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1. Consider a particle in the ground state of a box of length a.

(a) Find the probability density |ψ|2.
(b) Where is the particle most likely to be found?

(c) What is the probability of finding the particle in the interval between x = 0.50a
and x = 0.51a?

(d) What is it for the interval [0.75a, 0.76a]?

(e) What would be the average result if the position of a particle in the ground state
were measured many times?

Solution

(a) The ground state wavefunction (n = 1) of a particle in a box of length a is:

ψ(x) =

√
2

a
sin

(πx
a

)
and the probability density is:

|ψ(x)|2 =
2

a
sin2

(πx
a

)
(b) The most likely position of the particle is that at which |ψ(x)|2 = maximum. This

will happen when sin2(πx/a) = 1 or when (πx/a) = π/2 or when x = a/2.

(c) The probability P1 of finding the particle between x = 0.50a and x = 0.51a is:

P1 =

∫ 0.51a

0.50a

|ψ(x)|2 dx

=

∫ 0.51a

0.50a

2

a
sin2

(πx
a

)
dx

=
2

a

[
x

2
− sin(2πx/a)

4π/a

]x=0.51a

x=0.50a

=

[
x

a
− sin(2πx/a)

2π

]x=0.51a

x=0.50a

=

[
0.51a

a
− sin(2π0.51a/a)

2π

]
−

[
0.50a

a
− sin(2π0.50a/a)

2π

]
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P1 =

[
0.51− sin(2π0.51)

2π

]
−

[
0.50− sin(π)

2π

]
= 0.01− 1

2π
sin(2π × 0.51)

= 0.02

= 2.0%

(d) The probability P2 of finding the particle between x = 0.75a and x = 0.76a is:

P2 =

∫ 0.76a

0.75a

|ψ(x)|2 dx

=

∫ 0.76a

0.75a

2

a
sin2

(πx
a

)
dx

=
2

a

[
x

2
− sin(2πx/a)

4π/a

]x=0.76a

x=0.75a

=

[
x

a
− sin(2πx/a)

2π

]x=0.76a

x=0.750a

=

[
0.76a

a
− sin(2π0.76a/a)

2π

]
−

[
0.75a

a
− sin(2π0.75a/a)

2π

]
=

[
0.76− sin(2π0.76)

2π

]
−

[
0.75− sin(1.5π)

2π

]
=

[
0.76− 0.75− sin(2π0.76)

2π
+

sin(1.5π)

2π

]
= [0.01 + 0.159− 0.159]

= 0.01

= 1%

(e) The average position < x > of the particle within the box is:

< x > =

∫ a

0

x|ψ(x)|2 dx =
2

a

∫ a

0

sin2
(πx
a

)
dx

=
2

a

[
x2

4
−
x sin

(
2πx
a

)
4
(

π
a

) −
cos

(
2πx
a

)
8
(

π
a

)2

]a

0

=
2

a

[
a2

4
−
a sin

(
2πa
a

)
4
(

π
a

) −
cos

(
2πa
a

)
8
(

π
a

)2 − 02

4
+

0 sin
(

2π0
a

)
4
(

π
a

) +
cos

(
2π0
a

)
8
(

π
a

)2

]

=
2

a

[
a2

4
− 0− 1

8
(

π
a

)2 − 0 +
1

8
(

π
a

)2

]
=

1

2
a
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2. Positronium is a hydrogen-like atom consisting of a positron (a positively charged
electron) and an electron revolving around each other. Using the Bohr model, find
the allowed radii (relative to the center of mass of the two particles) and the allowed
energies of the system. Use the reduced mass of the system.

Solution

The reduced mass µ of the electron-positron system is:

µ =
mempos

me +mpos

Since me = mpos = 511 keV , then µ becomes, µ = 1
2
me. According to Bohr’s theory

the allowed atomic radii are given by:

rn =
n2~2

µZke2
n = 1, 2, 3, · · ·

where Ze is the positive charge of the atom, and for positronium Z = 1 and µ = 1
2
m2,

so the atomic radii of the positronium becomes:

rn−pos =
2n2~2

meke2

= 2n2a◦

= 2rn−hyd

where a◦ is the Bohr radius a◦ = ~2/meke
2.

