
Chapter 11

The Solid State. Home Work
Solutions

11.1 Problem 11.5

Consider a one-dimensional chain of alternating positive and negative ions. Show that the
potential energy of an ion in this hypothetical crystal is

U(r) = −kαe
2

r

where α = 2 ln 2 (the Madelung constant), and r is the interionic spacing. [Hint: Make use
of the series expansion for ln(1 + x).]

Solution

Each ion, in a one-dimensional array of alternating positive and negative ions, is surrounded
by two ions of the opposite charge followed by two ions of the same charge at double the
distance then two ions of opposite charge at triple the distance, and so on. The potential
energy of such ion is then the sum of all the potential energies due to the presence of other
ions, i.e.

U(r) = −ke
2

r
− ke2

r
+
ke2

2r
+
ke2

2r
− ke2

3r
− ke2

3r
+
ke2

4r
+
ke2

4r
− · · ·

= −2
ke2

e

[
1− 1

2
+

1

3
− 1

4
+ · · ·

]
Since,

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · ·
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taking x = 1, then:

U(r) = −2 ln 2
ke2

r
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11.2. PROBLEM 11.8 3

11.2 Problem 11.8

The Madelung constant for the NaCl structure may be found by summing an infinite alter-
nating series of terms giving the electrostatic potential energy between an Na+ ion and its 6
nearest Cl− neighbors, its 12 next-nearest Na+ neighbors, and so on (see Figure (11.1)).

(a) From this expression, show that the first three terms of the infinite series for the
Madelung constant for the NaCl structure yield α = 2.13.

(b) Does this infinite series converge rapidly? Calculate the fourth term as a check.

Cl- Na+

Figure 11.1: The crystal structure of NaCl

Solution

(a) Figure (11.1) represents the unit cell of a NaCl crystal. A unit cell is the smallest
structure of the crystal than can be repeated in all direction to form large crystals. Let
the r◦ be the distance between an ion and its closest neighbor. Consider the Na+ ion at
the center of the unit cell of NaCl crystal in Figure (11.1). This ion is surrounded by 6
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Cl− ions at distance r◦. The potential energy UC1 of the Na+ ion at the center due to
these six Cl− ionsis given by:

UC1 = −6
ke2

r◦

There are also 12 Na+ ions each at a distance
√

2r◦ from the Na+ at the center. The
potential energy UC2 of the ion at the center due to these 12 ions is:

UC2 = +12
ke2√
2r◦

There are also 8 Cl−, at the corners of the unit cell, each at a distance of
√

3r◦ from the
central Na ion. The potential energy UC3 is:

UC3 = −8
ke2√
3r◦

The total potential energy of the central ion is then:

U(r) = UC1 + UC2 + UC3

= −6
ke2

r◦
+ 12

ke2√
2r◦

− 8
ke2√
3r◦

=

[
−6 +

12√
2
− 8√

3

]
ke2

r◦

= −2.13
ke2

r◦

The first three terms produce a Madlung constant of 2.13.

(b) The fourth term comes from the central Na+ ions at the centers of the neighboring unit
cells (there can be 6 unit cell adjacent to the one shown in Figure (11.1)). Each of these
6 ions is at a distance of 2r◦, the potential energy UC4 is then:

UC4 = +6
ke2

2r◦

= +3
ke2

r◦

and the total energy is:

U(r) = UC1 + UC2 + UC3 + UC4

= (−2.13 + 3)
ke2

r◦

= +0.87
ke2

r◦
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11.2. PROBLEM 11.8 5

It is obvious that the series does not converge rapidly. The addition of the fourth term
made the total potential energy positive i.e. the total force is repulsive. The magnitude
of the fourth term is actually larger than the magnitude of the sum of the first three
terms. This means that a lot more ions has to be added until the series converges.
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11.3 Problem 11.14

Sodium is a monovalent metal having a density of 0.971 g/cm3, an atomic weight of 23.0
g/mol, and a resistivity of ρ = 4.20 µΩ·cm = 4.20×10−8 Ω·m at 300K. Use this information
to calculate

(a) the free-electron density

(b) the Fermi energy EF at 0 K

(c) the Fermi velocity vF

(d) the average time between electronic collisions

(e) the mean free path of the electrons, assuming that EF at 0 K is the same as EF at 300
K and

(f) the thermal conductivity.

