaluations or comparisons.

RESULTS

We used 781 caribou locations to parameterize the three
quantitative models. The HSI was developed following a
review of published data for woodland caribou, informal
discussions with experts in caribou biology, and completion
of 60 full ecosystem plots and 223 ground inspection plots.
Following application of each model to the corresponding GIS
data, we used 126 independent caribou locations to evaluate
the predictive performance of the 10 species distribution
maps.

For each of the quantitative techniques, we developed
models with patch density, patch distance and both density
and distance variables. Spearman rank correlations calculated
between the normalized frequency of independent caribou
locations and the six classes of habitat quality were consistently
large and very similar among models and variable sets
(Table 2). Similarly we noted large Pearson correlations (i.e.
r > 0.804, p < 0.054) for the three combinations of land-cover
variables (Table 2). No single variable set or quantitative
model was a markedly better predictor of caribou occurrence.
However, we did observe marginally better predictions for
the Mahalanobis distance, RSF and niche models when
using covariates descriptive of the distance of caribou
locations from land-cover patches (r = 0.993, p < 0.001;

r = 0.966, p = 0.002; r = 0.883, p = 0.020). When comparing
quantitative to qualitative models, the map generated with the
HSI had the weakest correlation (r = 0.511, p = 0.300) with
the independent caribou data and underperformed relative to
the other techniques.

Across models and variable sets, we noted some variation
in predictive success according to the class of habitat quality
(Fig. 1). Mahalanobis distance was the most adept at predi-
cting high-quality habitats (class 1), followed by the resource
selection function and niche models, which performed
similarly to each other. In contrast, the HSI was a poor
predictor of high-quality habitats. All of the models accurately
represented poor-quality habitats (classes 5 and 6); however,
the Mahalanobis and niche models demonstrated a non-
linearity in prediction for class 4, 5 and 6 habitats (Fig. 1).

Using the most predictive variable set for each modelling
technique, we recorded considerable differences in the area
and distribution of the various classes of habitat quality
(Fig. 2). The niche model had the greatest area of high-quality
habitat followed by the RSF, the Mahalanobis distance,
and the HSI (Table 3). The Kappa index of agreement
suggested poor spatial agreement between the predictions
of the four models (Table 4). With a Kappa of 0.188, the
maps generated from the RSF and Mahalanobis distance
vegetation density models were most alike. Visual inspection
of the maps, however, indicated that all of the techniques were
good predictors of the distribution of caribou locations used to
construct the quantitative models (Fig. 2). Discrepancies were
most apparent in the south-western and southern portions of
the study area, where habitat quality ranged from classes 1 to
6 depending on the model (Fig. 2).

DISCUSSION

This study is one of a number of recent works comparing
the performance of species distribution models or assessing
the sensitivity of model parameters and predictions to input
data and design. As examples, Parra et al. (2004) evaluated

Table 2 Spearman rank and
Pearson correlations describing the
strength of the relationship
between the predicted habitat
classes (i.e. 1–6) or the
model-specific values used to
define each class, respectively, and
the normalized frequency of
independent validation locations
for a habitat suitability index
(HSI), resource selection function
(RSF), Mahalanobis distance, and
ecological niche models. Data
models were generated with
locations collected from
GPS-collared woodland caribou
monitored from November 1996 to
March 2000.

Model/variable set Spearman rank Pearson

r̄ s p r p
HSI 0.657 0.156 0.511 0.300
RSF – distance/density 0.943 0.005 0.907 0.013
RSF – distance 0.943 0.005 0.966 0.002
RSF – density 0.943 0.005 0.915 0.011
Mahalanobis – distance/density 0.943 0.005 0.977 <0.001
Mahalanobis – distance 0.943 0.005 0.993 <0.001
Mahalanobis – density 0.886 0.019 0.947 0.004
Niche – distance/density 0.943 0.005 0.878 0.023
Niche – distance 0.943 0.005 0.883 0.020
Niche –density 0.943 0.005 0.804 0.054
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Figure 1 Predictive accuracy of (a) habitat suitability index (HSI), (b) resource selection function (RSF), (c) Mahalanobis distance and (d)
ecological niche model. Quantitative models were generated using variables representing the density (den) of land-cover patches, the distance
(dis) of caribou locations from the nearest patch, and a combination of both variable sets.

