
R – Logics and Automation

Lecture 6

• Controlling the logic flow
• Iteration loop
• “FOR” loop
• If loop
• Nested looping

Looping

2

Looping allows to run the command many
times. For example, if one needs to print a
sentence, saying “I like Prince George”, it can be
simply done by the command

print(“I like Prince George”)

Looping

Now, if the sentence is required to repeat 10
times, how to do that?

One simple but awkward way is to repeat the
above command 10 times.

Is there any “smarter” way? Yes, there is a
specific loop called “for” loop.

3

“for” Loop in R

Conceptually, a loop is a way to repeat a sequence
of instructions under certain conditions. They allow
you to automate parts of your code that are in need
of repetition.

It will become more clear to you once you start
working with some examples below.

for (index in 1:10){
print(“I love Prince George”)}

4

“for” Loop in R

To understand this code, we need to learn a
basic grammar of “for” loop.

– The key word “for”, followed by parentheses;

– An identifier (called index) between the
parentheses.

– The key word “in”, which follows the identifier;

– A vector with values to loop over;

– A code block between brace that has to be carried
out for every value in the vector;

5

“for” Loop in R

The code block itself is not controlled by the value of identifier
(index). Often, the code itself is controlled by the identifier.
For example, we want to print calendar year from 2010 to
2015 respectively, after the sentence “This year is”. Still you
can use the awkward way like

print(paste("The year is", 2010))
print(paste("The year is", 2011))
print(paste("The year is", 2012))
print(paste("The year is", 2013))
print(paste("The year is", 2014))
print(paste("The year is", 2015))

6

“for” Loop in R

Or you can use “for’ loop for a smart way

for (i in 2010:2015){

print(paste(“This year is”, i))

}

One also can use other vector expression for this
purpose, i..e,

x <- c(2010,2011,2012,2013,2014,2015)

for(i in x){print(paste(“this year is”, x))}

7

“for” Loop in R

You will have the output like

[1] "this year is 2010" "this year is 2011" "this year is 2012"
[4] "this year is 2013" "this year is 2014" "this year is 2015"
[1] "this year is 2010" "this year is 2011" "this year is 2012"
[4] "this year is 2013" "this year is 2014" "this year is 2015"
[1] "this year is 2010" "this year is 2011" "this year is 2012"
[4] "this year is 2013" "this year is 2014" "this year is 2015"

8

“for” Loop in R

This is not what we expect, what is wrong here? This is
because you print all vector x at each iteration of the
loop. The correct way should be:

x<-c(2010,2011,2012,2013,2014,2015)

for(i in x){print(paste("this year is", i))}

Or

for(i in seq(2010,2015,by=1)){print(paste("this year is",i))}

9

“for” Loop in R

Or
for(i in 2010:2015){print(paste("this year is", i))}

Output is
[1] "this year is 2010"
[1] "this year is 2011"
[1] "this year is 2012"
[1] "this year is 2013"
[1] "this year is 2014"
[1] "this year is 2015"

10

“for” Loop in R

For another example, we want to print 1, 4, 9, 16, 25. It can be
coded as below

for(i in 1:5){print(i^2)}

If we have a vector (-3, 6,2,5,9), and wish to print the square
of its each element, we can write

for(i in c(-3, 6, 2, 5, 9)){print(i^2)}
Or
x<-c(-3, 6, 2, 5, 9)
for(i in x){print(i^2)}

11

“for” Loop in R

If we want to store the above solution in a vector for future use, we can do as
below
yy<-numeric(5)
x<-c(-3, 6, 2, 5, 9)
m<-0
for(i in x){
m<- m+1
yy[m]<-i^2
}

Or
yy<-numeric(5);
for(i in 1:5){yyy[i]<-x[i]^2};
Here we use array (vector) to manipulate the process, i.e., in “for loop”, the
identifier is the “room number”, not “room” itself.

12

Example

We have the temperature record in degree C of (-3, 6, 2, 5, 9),
lets transfer them in degree F.
We know the transfer formula by
Degree F = Degree C * 9/5 + 32

We can code as below

x<- c(-3,6,2,5,9)
y<- numeric(5)
for(i in 1:5){
y[i]<- x[i]*9/5+32
}

13

Example 4.1 (text book)

To generate a Fibonacci sequence that has the pattern [1, 1, 2,
3, 5, 8, …..], i.e., subsequent elements are defined as the sum
of the preceding two elements.

x<-numeric(12)
x[1] <- 1
x[2] <- 1
for(i in 3:12){
x[i]<- x[i-1] + x[i-2]
}
x
Output: 1 1 2 3 5 8 13 21 34 55 89 144

14

Example

15
Source: www.datacamp.com

Nested “For loop”

We have discussed the basic structure and control flow of
the “for loop” and demonstrated some examples. In
some cases, there are multiple variables to control the
flow, in which we may need the multiple loops, or, nested
“for” loop. The grammar is as below

for(index1 in vector1){
for(index2 in vector2){

code1}
{code2}
}

16

Example

For example, one vector is x=[2, 3,-2,4,5], the other vector is
y=[-1, 2, 3,5,6]; we calculate their cross-product, which should
be a matrix;

z = matrix(nrow=5,ncol=5)
x<- c(2,3,-2,4,5);
y<- c(-1,2,3,5,6)
for (i in 1:5) {

for(j in 1:5){
z[i,j]=x[i]*y[j];
}

}

17

Example

Generate the 5x 5 matrix A, whose (i; j) entry is i+j

z<- matrix(nrow=5,ncol=5);

for(i in 1:5){

for(j in 1:5){

z[i,j]<- i+j

}

}

18

Example

19
Source: www.datacamp.com

“if” loop

Decision making is an important part of
programming. For example, one plans to fish if it is
sunny. Intuitionally we have the below command