The allowed energies of the electron in a positronium are given by:

En−pos = − ke2

2rn−pos

= −1

2

ke2

2rn−hyd

= −1

2
Ehyd

= −1

2
13.6n2 = −6.80

n2
eV
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3. An atom in an excited state 1.8 eV above the ground state remains in that excited
state 2.0 µs before moving to the ground state. Find

(a) the frequency of the emitted photon,

(b) its wave length, and

(c) its approximate uncertainty in its energy.

Solution

(a) The frequency of the emitted photon is:

f =
E

h
=

1.8× 1.602× 10−19

6.626× 10−34
= 4.352× 1014 Hz

(b) The wave length of the photon is:

λ =
c

f
=

3× 108

4.352× 1014
= 6.893× 10−7 m = 689.3 nm

(c) The time the electron spends in the excited state is the time available to measure
the energy of the excited state, which is then the uncertainty ∆t in time. Using
Heisenberg’s uncertainty principle, the uncertainty in the energy of the excited
state ∆E is:

∆E ≥ ~
2∆t

=
6.582× 10−16(eV · s)

2× 2.0× 10−6s
= 1.646× 10−10 eV
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4. In a Compton scattering event, the scattered photon has an energy of 120 keV and
the recoiling electron has an energy of 40 keV . Find

(a) The wave length of the incident photon,

(b) The angle θ at which the photon is scattered, and

(c) The recoil angle φ of the electron.

Solution

(a) Conservation of energy gives:

E◦ = E ′ +Ke = 120 + 40 = 160 keV

where E◦ is the energy of the incident photon, E ′ is the energy of the scattered
photon, and Ke is the energy of the recoiling electron.

The wavelength λ◦ of the incident photon is given by:

λ◦ =
hc

E◦
=

1.240× 103

160× 103
= 7.750× 10−3 nm

(b) The angle θ at which the photon is scattered can be calculated from the Compton
scattering formula:

λ′ − λ◦ = λc(1− cos θ)

where λ′ is the wavelength of the scattered photon and λc = 2.43×10−3 nm is the
Compton wavelength. The wavelength of the scattered photon can be obtained
from:

λ′ =
hc

E ′ =
1.24 (keV · nm)

120(keV )
= 1.03× 10−2 nm

Using the Compton formula we get:

λ′ − λ◦ = λc(1− cos θ)

cos θ = 1− λ′ − λ◦
λc
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Substituting the numerical values we get:

cos θ = 1− 1.03× 10−2 − 7.75× 10−3

2.43× 10−3

= −4.94× 10−2

θ = 92.8◦

(c) Conservation of momentum gives:

p = p′ cos θ + pe cosφ

0 = p′ sin θ − pe sinφ

pe cosφ = p− p′ cos θ

pe sinφ = p′ cos θ

where p = h/λ◦ and p′ = h/λ′ are the momenta of the incident and scattered
photon respectively, pe is the momentum of the recoiling electron, and φ is the
angle at which the electron recoils. Dividing the last two equations we get:

tanφ =
p′ sin θ

p− p′ cos θ

=
sin θ

(p/p′)− cos θ

=
sin θ

(λ′/λ◦)− cos θ

=
sin 92.8

(1.03× 10−2/7.75× 103)− cos 92.8
= 0.725

φ = 35.9◦
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5. Which of the following functions are eigenfunctions of the momentum operator [p]?
For those that are eigenfunctions, what are the eigenvalues?