For comparison to (e), the nearest-neighbor distance in sodium is 0.372 nm.

Solution

(a) Each monovalent atom contributes one electron to the free-electron density. So, the free
electron density equals the number of atoms per unite volume, n.

n =
Av × d

w

where Av is Avogadro’s number, d is the density in g/cm3, and w is molecular weight in
g/mol. We then have:

n =
6.02× 1023 × 0.971

23
= 2.54× 1022 e/cm3

= 2.54× 1028 e/m3

(b) The Fermi energy EF at 0 K is defined as:

EF =
h2

2me

(
3N

8πV

)2/3
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11.3. PROBLEM 11.14 7

where h is Planck’s constant, me is the electron mass, and N/V = n is the number of
atoms per unit volume. so, EF is:

EF =
(6.625× 10−34)2

2× 9.11× 10−31

(
3× 2.54× 1028

8π

)2/3

= 5.046× 10−19 J

=
5.046× 10−19

1.602× 10−19
eV

= 3.15 eV

(c) The Fermi velocity vF is given by:

vF =

√
2EF

me

=

√
2× 5.046× 10−19

9.11× 10−31

= 1.05× 106 m/s

(d) The average time between collision τ is defined by the mass of the electron, the number
of atoms per unit volume, electric resistivity, and electron charge:

τ =
me

ρne2

=
9.11× 1031

4.2× 10−8 × 2.54× 1028 × (1.602× 1019)2

= 3.33× 10−14 s

(e) The mean free path is given by:

L = vF τ

= 1.05× 106 × 3.33× 10−14

= 3.5× 10−8 m

= 350
◦
A
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(f) Thermal conductivity K can be calculated from:

K

σT
=

1

3

(
πk

e

)2

K =
σT

3

(
πk

e

)2

=
T

3ρ

(
πk

e

)2

=
300

3× 4.2× 10−8

(
π1.381× 10−23

1.602× 10−19

)2

= 175 W/m ·K

where σ is the electric conductivity = 1/ρ.

Comparing the mean free path L with the nearest neighbor distance r◦ = 0.372 nm, we get:

L

r◦
=

3.5× 10−8

0.372×−9

= 94
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11.4 Problem 11.17

The simplest way to model the energy-level splitting that is produced when two originally
isolated atoms are brought close together is with two finite wells. In this model, the Coulomb
potential experienced by the outermost electron in each atom is approximated by a one-
dimensional finite square well of depth U and width a.The energy levels for two atoms close
together may be found by solving the time-independent Schrdinger equation for a potential
consisting of two finite wells separated by a distance b.

(a) Start this problem by “warming up” with a solution to the single finite well shown in
Figure (11.17a). Justify the solutions listed for regions I, II, and III and apply the
standard boundary conditions (ψ and dψ/dx continuous at x = 0 and x = a) to obtain
a transcendental equation for the bound-state energies.

(b) Write a computer program to solve for the bound-state energies when an electron is

confined to a well with U = 100 eV and a = 1
◦
A. You should find two bound states at

approximately 19 and 70 eV .

(c) Now consider the finite wells separated by a distance b as shown in Figure (11.17b).
Impose the conditions of continuity in ψ and dψ/dx continuous at x = 0 and x = a to
obtain

D

E ′ =
2e−2Ka

[
cos ka+ 1

2
(K/k − k/K) sin ka

]
(k/K +K/k) sin ka

Show that the boundary conditions at x = a+ b yield

F

G
=

(D/E ′)eβ[cosα− (K/k) sinα] + e−β[cosα+ (K/k) sinα]

(D/E ′)eβ[sinα+ (K/k) cosα] + e−β[sinα− (K/k) cosα]

where α = k(a+ b) and β = K(a+ b). The boundary conditions at x = 2a+ b yield

F

G
=

cos k(2a+ b) + (K/k) sin k(2a+ b)

sin k(2a+ b)− (K/k) cos k(2a+ b)

