## Chapter 5

# Matter Waves. Home Work Solutions

#### 5.1 Problem 5.10 (In the text book)

An electron has a de Broglie wavelength equal to the diameter of the hydrogen atom. What is the kinetic energy of the electron? How does this energy compare with the ground-state energy of the hydrogen atom?

#### Solution

The radius of the hydrogen atom can be taken as the radius of the first orbit or, Bohr radius  $a_{\circ} = 0.5292 \times 10^{-10} m$ . The de Broglie wave length of the given electron is:

$$\lambda = 2a_{\circ} = 1.0584 \times 10^{-10} m$$

Using  $p = h/\lambda$ , where p is the momentum of the electron, the kinetic energy K of the electron is:

$$K = \frac{p^2}{2m_e}$$
  
=  $\frac{h^2 c^2}{2m_e c^2 \lambda^2}$   
=  $\frac{(1.240 \times 10^{-6} eV \cdot m)^2}{2 \times 5.11 \times 10^5 (eV) \times (1.0584 \times 10^{-10} m)^2}$   
= 134.3 eV

The energy of the ground state of the hydrogen atom is  $13.6 \ eV$ , so the kinetic energy of the given electron is about times the energy of the ground state of the hydrogen atom.

#### 5.2 Problem 5.14 (In the text book)

(a) Show that the formula for low-energy electron diffraction (LEED), when electrons are incident perpendicular to a crystal surface, may be written as

$$\sin\phi = \frac{nhc}{d\sqrt{2m_ec^2K}}$$

where n is the order of the maximum, d is the atomic spacing,  $m_e$  is the electron mass, K is the electron's kinetic energy, and  $\phi$  is the angle between the incident and diffracted beams.

(b) Calculate the atomic spacing in a crystal that has consecutive diffraction maxima at  $\phi = 24.1^{\circ}$  and  $\phi = 54.9^{\circ}$  for 100-eV electrons.

#### Solution

(a) For a maximum in electron diffraction from crystal planes we have:

$$n\lambda = d\sin\phi$$
$$\sin\phi = \frac{n\lambda}{d}$$

where  $\lambda$  is the de Broglie wave length of the electron, and  $\lambda = h/p$ , where p is the electrons momentum. The kinetic energy of the electron  $K = p^2/2m_e$ , we th get:

$$\sin \phi = \frac{n}{d} \frac{h}{p}$$
$$= \frac{n}{d} \left( \frac{h}{\sqrt{2Km_e}} \right)$$
$$= \left( \frac{nhc}{d\sqrt{2Km_ec^2}} \right)$$

(b) The atomic spacing is;

$$d = \frac{nhc}{\sin\phi\sqrt{2Km_ec^2}}$$

For  $\phi = 24.1^{\circ}$  the atomic spacing  $d_1$  is:

$$d_{1} = \frac{n \times 1.240 \times 10^{-6} (eV \cdot m)}{\sin(24.1) \times \sqrt{2 \times 0.511 \times 10^{6} (eV) \times 100 (eV)}}$$
  
= 3.00 \times 10^{-10} m  
= 3.00n Å

For  $\phi = 54.9^{\circ}$  the atomic spacing  $d_1$  is:

$$d_{2} = \frac{(n+1) \times 1.240 \times 10^{-6} (eV \cdot m)}{\sin(54.9) \times \sqrt{2 \times 0.511 \times 10^{6} (eV) \times 100 (eV)}}$$
  
= 3.00(n+1) \times 10^{-10} m  
= 3.00(n+1) \times 1

for the same spacing we should have:

$$d_1 = d_2$$
  

$$3.00n = 1.50(n+1)$$
  

$$n = 1$$

which means the 24.1° corresponds to n=1 maximum and 54.9° corresponds to n=2 maximum.

### 5.3 Problem 5.20 (In the text book)

We wish to measure simultaneously the wavelength and position of a photon. Assume that the wavelength measurement gives  $\lambda = 6000$  Å with an accuracy of one part in a million, that is,  $\Delta \lambda / \lambda = 10^{-6}$ . What is the minimum uncertainty in the position of the photon?

#### Solution

The momentum p of the photon is given by:

 $p = \frac{h}{\lambda}$ 

we then get:

$$\begin{array}{rcl} \frac{\Delta p}{\Delta \lambda} &\approx & \frac{dp}{d\lambda} \\ &= & -\frac{h}{\lambda^2} \\ \Delta p &= & -\frac{h\Delta\lambda}{\lambda^2} \end{array}$$

Since,

$$\begin{split} \Delta p \Delta x &\geq \frac{1}{2}\hbar\\ (\Delta p \Delta x)_{min} &= \frac{1}{2}\hbar\\ |\Delta x|_{min} &= \frac{\hbar}{2\Delta p}\\ &= \frac{\hbar}{2(h\delta\lambda/\lambda^2)}\\ &= \frac{h\lambda}{4\pi(h\Delta\lambda/\lambda)}\\ &= \frac{\lambda}{4\pi(\Delta\lambda/\lambda)}\\ &= \frac{6000\,\mathring{A}}{4'\times10^{-6}}\\ &= 4.78\times10^8\,\mathring{A}\\ &= 4.78\times10^{-2}\,m \end{split}$$

## 5.4 Problem 5.30 (In the text book)

Robert Hofistadter won the 1961 Nobel prize in physics for his pioneering work in scattering 20-GeV electrons from nuclei.