(a) A sin(kx)

(b) A sin(kx)− A cos(kx)

(c) A cos(kx) + iA sin(kx)

(d) Aeik(x−a)

Solution

Applying the momentum operator [px] = −i~(d/dx) on each wavefunction we get:

(a) [px] {A sin(kx)} = −i~ d

dx
A sin(kx) = −i~k {A cos(kx)}

(b) [px] {A sin(kx)− A cos(kx)} = −i~k {A cos(kx) + A sin(kx)}
(c) [px] {A cos(kx) + iA sin(kx)} = −i~k {−A sin(kx) + iA cos(kx)} = ~k {A cos(kx) + iA sin(kx)}
(d) [px]

{
eik(x−a)

}
= −i~(ik)

{
eik(x−a)

}
= ~k

{
eik(x−a)

}
only the functions in (c) and (d) produces a constant multiplied by the function after
operated on by the momentum operator. So only these two function are eigenfunction
of the momentum operator [px]. The eigenvalue in both cases is ~k.
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6. Suppose a particle of massm is free within the region 0 < x < L, but can not go beyond
that region because of high potential walls. Suppose, moreover, that the particle is in
the ground state of this one dimensional box, so that its wave function is given by:

u1(x) =

√
2

L
sin

πx

L

Calculate < x >,< p >, and < p2 >.

Solution

< x > is the same as in Problem 1 where < x >= L/2, and < p > is :

< p > =

∫ L

0

u∗1(x)[p]u1 dx

=
2

L

∫ L

0

sin
(πx
L

) (
−i~ d

dx

)
sin

(πx
L

)
dx

=
2

L

(
−i~π

L

) ∫ L

0

sin
(πx
L

)
cos

(πx
L

)
dx

=
2

L

(
−i~π

L

) ∫ L

0

1

2
sin

(
2πx

L

)
dx

= −i~ π

L2

L

2π

[
− cos

(πx
L

)]L

0

= −i~ π

L2

L

2π
[1− 1] = 0

Similarly:

< p2 > =
2

L

∫ L

0

sin
(πx
L

) (
−i~ d

dx

)2

sin
(πx
L

)
dx

=
2

L

∫ L

0

sin
(πx
L

) (
−~2 d

2

dx2

)
sin

(πx
L

)
dx

=
2~2π2

L3

∫ L

0

sin2
(πx
L

)
dx

=
2~2π2

L3

[
x

2
−

sin
(

2πx
L

)
4
(

2π2

L

) ]L

0

=
2~2π2

L3

L

2
=
π2~2

L2
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7. Consider a free particle inside a box with length L1, L2, and L3 along the x, y, and z
axes respectively. The particle is considered to be inside the box.

(a) Find the wave function and energies. Then find the ground state and first excited
state energies and wave functions.

(b) Use your results to predict the same quantities for a cube with sides L.

Solution

Inside the box U(x) = 0, so Schrödinger equation becomes:

− ~2

2m
∇2ψ(x, y, z) = Eψ(x, y, z)

The wave functionψ(x, y, z) must continuous, single valued, and finite everywhere. It
should also be zero at the walls of the box since it is confined inside. The wave function
can be separable, i.e.

ψ(x, y, z) = ψ1(x)ψ2(y)ψ3(z)

and Schrödinger equation can be split into three equations:

− ~2

2m

d2ψ1(x)

dx2
= E1ψ1(x)

− ~2

2m

d2ψ2(y)

dy2
= E2ψ2(y)

− ~2

2m

d2ψ3(z)

dz2
= E3ψ3(z)

Possible solutions for these equations are:

ψ1(x) = sin(k1x)

ψ2(y) = sin(k2y)

ψ3(z) = sin(k3z)

and then,

ψ(x, y, z) = A sin(k1x) sin(k2y) sin(k3z)
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where A is a normalization constant and k2
1 = 2mE1/~2, k2

2 = 2mE2/~2, k2
3 =

2mE3/~2, and E = E1 + E2 + E3. Applying the boundary condition at ψ1(L1) =
0, ψ2(L2) = 0, and ψ3(L3) = 0 we get:

k1 =
n1π

L1

k2 =
n2π

L2

k3 =
n2π

L3

where n1, n2, and n3 = 1, 2, 3, · · · .