Thus, the two expressions for F/G may be set equal and the expression for D/E ′ used
to obtain a transcendental equation for the energy E

Solution
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(a) In regions I and III (see Figure (11.17a)) the wave equation is:

d2ψ(x)

dx2
= K2ψ(x) (11.1)

where

K =

√
2m(U − E)

~
(11.2)

The solutions to this equation are:

U
I II III

Potential

x = 0 x = a
x

E < U

YI = AeKx

YII = B cos kx +  C sin kx

YIII = De-Kx

kh/2π = [2m(U - E)]1/2

kh/2π = (2mE)1/2

U
I II III

Potential

x = 0 a
x

E < U

YI = AeKx

YII = B cos kx +  C sin kx

YIII = DeKx + E' e-Kx

kh/2π = [2m(U - E)]1/2

kh/2π = (2mE)1/2

IV V

a + b 2a + b

YIV = F cos kx +  G sin kx

YV = He-Kx

(a)

(b)

Figure 11.17: (a) Potential and eigenfunctions for single finite well depth U , where E < U .
(b) Potential and eigenfunctions for two finite wells. The width of each well is a, and the
wells are separated by a distance b.
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11.4. PROBLEM 11.17 11

ψI = AeKx for x ≤ 0 (region I) (11.3)

ψIII = De−Kx for x ≥ 0 (region III) (11.4)

In region II where U = 0, the wave equation becomes:

d2ψ(x)

dx2
= −k2ψ(x) (11.5)

where

k =

√
2mE

~
(11.6)

and the solution is:

ψII = B cos kx+ C sin kx 0 ≤ x ≤ a

Each wave function and its slope must contineuos everywhere including the well edges
x = 0 and x = a:

A = B [continuity of ψ(x) atx = 0] (11.7)

KA = kC [continuity of dψ(x)/dx at x = 0] (11.8)

De−Ka = B cos ka+ C sin ka [continuity of ψ(x) at x = a] (11.9)

DKe−Ka = B sin ka− C cos ka [continuity of dψ(x)/dx at x = a] (11.10)

These are four equation in the for unknown coefficients A,B,C,D. Dividing 11.8 by
11.7 and 11.10 by 11.9 we get:

B =
k

K
C (11.11)

−K =
−Bk sin ka+ C cos ka

B cos ka+ C sin ka
(11.12)

Rearranging 11.12 and using 11.11 to eliminate B we get:

−K
(
k

K

)
C cos ka−KC sin ka = −

(
k

K

)
Ck sin ka+ Ck cos ka

(k2 −K2) sin ka = 2kK cos ka

tan ka = 2
kK

k2 −K2
(11.13)
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Using Equations (11.2 and 11.6) we get:

tan ka = 2

√
2mE

~2

√
2m(U−E)

~2

2mE
~2 − 2m(U−E)

~2

= 2
2m
√
E(U − E)

2mE − 2mU − 2mE

= 2

√
E(U − E)

−U

tan2 ka =
4E(U − E)

U2

tan2

(√
2mE

~2

)
a =

4E(U − E)

U2
(11.14)

11.14 is the required equation, that relates the energy E to the height U and width a of
the potential.

(c) The boundary conditions are:

ψI(0) = ψII(0) (11.15)

ψII(a) = ψIII(a) (11.16)

ψIII(a+ b) = ψIV (a+ b) (11.17)

ψIV (2a+ b) = ψV (2a+ b) (11.18)(
dψI(x)

dx

)
x=0

=

(
dψII(x)

dx

)
x=0

(11.19)(
dψII(x)

dx

)
x=a

=

(
dψIII(x)

dx

)
x=a

(11.20)(
dψIII(x)

dx

)
x=a+b

=

(
dψIV (x)

dx

)
x=a+b

(11.21)(
dψIV (x)

dx

)
x=2a+b

=

(
dψV (x)

dx

)
x=2a+b

(11.22)

Applying Equations (11.15 and 11.19) we get:

A = B (11.23)

KA = kC (11.24)

and applying Equations (11.16 and 11.20) we get:

