Chapter 4

Physics 205 Solution of Home Work Problems

4.1 Problem 4.14

(a) Show that the formula for Low Energy Electron Diffraction (LEED) when electrons are incident perpendicular to a crystal surface may be written as:

\[\sin \phi = \frac{n \hbar c}{d \sqrt{2 m_e c^2 K}} \]

where \(n \) is the order of the maximum, \(d \) is the atomic spacing, \(m_e \) is the electron mass, \(K \) is the electron’s kinetic energy, and \(\phi \) is the angle between the incident and diffracted beams.

(b) Calculate the atomic spacing in a crystal that has consecutive diffraction maxima at \(\phi = 24.1^\circ \) and \(\phi = 54.9^\circ \) for 100-eV electrons.

Solution

(a) For a maximum in an interference pattern we have:

\[n \lambda = d \sin \phi \]

\[\sin \phi = \frac{n \lambda}{d} \]

\[= \left(\frac{n}{d} \right) \left(\frac{h}{\lambda} \right) \]

\[= \left(\frac{n}{d} \right) \left(\frac{h}{\sqrt{2m_e K}} \right) \]

\[= \left(\frac{n \hbar c}{\sqrt{2m_e c^2 K}} \right) \]
Let us assume that the order of the maximum for the first angle is \(n_1 \) and that for the second angle is \(n_1 + 1 \), we then have:

\[
d_1 = \frac{n_1 hc}{\sin \phi_1 \sqrt{2m_e c^2 K}} = \frac{n_1 \times 12.40 \times 10^{-7} \text{ eV} \cdot \text{m}}{\sqrt{(\sin 24.1^\circ) \times (2 \times 0.511 \times 10^6 \text{ eV} \times 100 \text{ eV})}} \approx n_1 \times 3.00 \times 10^{-10} \text{ m}
\]

\[
d_2 = \frac{(n_1 + 1)hc}{\sin \phi_2 \sqrt{2m_e c^2 K}} = \frac{(n_1 + 1) \times 12.40 \times 10^{-7} \text{ eV} \cdot \text{m}}{\sqrt{(\sin 54.9^\circ) \times (2 \times 0.511 \times 10^6 \text{ eV} \times 100 \text{ eV})}} = (n_1 + 1) \times 1.50 \times 10^{-10} \text{ m}
\]

Since \(d_1 \) must be equal to \(d_2 \) then we get:

\[
d_2 - d_1 = 1.50 \times (n_1 + 1) \times 10^{-10} - 3.00 \times n_1 \times 10^{-10} = 0
\]

\[
0 = (1.5 - 1.5 \times n_1) \times 10^{-10}
\]

\[
n_1 = 1
\]

\[
d = 3.00 \times 10^{-10} \text{ m} = 3.00 \text{ Å}
\]
4.2 Problem 4.23

A proton has a kinetic energy of 1.0 MeV. If its momentum is measured with an uncertainty of 5%, what is the minimum uncertainty in its position?

Solution

The rest mass-energy of a proton is 938.3 MeV. Since the kinetic energy of the proton is 1.0 MeV, then it is only 0.11% of the rest mass-energy. So, we can treat this problem nonrelativistically. The kinetic energy K and momentum are related by:

\[
K = \frac{1}{2}mv^2 \\
= \frac{p^2}{2m} \\
p = \sqrt{2mK} \\
= \sqrt{2 \times 938.3 \text{ MeV}/c^2 \times 1.0 \text{ MeV}} \\
= 43.3 \text{ MeV}/c \\
\Delta p = 0.05p \\
= 2.17 \text{ MeV}/c \\
\Delta p \cdot \Delta x = \frac{h}{2} \\
\Delta x = \frac{h}{2\Delta p} \\
= \frac{\hbar}{2(\Delta p)c} \\
= \frac{1.973 \times 10^{-13} \text{ MeV} \cdot \text{m}}{2 \times 2.17 \text{ MeV}} \\
= 4.55 \times 10^{-14} \text{ m}
\]
4.3 Problem 4.28

An electron of momentum p is at a distance r from a stationary proton. The system has a kinetic energy $K = \frac{p^2}{2m_e}$ and potential energy $U = -\frac{ke^2}{r}$. Its total energy is $E = K + U$. If the electron is bound to the proton to form a hydrogen atom, its average position is at the proton but the uncertainty in its position is approximately equal to the radius r of its orbit. The electron’s average momentum will be zero, but the uncertainty in its momentum will be given by the uncertainty principle. Treat the atom as a one-dimensional system in the following:

(a) Estimate the uncertainty in the electron’s momentum in terms of r.