- (a) What is the  $\gamma$  factor for a 20-GeV electron, where  $\gamma = (1 v^2/c^2)^{-\frac{1}{2}}$ ? What is the momentum of the electron in  $kg \cdot m/s$ ?
- (b) What is the wavelength of a 20-GeV electron and how does it compare with the size of a nucleus?

## Solution

(a) Using the relativistic definition of the total energy we get:

$$E = \gamma m_e c^2$$
  

$$\gamma = \frac{E}{m_e c^2}$$
  

$$= \frac{20 \times 10^3 (MeV)}{0.511 (MeV)}$$
  

$$= 3.91 \times 10^4$$

Since the energy of the electron is very high, then,  $m_e c^2 \ll pc$ , and using the relativistic definition of the total energy, in terms of the momentum, we get:

$$E^{2} = (pc)^{2} + m_{e}^{2}c^{4}$$

$$p \approx \frac{E}{c}$$

$$= \frac{20 \times 10^{3}(MeV) \times 1.602 \times 10^{-13}(J/MeV)}{3 \times 10^{8}m/s}$$

$$= 1.07 \times 10^{-17} \ kg \cdot m/s$$

(b) The de Broglie wavelength of the  $20 \ GeV$  electron is:

$$\begin{aligned} \lambda &= \frac{h}{p} \\ &= \frac{6.626 \times 10^{-34} (J \cdot s)}{1.07^{-17} \ kg \cdot m/s} \\ &= 6.19 \times 10^{-17} \ m \end{aligned}$$

the size of the nucleus is about  $10^{-14} m$ , so the wavelength of the 20 GeV electron is about 1000 times smaller than the nucleus.

#### 5.5 Problem 5.34 (In the text book)



Figure 5.1:

- (a) Find and sketch the spectral content of the rectangular pulse of width  $2\tau$  shown in Figure (5.1).
- (b) Show that a reciprocity relation  $\Delta \omega \Delta t \approx \pi$  holds in this case. Take  $\Delta t = \tau$  and define  $\Delta \omega$  similarly.
- (c) What range of frequencies is required to compose a pulse of width  $2\tau = 1 \ \mu s$ ? A pulse of width  $2\tau = 1 \ ns$ ?

## Solution

(a) Using Fourier integrals:

$$g(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} V(t) \ e^{-i\omega t} \ dt$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} V(t) \ (\cos \omega t - i \sin \omega t) \ dt$$

 $V(t)\sin\omega t$  is an odd function in t so its integral vanishes, we then get:

$$g(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} V(t) \cos \omega t \, dt$$

from Figure (5.1),  $V(t) = V_{\circ}$  when  $-\tau < t < \tau$  and V(t) = 0 everywhere else. Also, V(t) is symmetric around t = 0:

$$g(\omega) = \frac{2}{\sqrt{2\pi}} \int_0^\tau V_\circ \cos \omega t \, dt$$
$$= \sqrt{\frac{2}{\pi}} V_\circ \left[ \frac{\sin \omega t}{\omega} \right]_0^\tau$$
$$= \sqrt{\frac{2}{\pi}} V_\circ \frac{\sin \omega \tau}{\omega}$$

A plot of  $g(\omega)$  is shown in Figure (5.2).



Figure 5.2:

(b) Since the major contribution to the pulse comes from  $-\pi/\tau < t < +\pi/\tau$ , we take  $\Delta \omega$  as  $\pi/\tau$  and since  $\Delta t = \tau$ , we then get:

$$\Delta\omega\Delta t = \frac{\pi}{\tau}\tau = \pi$$

(c) The frequency range required to compose a pulse of width  $2\tau = 1 \ \mu s, 2\Delta f$  is:

$$\omega = 2\pi f$$

$$\Delta \omega = 2\pi \Delta f$$

$$\Delta \omega \Delta t = \pi$$

$$2\Delta f = \frac{\Delta \omega}{\pi}$$

$$= \frac{\pi}{\pi \Delta t}$$

$$= \frac{1}{\Delta t}$$

$$= 2 \times 10^{6} Hz$$

and for a 1 ns pulse:

$$2\Delta f = \frac{1}{\Delta t}$$
$$= \frac{1}{0.5 \times 10^{-9}}$$
$$= 2 \times 10^9 Hz$$

Notice that to make the pulse sorter, i.e. localized in a smaller time range you need a much larger frequency range.