
Chapter 3

Physics 205 Solution of Home Work
Problems

3.1 Problem 3.10

A typical rutherford scattering apparatus consists of an evacuated tube containing a polo-
nium -210 α source (2.5 MeV α′s), collimators, a gold foil target, and a special alpha-
detecting film. The detecting film simultaneously measures the alphas scattered over a
range from φ = 2.5 − 12.5◦. (See Fig. P3.10.) The total number of counts measured over
a week’s time falling in a specific ring ( denoted by its average scattering angle) and the
corresponding ring area are given in Table 3.2.

(a) Find the counts per area at each angle and correct these values for the angle independent
background. The background correction may be found from a seven-day count taken
with the beam blocked with a metal shutter in which 72 counts were measured evenly
distributed over the total detector area of 8.50 cm2.

(b) show that the corrected counts per unit area are proportional to sin−4(φ/2) or in terms
of the Rutherford formula, Equation 3.16,

∆n

A
=

C

sin4(φ/2)

Notes: If a plot of (∆n/A) versus φ will not fit on a single sheet of graph paper, try plotting
log(∆n/A) versus log

[
1/ sin4(φ/2)

]
. This plot yields a straight line with a slope of of one

and an intercept that gives C. Explain why this technique works.
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Figure 3.10: (a) Side view of Rutherford’s scattering apparatus: φ is the scattering angle.
(b) End view of the rutherford apparatus showing the film detector end cap with grid
marking the angle φ. The α particles damage the film emulsion and after development show
up as dots within the rings.
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Table 3.1: Data to be Used in problem 10

Angle Ring Area
(degrees) Counts/Ring (cm2) Counts/Area

2.5 605 0.257
3.5 631 0.360
4.5 520 0.463
5.5 405 0.566
6.5 301 0.669
7.5 201 0.772
8.5 122 0.875
9.5 78 0.987
10.5 65 1.08
11.5 66 1.18
12.5 44 1.29

Solution

(a) The background counts per cm2 is given by 72/8.50 = 8.47 Counts/cm2. So, the corrected
Counts/Area = Counts/Area - Background Count/Area. We can then fill the table as
follows:

Angle Ring Area Background-Corrected
(degrees) Counts/Ring (cm2) Counts/Area Counts/Area (∆n/A)

2.5 2605 0.257 10136 10128
3.5 1031 0.360 2863 2855
4.5 520 0.463 1123 1115
5.5 405 0.566 715.6 707.1
6.5 301 0.669 449.9 441.5
7.5 201 0.772 260.4 251.9
8.5 122 0.875 139.4 131.0
9.5 78 0.987 79.03 70.56
10.5 65 1.08 60.19 51.72
11.5 66 1.18 55.93 47.46
12.5 44 1.29 34.11 25.64

(b) To show the relation between the count rate and the angle we construct the following
table:
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Angle,φ log (Background Corrected
(degrees) sin(φ/2) sin−4(φ/2) log(sin−4(φ/2)) Counts/Area) log(∆n/A)

2.5 0.0218 4.43× 106 6.65 4.01
3.5 0.0305 1.14× 106 6.06 3.46
4.5 0.0393 4.21× 105 5.62 3.05
5.5 0.0400 1.89× 105 5.28 2.85
6.5 0.0567 9.68× 104 4.99 2.65
7.5 0.0654 5.47× 104 4.74 2.40
8.5 0.0741 3.32× 104 4.52 2.12
9.5 0.0828 2.13× 104 4.33 1.85
10.5 0.0915 1.43× 104 4.15 1.71
11.5 0.1001 9.98× 103 4.00 1.68
12.5 0.1089 7.12× 103 3.85 1.41

The values of sin−4(φ/2) have a wide range that scans three orders of magnitude. It
will not be practical to plot sin−4(φ/2) vs ∆n/A on a linear graph. Therefore we plot
log(sin−4(φ/2)) vs log(∆n/A) instead. the plot is shown in Figure 3.11 below.

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

log (∆ n / A)

lo
g 

(s
in

-4
(φ

/2
))

Figure 3.11: A plot of log(∆n/A)vs log(sin−4(φ/2)), with a “best fit” straight line. The line
has a y-intercept of 2.0 and a slope of ≈ 1.1, confirming the linear relation between ∆n/A
and sin−4(φ/2).
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This method works since the Rutherford formula is:

∆n

A
=

C

sin−4(φ/2)

taking the log of this equation gives:

log

(
∆n

A

)
= log C + log

(
C

sin−4(φ/2)

)
the last equation is an equation of a straight line like y = mx + b. where m is the
slope and b is the y-intercept. In Rutherford “log” equation, the “slope = 1” and the
“intercept = log C”. The straight line in Figure 3.11 is the “best fit” straight line and

its equation is y = 1.1x + 2.0 where y = log
(

C
sin−4(φ/2)

)
and x = log

(
∆n
A

)
.
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3.2 Problem 3.23

A hydrogen atom is in its ground state (n = 1). Using the Bohr theory of the atom calculate

(a) the radius of the orbit,

(b) the linear momentum of the electron,

(c) the angular momentum of the electron,

(d) the kinetic energy,

(e) the potential energy, and

(f) the total energy.