the performance of an ecological niche model parameterized
with alternative environmental data sets; Loiselle et al. (2003)
applied museum records for a variety of bird species to five
species distribution models and assessed the effects of model
choice on the identification of high-priority conservation
areas; and Pearce and Ferrier (2000) focused exclusively
on logistic regression and the variety of factors that might
impact predictive accuracy. These studies and others (for
example Stockwell & Peterson 2002; Farber & Kadmon
2003; Gu & Swihart 2004) are likely to be a response
to the recent increase in the use of sophisticated species
distribution models for investigating ecological relationships
and guiding conservation planning (Rushton et al. 2004). We
believe, however, that much work remains. The wide range of
modelling techniques, sampling protocols and input data, in
conjunction with increased reliance on species distribution
maps (for example Carroll et al. 2001; Raxworthy et al.
2003; Johnson et al. 2004c), suggests that a full accounting
of variability in predictions is required. In this paper, we
have stressed the importance and measurement of prediction.
Sensitivity and uncertainty analyses are a second level
of investigation that can reveal the most sensitive model
parameters, the range of possible predictions and guide
the improvement of model performance (Elith et al. 2002;
Johnson & Gillingham 2004).

In contrast to most previous work, we compared the
predictive success of a larger number of techniques and
considered the range of data, including expert opinion, use-
availability and occurrence, typical for constructing species
distribution models. When fit to one data set, our results
suggest that RSFs, Mahalanobis distance and niche models
are all effective approaches for developing species distribution
maps. Our comparisons, however, were not exhaustive. We
modelled distribution during a season when caribou are known
to be highly selective for particular habitat features (Johnson
et al. 2002). Given the expected response, we assumed a priori
that all of the models would be good predictors of high-
quality habitats (Hepinstall et al. 2002). Thus, deviations from
that expectation should be strong evidence of poor model
performance, at least for these data. Other factors that might
impact model performance include sample size (Stockwell &
Peterson 2002), different predictor data sets (Peterson &
Cohoon 1999; Parra et al. 2004), alternative algorithms for
each of the models (Pearce & Ferrier 2000; Loiselle et al.
2003), and variation in the scale of input data and analysis
(Karl et al. 2000).

Relative to the three quantitative models, the HSI was a
poor predictor of caribou distribution during early winter.
Specifically, the model was ineffective at identifying high-
quality class 1 habitats (Fig. 1). We assume that the poor
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Figure 2 Examples of species distribution maps for woodland caribou of the Wolverine herd during early winter. The habitat suitability
index (a) was based on expert opinion and the (b) resource selection function, (c) Mahalanobis distance, and (d) ecological niche model were
constructed using variables representing the distance of caribou locations from the nearest patch, the density of land-cover patches, and both
variable sets, respectively. The inset map in (a) illustrates the location of the study area in north-central British Columbia, Canada.
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Table 3 Area (ha) and number of
validation locations (Locs) for six
ranked habitat classes predicted for
woodland caribou during the early
winter using habitat suitability
index (HSI), resource selection
function (RSF), Mahalanobis
distance, and ecological niche
models.

Habitat Model

HSI RSF Mahalanobis distance Niche

Area Locs Area Locs Area Locs Area Locs
1 991 1 15947 65 15851 74 22801 91
2 12590 42 15947 36 15946 23 4596 10
3 11220 31 15851 11 15947 9 3072 4
4 9734 10 15947 6 15851 14 2901 1
5 59657 42 15947 4 15947 5 3333 3
6 1297 0 15851 4 15947 1 58787 17

Table 4 Similarity in location for six habitat classes across four
species distribution models measured using the Kappa index of
agreement.

Model

HSI RSF Mahalanobis Niche
HSI 1.0
RSF 0.049 1.0
Mahalanobis 0.034 0.188 1.0
Niche 0.013 0.153 0.174 1.0

correspondence with the validation data was a function of the
bench-marking procedure designed to rank habitats across
the study area in relation to the best woodland caribou
habitat in British Columbia (Madrone Consultants 1999a).
Such an approach allows planners and managers to assess
the value of habitats among individual mapping projects and
geographic areas, but fails to recognize the relative significance
of habitats within populations. In contrast, the quantitative
approaches are specific to the data used to build the models.
Past applications have shown that the quantitative models
employed for this study may not be generally applicable to
other populations, time periods or portions of a study area
where animal locations are unavailable (Hobbs & Hanley 1990;
Knick & Rotenberry 1998; Johnson et al. 2004c).