If (weather = sunny) {fishing}

Generally, such kinds of tasks can be achieved in R
programming using the conditional “if...statement”

20

“if” loop

The syntax of if statement is:

if (condition) {
statement

}

If the condition is TRUE, the statement gets executed. But if
it's FALSE, nothing happens. Here, condition can be a logical
or numeric vector, but only the first element is taken into
consideration.
In the case of numeric vector, zero is taken as FALSE, rest as
TRUE.

21

“if” loop Example

x <- 5

if(x > 0){

print("Positive number")

}

Output

"Positive number"

22

“if … else” statement

23

“If there are two conditions to be applied, we will
use “if...else statement”,

The syntax of if...else statement is:

if (condition) {

statement1

} else {

statement2

}

“if … else” statement

24

Example:

x <- -5
if(x > 0){

print("Non-negative number")
} else {

print("Negative number")
}
Output: "Negative number"

Nested “if - else” statement

If there are more conditions to be applied, one can use “Nested if...else
statement”. In fact, we can nest as many “if...else statement” as we want as
follows.

The syntax of nested if...else statement is:

if (condition1) {
statement1

} else if (condition2) {
statement2

} else if (condition3) {
statement3

} else {
statement4}

25

Nested “if - else” statement

x <- 0
if (x < 0) {

print("Negative number")
} else if (x > 0) {

print("Positive number")
} else

print("Zero")

Output "Zero"

In “if”, “if…else”, or “nested if”, only one statement will get executed
depending upon the condition. After the statement is executed, the “if…”
loop terminates, and the programming moves to the first statement just after
the “if …” loop.

26

Basic Logical Operations

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= = Equal to exactly

! = Not equal to

| Or (vectorized）

|| Or (first element)

& And (vectorized)

&& And(first element)

27

Examples

1<2 -- true
5 = =10 --- false
5 !=10 ---true

x<-seq(2, 20,2)
x==2 | x>=8
Output: TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
TRUE TRUE

x==2 || x>=8
Output: True

28

Examples

x==2 & x>=8

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

x==2 && x>=8

[1] FALSE

n1 <-0

n2 <-0

if(n1>0 & n2>0){print("positive product")}else

if(n1<0 & n2<0){print(“negative product")} else

if(n1==0 | n2 ==0){print("zero produce")}else

{print("negative product")}

29

Example 4.5 (text book)

A prime number is a number greater than 1 that cannot be formed by
multiplying two smaller numbers. To list prime number up to a give
value n. For example, if n =10, the prime number is 2,3,5,7. We use “if
statement” for the programming.

n<- 100
x<- seq(2,n)
primes<- c()
for(i in 2:n){

if (any(x==i)){
primes<- c(primes, i)
x<- c(x[(x%%i)!=0],i)}

}

30

Example 4.5 (text book)

Coding interpretation

(x%%i)!=0 --- true if the remainder of x divided
by i is not 0, otherwise false.

x[(x%%i)!=0] --- removing all numbers that can
be divided by i from x;

31

Example 4.5 (text book)

For example
originally, x=[2,3,4,5,6,7,8,9,10] lets say i = 2
x[(x%%2)! = 0] -> x = [3,5,7,9]
x<-c(x[(x%%2)!=0],2) -> producing a vector x= [3,5,7,9,2];
primes<-c(primes,2) -> put 2 in the vector of primes

if (any(x==i))
this is an important condition that ignores all number of multiples of i
in reconstructing x and listing prime. For example, if i=2, this condition
will not consider 4,6,8,…, which is correct. If this condition is removed,
we will reconstruct x that is the same as original one, and list all
numbers of x in the vector of prime, which is not correct.

32

Example wordcount.R

words <- c("it","was","the","dirty","end","of","winter")

#loop over the words
for (w in words) {

w.length <- nchar(w) # calculate the number of letters
W <- toupper(w) # convert the word to upper case letters
msg <- paste(W, "has", w.length, "letters") # a message to print
print(msg) # print it

}

Source: learningstatisticswithr.com

Exercise
• Download the enso_index.csv file from course website i.e.

SST data for ENSO
– http://web.unbc.ca/~islam/ENSC250/data.html

• Load the file in R notebook and select YEAR and NINO3.4
columns for analysis

• Variable NINO3.4 is monthly time series for 24 years (1990-
2013). So the total values are 288.

• Redesign variable NINO3.4 into 12 by 24 matrix
representing 12 months in a year and 24 years in total.

– Hint : nino_mat <- matrix(NINO3.4, nrow=12, ncol=24)

• Then use "for"" loops to subtract mean of each month from
corresponding monthly value.
– Hint : Define an empty matrix first i.e. "anom" having same dimension as "nino_mat" matrix but with all values zeros.

During looping, update each index of the matrix.

• Plot the monthly mean data as shown in next slide.

Exercise: Output

35