Solution

(a) The radius of an orbit in a hydrogen atoms is:

rn =

(
h2

4π2meke2

)
n2

= 0.0529 n2 nm

= 0.0529 nm for n = 1

(b) The linear momentum of the electron in the first orbit is given by:

mev
2

rn

=
ke2

r2
n

mev
2 =

ke2

rn

(mev)2 =
meke2

rn

pn =

√
meke2

rn

p1 =

√
meke2

r1

=

√
9.11× 10−31 × 8.988× 109 × (1.602× 10−19)2

0.0529× 10−9

= 1.99× 10−24 kg ·m/s
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(c) The angular momentum L of the electron is:

Ln = pnrn

L1 = p1r1

= 1.99× 10−24 × 0.0529× 10−9

= 1.05× 10−34 kg ·m2/s

=
h

2π

(d) The kinetic energy K of the electron is:

Kn =
ke2

2rn

K1 =
ke2

2r1

=
8.988× 109 × (1.602× 10−19)2

2× 0.0529−9

= 2.18× 10−18 Jules

=
2.18× 10−18

1.602× 10−19
eV

= 13.6 eV

(e) The potential energy PE of the electron is

PEn = −ke2

rn

PE1 = −ke2

r1

= −8.988× 109 × (1.602× 10−19)2

×0.0529−9

= −4.36× 10−18 Jules

= − 4.36× 10−18

1.602× 10−19
eV

= −27.2 eV

(f) The total energy E of the electron is:

En = Kn + PEn

E1 = K1 + PE1

= 13.6− 27.2

= −13.6 eV
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3.3 Problem 3.28

The Auger process. An electron in chromium makes a transition from the n = 2 state to the
n = 1 state without emitting a photon. Instead, the excess energy is transferred to an outer
electron (in the n = 4 state), which is ejected by the atom. (This is called an Auger process,
and the ejected electron is referred to as an Auger electron.) Use the Bohr theory to find
the kinetic energy of the Auger electron.

Solution

The chromium nucleus has 24 protons. In a simple picture, orbiting electrons see a nucleus
with a charge of Ze = 24e. The energy En an electron is then:

En = 13.6Z2

(
1

n2

)
the energy ∆E that is available from the n = 2 to n = 1 transition is:

∆E = 13.6Z2

(
1

n2
f

− 1

n2
i

)

= 13.6× (24)2

(
1

1
− 1

4

)
= 5875 eV

= 5.875 keV

The kinetic energy K of the Auger electron is 5.875 keV minus the ionization energy
Eionization that is required to to remove the electron from the n = 4 state to infinity.

Eionization = E4

= 13.6

(
Z

4

)2

= 13.6

(
24

4

)2

= 0.4896 keV

K = ∆E − Eionization

= 5.875− 0.4896

= 5.385 keV
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3.4 Problem 3.37

Use Bohr’s model of the hydrogen atom to show that when the atom makes a transition
from the state n to the state n− 1, the frequency of the emitted light is given by

ν =
2π2mek

2e4

h3

[
2n− 1

(n− 1)2n2

]
Show that as n → ∞, the expression above varies as 1/n3 and reduces to the classical
frequency one would expect the atom to emit. (Hint: To calculate the classical frequency,
note that the frequency of revolution is v/2πr, where r is given by Equation 3.28.) This
an example of the correspondence principle, which requires that the classical and quantum
models agree for large values of n.

Solution

The energy ∆E that is emitted in a transition from a state n to a state n− 1 is:

∆E = hν

hν = ∆E

=

(
4π2mek

2e4

2h2

)(
1

(n− 1)2
− 1

n2

)
ν =

(
2π2mek

2e4

h3

)(
n2 − (n− 1)2

(n− 1)2n2

)
=

(
2π2mek

2e4

h3

)(
n2 − n2 + 2n− 1

(n− 1)2n2

)
=

2π2mek
2e4

h3

[
2n− 1

(n− 1)2n2

]

When n becomes very large i.e. n� 1 the above equation becomes:

ν =
2π2mek

2e4

h3

(
2

n3

)
=

4π2mek
2e4

h3

(
1

n3

)
Classically the emitted frequency is the frequency of revolution ν = 1/T , where T is the
period of the revolution. The speed of the circling electron v = 2πr/T = 2πrν. The velocity
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and radius of the electron are given by:

v =

√
ke2

mer

1

r
=

4π2meke2

h2

1

n2

Using the last two equations we get:

ν =
v

2πr

=

√
ke2

mer

2πr

=

√
ke2

4π2mer3

=

√
ke2

4π2me

×
(

4π2meke2

h2

1

n2

)3

=

√
16π4m2

ek
4e8

h6n6

=
4π2mek

2e4

h3

(
1

n3

)
The last equation is identical to the quantum equation for n� 1.
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3.5 Problem 3.43

Four possible transition for a hydrogen atom are listed below.

(A) ni = 2; nf = 5
(B) ni = 5; nf = 3
(C) ni = 7; nf = 4
(D) ni = 4; nf = 7

(a) Which transitions emits the photons having the shortest wavelength?

(b) For which transition does the atom gain the most energy?

(c) For which transition(s) does the atom lose energy?

Solution

In a hydrogen atom, the energy ∆E in eV involved in a transition from a state ni to a state
nf is given by:

∆E = 13.6

[
1

n2
i

− 1

n2
f

]
When ∆E > 0 we have absorption and when ∆E < 0 we have emission. So,

(A) for ni = 2 and nf = 5, ∆E = +2.86 eV (absorption)

(B) for ni = 5 and nf = 3, ∆E = −0.97 eV (emission)

(C) for ni = 7 and nf = 4, ∆E = −0.57 eV (emission)

(D) for ni = 4 and nf = 7, ∆E = +0.57 eV (absorption)

using these results we get:

(a) Since E = hc/λ, then the shortest wavelength is emitted in transition B.

(b) The atom gains most energy in transition A.

(c) The atom loses energy in transitions B and C.