(b) Estimate the electron’s kinetic, potential, and total energies in terms of r.

(c) The actual value of r is the one that minimizes the total energy, resulting in a stable atom. Find the value of r and the resulting total energy. Compare your answer with the predictions of the Bohr theory.

Solution

(a) Since $\Delta x \approx r$ and $p \approx \Delta p$, then the uncertainty principle gives

$$\Delta p \cdot \Delta x = \frac{\hbar}{2}$$

$$\Delta p \approx \frac{\hbar}{2r},$$

(b) We then get for the kinetic energy K, the potential energy U and the total energy E:

$$K = \frac{p^2}{2m} = \frac{(\Delta p)^2}{2m} = \frac{\hbar^2}{8mr^2}$$

$$U = -\frac{ke^2}{r}$$

$$E = \frac{\hbar^2}{8mr^2} - \frac{ke^2}{r}$$
(c) We minimize E by setting $dE/dr = 0$:

$$0 = -\frac{\hbar^2}{4mr^3} + \frac{ke^2}{r^2}$$

$$\frac{ke^2}{r^2} = \frac{\hbar^2}{4mr^3}$$

$$r = \frac{\hbar^2}{4mke^2}$$

$$= \frac{1}{4a_o}$$

$$= \frac{1}{4} \times 0.5292 \times 10^{-10} \text{ m}$$

$$= 1.323 \times 10^{-11} \text{ m}$$

where $a_o = \hbar^2/(mke^2)$ is the Bohr radius. Substituting for r in the total energy equation we get:

$$E = \frac{\hbar^2}{8m} \times \frac{16m^2k^2e^4}{\hbar^4} - ke^2 \times \frac{4mke^2}{\hbar^2}$$

$$= \frac{2mk^2e^4}{\hbar^2} - \frac{4mk^2e^4}{\hbar^2}$$

$$= -\frac{2mk^2e^4}{\hbar^2}$$

$$= -2ke^2 \times \frac{mke^2}{\hbar^2}$$

$$= -4 \times \frac{ke^2}{2a_o}$$

$$= -4 \times 13.6 \text{ eV}$$

The radius of this atom is one quarter of the Bohr radius and the energy is 4 times the energy of the $n = 1$ state of the Bohr hydrogen atom.
4.4 Problem 4.29

An excited nucleus with a lifetime of 0.100 ns emits a γ-ray of energy 2.00 MeV. Can the energy width (uncertainty in energy ΔE) of this 2.00-MeV γ emission line be directly measured if the best gamma detectors can measure energies to ± 5 eV?

Solution

The energy width can be found from the uncertainty principle:

$$\Delta E \cdot \Delta t = \frac{\hbar}{2}$$

$$\Delta E = \frac{\hbar}{2\Delta t}$$

$$= \frac{6.58 \times 10^{-16} \text{ eV} \cdot \text{s}}{2 \times 0.100 \times 10^{-9} \text{ s}}$$

$$= 3.29 \times 10^{-6} \text{ eV}$$

Since the width is much smaller than the best energy resolution of the gamma detectors, then this line can not be directly detected.
A π^0 meson is an unstable particle produced in high-energy particle collisions. It has a mass-energy equivalent of about 135 MeV, and it exists for an average lifetime of only 8.7×10^{-17} s before decaying into two gamma rays. Using the uncertainty principle, estimate the fractional uncertainty $\Delta m/m$ in its mass determination.

Solution

From the uncertainty principle we get:

\[
\begin{align*}
\Delta E \cdot \Delta t &= \frac{\hbar}{2} \\
\Delta mc^2 \Delta t &= \frac{\hbar}{2} \\
\frac{\Delta m}{m} &= \frac{\hbar}{2 \Delta t mc^2} \\
&= \frac{\hbar}{2 \Delta t E_{\text{rest}}} \\
&= \frac{6.582 \times 10^{-22} \text{ MeV} \cdot s}{2 \times 8.7 \times 10^{-17} \text{ s} \times 135 \text{ MeV}} \\
&= 2.80 \times 10^{-8}
\end{align*}
\]