
Chapter 10

Molecular Structure. Selected
Problems

10.1 Problem 10.3

Use the data in Table 10.2 to calculate the maximum amplitude of vibration for

(a) the HI molecule and

(b) the HF molecule. Which molecule has the weaker bond?

Solution

At maximum displacement (amplitude), all kinetic energy of vibration will be transformed
into potential energy, i.e.

1

2
~ ω =

1

2
K A2

where ω is the angular frequency of vibration, K is the force constant of the molecule, and
A is the amplitude of the vibration. The force constant K is given by:

K = µ ω2
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where µ = (m1 m2)/(m1 + m2) is the reduced mass of a diatomic molecule. The amplitude
of the vibration is then:

A =

√
~ ω

K

=

√
~ ω

µ ω2

=

√
~

µ ω

=

√
~

µ (2π f)

where f is the frequency, given in Table 10.2.

(a) The Hydrogen mass = 1.6605 × 10−27 kg and the mass of Iodine is 127 × 1.6605−27 kg,
so the reduced mass of HI is µ = 127 × 1.6605 × 10−27/128 kg. The frequency of HI
molecules as given Table 10.2 is f = 6.69× 1013 Hz.

A =

√
~

µ (2π f)

=

√
1.055× 10−34 × 128

2π × 6.69× 1013 × 127× 1.6605× 10−27

= 1.23× 10−11 m

= 0.0123 nm

The force constant of the HI molecule is:

K = µ ω2

= (2π f)2 µ

=
(2π × 6.69× 1013)2 × 127× 1.6605× 10−27

128
= 291 N/m

(b) The mass of Fluorin is 19 × 6.66 × 10−27 kg and its frequency from Table 10.2 is f =
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8.72× 1013 Hz.

A =

√
~

µ (2π f)

=

√
1.055× 10−34 × 20

2π × 8.72× 1013 × 19× 1.6605× 10−27

= 1.23× 10−11 m

= 0.0110 nm

The force constant of the HF molecule is:

K = µ ω2

= (2π f)2 µ

=
(2π × 8.72× 1013)2 × 19× 1.6605× 10−27

20
= 472 N/m

The HI molecule has weaker bond due to its smaller force constant.
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10.2 Problem 10.4

The ` = 5 to ` = 6 rotational absorption line of a diatomic molecule occurs at a wavelength
of 1.35 cm (in the vapor phase).

(a) Calculate the wavelength and frequency of the ` = 0 to ` = 1 rotational absorption line.

(b) Calculate the moment of inertia of the molecule.

Solution

(a) The energy change, ∆E`1,`2 in a rotational transition from `1 to `2 is:

∆E`1,`2 =
~2

I
`2

= h f

=
h c

λ`1,`2

λ`1,`2 =
h c I

~2 `2

=
2π c I

~ `2

λ0,1 =
2π c I

~

λ5,6 =
2π c I

6 ~
λ0,1 = 6λ5,6

= 6× 1.35

= 8.1 cm

(b) The moment of inertia I can be calculated from one of the wavelngth:

λ0,1 =
2π c I

~

I =
~ λ0,1

2π c

=
1.055× 10−34 × 8.1× 10−2

2π × 38

= 4.53× 10−45 kg ·m2
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10.3 Problem 10.7

The ν = 0 to ν = 1 vibrational transition of the HI molecule occurs at a frequency of 6.69×
1013 Hz. The same transition for the NO molecule occurs at a frequency of 5.63× 1013 Hz.
Calculate

(a) the effective force constant and

(b) the amplitude of vibration for each molecule.

(c) Explain why the force constant of the NO molecule is so much larger than that of the
HI molecule.

Solution

Vibrational energy of a molecule is:

Evib = (ν +
1

2
) ~ ω

ω =

√
K

µ

∆E0,1 = E1 − E0

= h f

=

√
~2 K

µ

f =

√
K

4π2µ

K = 4π2 f 2 µ

where K is the force constant, µ is the reduced mass of the molecule, and f is the frequency
of the radiation emitted in the transition.