B cos ka+ C sin ka = DeKa + E ′e−Ka (11.25)

−Bk sin ka+ Ck cos ka = KDeKa −KE ′e−Ka (11.26)
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Using Equations (11.23 and 11.24) in Equations (11.25 and 11.26) we get:

A cos ka+
KA

k
sin ka = DeKa + E ′e−Ka (11.27)

−Ak sin ka+KA cos ka = KDeKa −KE ′e−Ka (11.28)

Eliminating A from Equations (11.27 and 11.28), we get:

DeKa + E ′e−Ka

cos ka+ K
k

sin ka
=

KDeKa −KE ′e−Ka

K cos ka− k sin ka
D
E′ e

Ka + e−Ka

cos ka+ K
k

sin ka
=

D
E′ e

Ka − e−Ka

cos ka− k
K

sin ka(
D

E ′ e
Ka + e−Ka

)(
cos ka− k

K
sin ka

)
=

(
D

E ′ e
Ka − e−Ka

)(
cos ka+

K

k
sin ka

)

D

E ′ e
Ka

[(
cos ka− k

K
sin ka

)
−
(

cos ka+
K

k
sin ka

)]
= −e−Ka

[(
cos ka− k

K
sin ka

)
+

(
cos ka+

K

k
sin ka

)]
−D
E ′ e

Ka

(
K

k
+
k

K

)
sin ka = −e−Ka

[
2 cos ks+

(
K

k
− k

K

)
sin ka

]
D

E ′ =
e−Ka

[
2 cos ka+

(
K
k
− k

K

)
sin ka

]
eKa

(
K
k

+ k
K

)
sin ka

=
2e−2Ka

[
cos ka+ 1

2

(
K
k
− k

K

)
sin ka

](
K
k

+ k
K

)
sin ka

(11.29)

Now, applying Equations (11.17 and 11.21) and use α = k(a+ b) and β = K(a+ b) we get:

Deβ + E ′e−β = F cosα+G sinα
Deβ + E ′e−β

F cosα+G sinα
= 1 (11.30)

KDeβ −KE ′e−β = −Fk sinα+Gk cosα
KDeβ −KE ′e−β

−Fk sinα+Gk cosα
= 1 (11.31)

From Equations (11.30 and 11.31) we get:

Deβ + E ′e−β

F cosα+G sinα
=

KDeβ −KE ′e−β

−Fk sinα+Gk cosα
D
E′ e

β + e−β

F
G

cosα+ sinα
=

K
k

D
E′ e

β − K
k
e−β

−F
G

sinα+ cosα
(11.32)
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11.32 can be rearranged as:(
D

E ′ e
β + e−β

)(
−F
G

sinα+ cosα

)
=

(
K

k

D

E ′ e
β − K

k
e−β

)(
F

G
cosα+ sinα

)

− F

G
sinα

(
D

E ′ e
β + e−β

)
+ cosα

(
D

E ′ e
β + e−β

)
=
F

G
cosα

(
K

k

D

E ′ e
β − K

k
e−β

)
+ sinα

(
K

k

D

E ′ e
β − K

k
e−β

)
F

G
sinα

(
D

E ′ e
β + e−β

)
+
F

G

K

k
cosα

(
D

E ′ e
β − e−β

)
= −K

k
sinα

(
D

E ′ e
β − e−β

)
+ cosα

(
D

E ′ e
β + e−β

)
F

G

[
D

E ′ e
β

(
sinα+

K

k
cosα

)
+ e−β

(
sinα− K

k
cosα

)]
=
D

E ′ e
β

(
cosα− K

k
sinα

)
+ e−β

(
cosα+

K

k
sinα

)
F

G
=

D
E′ e

β
(
cosα− K

k
sinα

)
+ e−β

(
cosα+ K

k
sinα

)
D
E′ eβ

(
sinα+ K

k
cosα

)
+ e−β

(
sinα− K

k
cosα

) (11.33)

Now, using Equations (11.18 and 11.22) we get:

He−K(2a+b) = F cos k(2a+ b) +G sin k(2a+ b) (11.34)

