
R – Logics and Automation

Lecture 7

• Break statement
• While loop
• Equivalence of “for” loop and

“while” loop

Looping

2

Looping allows to run the command many
times. For example, if one needs to print a
sentence, saying “I like Prince George”, it can be
simply done by the command

print(“I like Prince George”)

“while loop” Loop in R

Similar to “if statement”, “while loop” sets the
condition for statement. An essential difference
between “if loop” and “while loop” is that the
former always sets condition explicitly which is not
related to statement at all, whereas the latter often
sets the condition which is in turn determined by
the statement. For example, we need to determine
a number whose factorial is close to 1000 as much
as possible, namely,

1*2*3*4*….*number <=1000

3

Syntax of while loop

while (condition)
{

statement
}

Here, condition is evaluated and the body of the loop is
entered if the result is TRUE.
The statements inside the loop are executed and the flow
returns to evaluate the “condition” again.

This is repeated each time until “condition” evaluates to
FALSE, in which case, the loop exits.

4

Example of while Loop

i <- 1
while (i < 6) {

print(i)
i = i+1

}

In the above example, i is initially initialized to 1. Here, the
condition is i < 6 which evaluates to TRUE since 1 is less
than 6. So, the body of the loop is entered and i is printed
and incremented.

Incrementing i is important as this will eventually meet the
exit condition. Failing to do so will result into an infinite
loop. In the next iteration, the value of i is 2 and the loop
continues. This will continue until i takes the value 6. The
condition 6 < 6 will give FALSE and the while loop finally
exits.

5

“while” Loop in R

Find the number whose factorial is not greater than 1000
num<-1
sum<-1
while(sum<1000) {
num<-num+1
sum=sum*num
}

Here, we try to determine the number whose factorial is up to
1000. We use while loop to iterate until the factorial is less
than 1000. On each iteration, we multiply the number “num”
to sum, which gives the total sum (factorial) in the end.

6

“while” Loop in R

You find the answer “num” is 7, 7! = 5040 which is much
larger than 1000. The reason is while num=6, 6! = 720 smaller
than 1000, the statement is still executed, i.e., num=num+1.
So we should modify this code.. There are basically two ways,
one is to use “if statement”, the other way is to change
condition, i.e.,
num<-1
sum<-1

while(sum*num<1000) {
num<-num+1
sum=sum*num
}

7

“while” Loop in R

Example: Using “while loop” to produce a vector [1, 2, 3,…10]

storage<-c();

x<-1

while(x<10){

storage<-c(storage,x)

x<-x+1

}

Example: double the vector of x=[1,2,3] five times, i.e. x1=2*x; x2=2*x1….

Counter<-1

x<-c(1,2,3)

While(counter<5){

x<-x*2;

print(x)

counter<-counter+1

}
8

“while” Loop in R

“while” loop can make infinite iteration so be
careful in setting the condition for while loop. For
example

x<-1

while(x<2) {

print(x)

}

9

Nested “while” loop

Example: there are more than one while loop used
i<-1
j<-1
while(i<=5){
while(j<=5){
print(c(i,j))
j<-j+1
}
i<-i+1
}

10

Example 4.6 “while” Loop

List all Fibonacci numbers (i.e. each number is the sum of the two
preceding ones, starting from 0 and 1) less than 300. We do not know
beforehand how long this list is. We do not know how to stop the for
loop but a while loop seems perfect option for this example.
Fib1<-1
Fib2<-1
Fibonacii<-c(Fib1,Fib2)
While(Fib2<300){
Fibonacii<-c(Finonacii,Fib2)
oldFib2<-Fib2
Fib2<-Fib1+Fib2

Fib1<-oldFib2
}

11

Using Next

Suppose you need to print all uneven numbers
between 1 and 10 but even numbers should not be
printed. In that case, your loop would look like this:

for (i in 1:10) {

if (i %% 2==0){

next

}

print(i)

}

12

Example 4.1 (text book)

When i is between 1 and 10, the for loop is
executed. In the for loop, we need to check if the
value of i is odd or even.
If the value of i has a remainder of zero when
divided by 2 (that’s why we use the modulus
operand %%), if statement is not executed. In case
the remainder is nonzero, if statement evaluates to
TRUE and “next” statement executes which move
the loop back to the i in 1:10 condition thereby
ignoring the the statement that follows.

13

Using Break

14

“break” is used inside a loop to stop the interactions and
flow the control outside of the loop.
for(i in 1:5){print(i)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
for(i in 1:5){if(i==3){break};print(i)}
[1] 1
[1] 2

“Break” Examples

x <- 1:5

for (val in x) {

if (val == 3){

break

}

print(val)

}

15

x<-0
while (x < 10) {
x <- x + 4
print (x)
if (x = 8) {
break
}
}

Using Repeat loop

The repeat() loop is to do
repetition without condition. In
other words, it is an infinite
repetition. The syntax is like

repeat {

statement

}

Example

repeat{print(“I like PG”)}

16

Using Repeat

To end the loop, one must use condition and
“break”, with the syntax

repeat {

statement

if(condition){break}

}

17

Repeat Example

x <- 1

repeat {

print(x)

x = x+1

if (x == 10){

break }

}

we have used a condition to check and exit the loop
when x is equal to 10.

18

mortgage.R
set up

month <- 0 # count the number of months

balance <- 300000 # initial mortgage balance

payments <- 1600 # monthly payments

interest <- 0.03 # 5% interest rate per year

total.paid <- 0 # track what you've paid the bank

convert annual interest to a monthly multiplier

monthly.multiplier <- (1+interest) ^ (1/12)

keep looping until the loan is paid off...

while (balance > 0) {

do the calculations for this month

month <- month + 1 # one more month

balance <- balance * monthly.multiplier # add the interest

balance <- balance - payments # make the payments

total.paid <- total.paid + payments # track the total paid

print the results on screen

cat("month", month, ": balance", round(balance), "\n")

}

print the total payments at the end

cat("total payments made", total.paid, "\n")

19

SST Data

20

Composite Analysis

21
bmo.gov.au

The Oceanic Niño Index (ONI) has become the de-facto standard that NOAA uses for identifying
warm and cool events in the tropical Pacific. It is the running 3-month mean SST anomaly for
the Nino 3.4 region (i.e., 5oN-5oS, 120o-170oW) e.g. warm events are defined as seasons above
the 0.5o anomaly and strong warm events as > 1.5o.

https://ggweather.com/enso/enso_regions.jpg

Lab Exercise

22

1. Donwload the data

http://web.unbc.ca/~islam/ENSC250/ONI_1950-

2019.txt

2. Load the text file into R.

3. Plot the real and anomaly seasonal data.

4. Apply composite analysis i.e. select warm and cold

months and save them in different arrays.
• If SST anomaly is > 0.5 Warm

• If SST anomaly is > 1.5 Strong Warm

• If SST anomaly is > -0.5 Cold

• If SST anomaly is > -1.5 Strong Cold

5. Take the mean of arrays for composites.

http://web.unbc.ca/~islam/ENSC250/ONI_1950-2019.txt