Although the predictive success of the quantitative models
was good, we found considerable variation in the spatial
delineation of ranked habitats. There are similarities in the
maps developed from the four techniques (Fig. 2), but the
Kappa and area statistics suggest that the designation of
important habitats (see Noss et al. 2002) or the approval of
development proposals could be influenced by selection of a
particular model or GIS data. A portion of intermap deviation
was likely to be a result of differences in the variable set
used to construct the models. Discrepancies also might be
a product of the classification procedure we used to break
the continuous distribution of predicted values into habitat
classes.

Modellers and practitioners should expect considerable
variation in data requirements, required expertise and
knowledge, and inference when building and interpreting
alternative species distribution models. For the models we

evaluated, the types of ecological relationships captured by
the independent variables are almost limitless. As we have
demonstrated, those variables can be quantified using a
variety of metrics (such as patch occupancy, patch density
and patch distance) and at a number of spatial scales.
Mahalanobis distance was the only model with restrictions on
how independent variables were quantified. The calculation
of mean habitat conditions required model variables that were
measured on a continuous scale. Nominal or ordinal data,
such as occupancy of different vegetation patches or ranked
areas of road density, are incompatible with the calculation
of the distance statistic. Generalized linear models, including
resource selection functions derived from logistic regression,
offer the greatest flexibility in model construction. Although
we did not explore this flexibility, we could have modelled
categorical variables, interactions or non-linear responses
through the use of polynomial terms.

Selection of metric to represent independent variables
can influence maps and the scale of inference. Distance,
density and occupancy of patches measure different aspects
of the spatial distribution and arrangement of vegetation and,
through association, species-environment responses. Distance
and density of patches represent not only patch composition,
but also configuration. The spatial arrangements of environ-
mental features can influence the distribution of some animal
species (George & Zack 2001; Chamberlain et al. 2003).
Such patch metrics, however, can alter or blur mapped
polygon boundaries that may be important to conservation
planning. As an example, the suitability index is based on
ecological units identified for individual mapped polygons.
Alternatively, patch density is a continuous function that
might change over an area encompassing a number of discrete
patch types. Maps generated using density or distance metrics
will be more difficult to apply to fine-scale conservation
decisions.

The type of location data often will dictate the choice of
modelling approach. Data describing the presence and absence
of a species are the most general and are applicable to all
species distribution models. Presence-absence data offer a
more descriptive picture of a species’ distribution possibly
explaining the relative success of these models in other studies
(Brotons et al. 2004). Care must be taken, however, when
designing sampling protocols for the collection of this type of
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location data (Diefenbach et al. 2003). We must guard against
or model biases and misclassification of absence data (Tyre
et al. 2003). Although similar in approach, the resource selec-
tion function models were not developed with true presence-
absence data. The availability data may have contained some
actual caribou locations and the sampling scheme prevented
calculation of an absolute probability of occurrence.

The knowledge and computational tools necessary for
model development range across the four techniques we
assessed. Habitat suitability indices are heuristic models
dependent on a body of knowledge describing species-
habitat relationships. Indices can be formulated using
simple spreadsheet tools, which are then applied to a GIS.
Mahalanobis distance calculations involve covariance and
correlation matrices and thus are more complex. As with
habitat suitability indices, the approach has few assumptions
or computational complexities aside from quality assurance
for GIS and species location data. Development of logistic
regression-based RSFs requires access to statistical software
and a GIS, and a good understanding of sample design and the
formulation, assumptions and limitations of generalized linear
models (Hosmer & Lemeshow 2000). The GARP ecological
niche model was the most complex of the four we evaluated.
Some of the niche rules are simple and the user has control
over fundamental parameters, but the process as a whole is
difficult to visualize and evaluate, and can be considered more
of a ‘black box’ approach to species distribution modelling.
We note, however, that the GARP software is free and easy to
use and facilitates both calculation and mapping of models. A
number of articles outline the workings of GARP and provide
guidance on model construction (Stockwell & Peters 1999;
Anderson et al. 2003).