(a) the reduced mass of the the HI molecule is 127 × 1.6605 × 10−27/128 and that of NO
molecule is 14× 16× 1.6605× 10−27/30. Using the frequencies given in the problem we
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get:

KHI = (2π × 6.69× 1013)2 × 127× 1.6605× 10−27

128
= 291.1 N/m

KNO = (2π × 5.63× 1013)2 × 14× 16× 1.6605× 10−27

30
= 1551 N/m

(b) Tha mplitude of vibration is:

A =

√
~

µ (2π f)

AHI =

√
1.055× 10−34 × 128

127× 1.6605× 10−27 × 2× π × 6.69× 1013

= 1.23× 10−11 m

ANO =

√
1.055× 10−34 × 30

16× 14× 1.6605× 10−27 × 2× π × 5.63× 1013

= 4.90× 10−12 m

(c) The reduced mass of the NO molecules is 7.5 times the reduced mass of the HI molecules,
as a result the force constant of NO is much larger than that of HI.
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10.4 Problem 10.9

The hydrogen molecule comes apart (dissociates) when it is excited internally by 4.5 eV .
Assuming that this molecule behaves exactly like a harmonic oscillator with classical fre-
quency ω = 8.277 × 1014 rad/s, find the vibrational quantum number corresponding to its
4.5-eV dissociation energy.

Solution

The vibrational energy of the molecule is:

Evib = (ν +
1

2
) ~ ω

If we take Evib to be 4.5eV and the given value of ω, we get:

ν =
Evib

~ ω
− 1

2

=
4.5

6.582× 10−16 × 8.277× 1014
− 1

2
= 7.76

But ν has to be a an integer number, so ν = 7 is the highest vibrational state that the
hydrogen molecule can attain without dissociating. In other words the ν = 8 state is
unstable.
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10.5 Problem 10.13

As an alternative to harmonic interactions, the Morse potential

U(r) = U◦
{
1− e−β(r−R◦)

}2

can be used to describe the vibrations of a diatomic molecule. The parameters R◦, U◦ and
β are chosen to fit the data for a particular atom pair.

(a) Show that R◦ is the equilibrium separation, and that the potential energy far from
equilibrium approaches U◦.

(b) Show that near equilibrium (r ≈ R◦) the Morse potential is harmonic, with force constant
K = mω2 = 2U◦β

2.

(c) The lowest vibrational energy for the Morse oscillator can be shown to be

Evib =
1

2
~ω − (~ω)2

16U◦

Obtain from this an expression for the dissociation energy of the molecule.

(d) Apply the results of parts (b) and (c) to deduce the Morse parameters U◦ and β for the
hydrogen molecule. Use the experimental values 573 N/m and 4.52 eV for the effective
spring constant and dissociation energy respectively. (The measured value of R◦ for H2

is 0.074 nm).

Solution

(a) The condition for equilibrium is:

dU

dr
= 0

= 2U◦
{
1− e−β(r−R◦)

} {
βe−β(r−R◦)

}
The values of r that satisfies the above equation are r = ∞ and r = R◦, so obviously
the finite solution is r = R◦. When r � R◦, the exponent of the exponential term is
large and U(r) ≈ U◦.
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(b) Near equilibrium, (r −R◦) is very small and we can use the expansion ex = 1 + x + · · ·
to write:

1− e−β(r−R◦) ≈ β(r −R◦)

and this gives:
U(r) ≈ U◦[β(r −R◦)]

2

The above equation can be written as:

U(r) =
1

2
K(r −R◦)

2

this is the form of a harmonic oscillator where;

K = 2U◦β
2 (10.1)

(c) To dissociate a molecule an energy of Ediss = U(∞)−Evib must be given to the molecule.
Since U(∞) = U◦, we then have:

Ediss = U◦ −
1

2
~ω +

(~ω)2

16U◦
(10.2)

(d) Equation (10.2) can be used to find U◦ and then Equation (10.1) is used to fin β. In
addition we need:

ω =

√
K

µ
(10.3)

where µ is the reduced mass of the hydrogen molecule, µ = mpmp/(mp + mp) = mp/2,
and mp = 938.28× 103 keV/c2 is the mass of the proton. We then get:

K = 573 N/m

= 573 J/m2

=
573

1.602× 10−19
eV/m2

=
573

1.602× 10−16 × 1018
keV/(nm)2

= 3.58 keV/(nm)2

then ω becomes:

ω =

√
K

µ

=

√
3.5

1
2
× 938.28× 103
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Using ~ = 197.3 eV · nm/c then ~ω is:

~ω = 197.3

√
3.5

1
2
× 938.28× 103

= 0.545 eV

Substituting in Equation (10.2), we get:

4.52 = U◦ − 0.272 +
0.0186

U◦

0 = U2
◦ − 4.792U◦ + 0.0186

Solving the above equation we get U◦ = 4.788 or 0.004 eV . The second solution is
unrealistically small so U◦ = 4.79 eV .

Now substituting K and U◦ in Equation (10.1) we get:

β =

√
K

2U◦

=

√
3.58× 103

2× 4.79

= 19.3 nm−1