−KHe−K(2a+b) = −kF sin k(2a+ b) + kG cos k(2a+ b)

He−K(2a+b) =
k

K
[F sin k(2a+ b)−G cos k(2a+ b)] (11.35)

Equating the right hand sides of Equations (11.35 and 11.35) we get:

F cos k(2a+ b) +G sin k(2a+ b) =
k

K
[F sin k(2a+ b)−G cos k(2a+ b)]

K

k
[F cos k(2a+ b) +G sin k(2a+ b)] = F sin k(2a+ b)−G cos k(2a+ b)

K

k

[
F

G
cos k(2a+ b) + sin k(2a+ b)

]
=

F

G
sin k(2a+ b)− cos k(2a+ b)

K

k

F

G
cos k(2a+ b) +

K

k
sin k(2a+ b) =

F

G
sin k(2a+ b)− cos k(2a+ b)

F

G

(
sin k(2a+ b)− K

k
cos k(2a+ b)

)
= cos k(2a+ b) +

K

k
sin k(2a+ b)
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F

G
=

cos k(2a+ b) + K
k

sin k(2a+ b)

sin k(2a+ b)− K
k

cos k(2a+ b)
(11.36)

From Equations (11.33 and 11.36) we get:

cos k(2a+ b) + K
k

sin k(2a+ b)

sin k(2a+ b)− K
k

cos k(2a+ b)
=

D
E′ e

β
(
cosα− K

k
sinα

)
+ e−β

(
cosα+ K

k
sinα

)
D
E′ eβ

(
sinα+ K

k
cosα

)
+ e−β

(
sinα− K

k
cosα

)
(11.37)

or one can write 11.37 as:

f(E) =
D
E′ e

β
(
cosα− K

k
sinα

)
+ e−β

(
cosα+ K

k
sinα

)
D
E′ eβ

(
sinα+ K

k
cosα

)
+ e−β

(
sinα− K

k
cosα

) − cos k(2a+ b) + K
k

sin k(2a+ b)

sin k(2a+ b)− K
k

cos k(2a+ b)

(11.38)

The parameters in 11.38 are a, b, U, andE. The equation can be solved numerically such that
for certain values of a, b, andU one finds the values of E that makes f(E) = 0.
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11.5 Problem 11.18

One can roughly calculate the weak binding energy of a donor electron as well as its orbital
radius in a semiconductor on the basis of the Bohr theory of the atom. Recall that, for a
single electron bound to a nucleus of charge Z the bindiog energy of the ground state is given
by

ke2Z2

2a◦
= 13.6Z2 eV

and the ground-state radius by

r1 =
a◦
Z

For the case of a phosphorus donor atom in silicon, the outermost donor electron is attracted
by a nuclear charge of Z = 1. However, because the phosphorus nucleus is embedded in the
polarizable silicon, the effective nuclear charge seen by the electron is reduced to Z/κ, where
κ is the dielectric constant.

(a) Calculate the binding energy of a donor electron in Si (κ = 12) and Ge (κ = 16) and
compare to the thermal energy available at room temperature.

(b) Calculate the radius of the first Bohr orbit of a donor electron in Si and Ge. How does

the Bohr orbit radius compare to the nearest-neighbor distance in Si(2.34
◦
A) and in

Ge(2.43
◦
A)?

Solution

(a) The binding energy B.E. is given by:

B.E. = 13.6

(
Z

κ

)2

B.E.Si = 13.6

(
1

12

)2

= 0.094 eV

B.E.Ge = 13.6

(
1

16

)2

= 0.053 eV
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The thermal energy at room temperature of 300 K is 0.025 eV . Although the thermal
energy is smaller than the B.E., many electrons will be able to make the transition to
the conduction band due to the statistical nature of the distribution of electrons among
available energy levels (See chapter 9).

(b) The first Bohr radius r1 is given by:

r1 =
κa◦
Z

r1Si = 12× 0.529

= 6.4
◦
A

r1Ge = 16× 0.529

= 8.5
◦
A

The donor electrons are not localized around their own atoms but they roam around 3
or 4 semiconductor atoms.
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