Aside from maps depicting the distribution of a species, the
type of inference varies with technique. Resource selection
functions and habitat suitability indices produce coefficients
that report the influence of individual variables on the
distribution of a species. For resource selection functions,
coefficients are accompanied by measures of precision and
statistical significance. Typically, coefficients for suitability
indices have no estimates of precision, although methods
are available for calculating the variation around parameter
estimates due to input data and differences in expert opinion
(Bender et al. 1996; Burgman et al. 2001; Johnson &
Gillingham 2004). Mahalanobis distance and the GARP
niche models do not provide direct measures of variable
influence. We can conceive of step-wise procedures where
incremental changes in model prediction could be assessed
against variable inclusion. Such approaches are relatively
awkward and without simulation provide no estimate of
precision.

Omnibus tests and assessment also vary among the models
we evaluated. A number of statistical tests, information
theoretic approaches and non-parametric techniques are
available for evaluating resource selection functions and
other logistic regression-based models (Fielding & Bell 1997;
Anderson et al. 2000; Boyce et al. 2002). GARP models

withhold and apply a portion of the location data to generate
measures of model success including prediction accuracy and
the probability of a non-random result as well as errors of
omission and commission. The Mahalanobis distance and
habitat suitability indices are not amenable to statistical tests
or information theoretic approaches; however, as with the
other two models, expert-generated maps or independent
validation locations can serve as reference points to assess
predictive capacity (Knick & Dyer 1997; Prosser & Brooks
1998; Loukmas & Halbrook 2001).

RECOMMENDATIONS FOR MODEL SELECTION

Given the wide-range of models and the potential for
differences in predictive performance, the first consideration
will be availability of data suitable for candidate species
distribution models. Data requirements for each technique are
straightforward and range from presence-absence to presence-
only locations to qualitative expert opinion. If costs are
prohibitive, expert opinion (from interview or published
findings) might be the only source of information to construct
a species-distribution model. Alternatively, Mahalanobis
distance and niche models have greater predictive accuracy,
but they are dependent on field collections describing the
presence of a plant or animal. There is some evidence to
suggest that presence-absence models outperform presence-
only models, but this relationship is not fully explored (Hirzel
et al. 2001; Brotons et al. 2004). Presence-absence or use-
availability data (for example RSFs) are potentially more
complex and expensive to collect and, for our case study,
these models did not provide increased predictive accuracy.

Beyond data requirements, we note considerable
differences in flexibility in model design, evaluation
protocols and the types of inference. Of the techniques we
evaluated, RSFs parameterize the greatest range of ecological
relationships (for example polynomial terms and interactions)
and provide widely accepted approaches (Anderson et al.
2000) for evaluating and choosing among competing models.
Compared to the other quantitative techniques, RSFs have
the added advantage of selection coefficients, which are easy
to assess and interpret. The Mahalanobis distance and niche
models do not provide metrics for assessing the strength of
inference of individual variables and the coefficients associated
with habitat suitability indices are difficult to evaluate for
precision (Johnson & Gillingham 2004). As demonstrated
here, predictions from all four techniques can be evaluated
if an independent data set is available or cross-validation
methods are employed (Boyce et al. 2002). However, a much
fuller suite of evaluation techniques has been published for
the niche and RSF models (Fielding & Bell 1997; Manel et al.
2001).

Although we, and others, provide some empirical guidance
for selecting a model based on predictive accuracy, it is unlikely
that one type of model is best for all situations. The particular
conservation issue and the ecology of the focal species should
guide the selection of a technique, but often limitations of data
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will severely restrict the choice set (Austin 2002). Practitioners
must also ensure that the model and approach have ecological
relevance and neither the data nor model violates statistical or
ecological assumptions (Austin 2002). Where several models
might be expected to perform equally, we recommend that
practitioners consider issues such as flexibility in model design
and type and assessment of inference or prediction. In our
case, RSFs best meet those other criteria. We can provide
no assurance, however, that under different circumstances
(for example season, different range) the relative ranking,
performance and applicability of these models will remain
consistent.
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