(a) The wave function becomes:

ψ(x, y, z) = A sin

(
n1πx

L1

)
sin

(
n2πy

L2

)
sin

(
n3πz

L3

)
and the energy of the system is then:

E = E1 + E2 + E3 =
~2k2

1

2m
+

~2k2
2

2m
+

~2k2
3

2m
=
π2~2

2m

(
n2

1

L2
1

+
n2

2

L2
2

+
n2

3

L2
3

)
The ground state has n1 = n2 = n3 = 1, the ground state wavefunction ψgs(x, y, z)
is then:

ψgs(x, y, z) = A sin

(
πx

L1

)
sin

(
πy

L2

)
sin

(
πz

L3

)
and the ground state energy Egs is:

Egs =
π2~2

2m

(
1

L2
1

+
1

L2
2

+
1

L2
3

)
The first excited state has one of n′s equals 2 and the other two equals 1, so the
first excited state will have three energies namely:

E11 =
π2~2

2m

(
2

L2
1

+
1

L2
2

+
1

L2
3

)
E12 =

π2~2

2m

(
1

L2
1

+
2

L2
2

+
1

L2
3

)
E13 =

π2~2

2m

(
1

L2
1

+
1

L2
2

+
3

L2
3

)
and the corresponding wave functions are:
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ψ11 = A sin

(
2πx

L1

)
sin

(
πy

L2

)
sin

(
πz

L3

)
ψ12 = A sin

(
πx

L1

)
sin

(
2πy

L2

)
sin

(
πz

L3

)
ψ13 = A sin

(
πx

L1

)
sin

(
πy

L2

)
sin

(
2πz

L3

)
Notice that each wave function has its own energy, so there is no degeneracy.

(b) For a cube L1 = L2 = L3 = L, so the wave function then becomes:

ψ(x, y, z) = A sin
(n1πx

L

)
sin

(n2πy

L

)
sin

(n3πz

L

)
and the energy for a cube is:

E =
π2~2

2m

(
n2

1

L2
+
n2

2

L2
+
n2

3

L2

)
=

π2~2

2mL2

(
n2

1 + n2
2 + n2

3

)
So the ground state wavefunction, becomes:

ψgs(x, y, z) = A sin
(πx
L

)
sin

(πy
L

)
sin

(πz
L

)
and the ground state energy:

Egs =
π2~2

2m

(
1

L2
+

1

L2
+

1

L2

)
=

3π2~2

2mL2

The first excited state has three different combinations of n′s, namely (n1 =
2, n2 = 1, n3 = 1), (n1 = 1, n2 = 2, n3 = 1), and (n1 = 1, n2 = 1, n3 = 2) and
the corresponding wavefunctions are:

ψ11 = A sin

(
2πx

L

)
sin

(πy
L

)
sin

(πz
L

)
ψ12 = A sin

(πx
L

)
sin

(
2πy

L

)
sin

(πz
L

)
ψ13 = A sin

(πx
L

)
sin

(πy
L

)
sin

(
2πz

L

)
However, three different combination of n2-values have the same sum, so there is
only one value of E1,

E1 =
π2~2

2mL2
(22 + 12 + 12) =

π2~2

2mL2
(12 + 22 + 12) =

π2~2

2mL2
(12 + 12 + 22) =

3π2~2

mL2

In a cube there are three distinct first excited state wavefunctions and all have
the same energy. This means that the first excited state is three-fold degenerate.
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8. Calculate < 1/r > for an electron in the ground state of hydrogen, and use your
results to calculate the average kinetic energy of the electron.

Solution

We can calculate < 1/r > from:〈
1

r

〉
=

∫ ∞

0

R10
1

r
R10r

2 dr

where rR10 is the ground state (n = 1, ` = 0) radial wavefunction of the hydrogen
atom, and R10 is given by:

R10(r) =

(
Z

a◦

)3/2

2e−Zr/a◦

< 1/r > then becomes:〈
1

r

〉
=

∫ ∞

0

(
Z

a◦

)3

4e−2Zr/a◦r dr = 4

(
Z

a◦

)3 ( a◦
2Z

)2

=
Z

a◦
=

1

a◦

The average kinetic energy < K > is given by:

< K >=< E − U(r) >=< E > − < U(r) >= E − < U(r) >

we used the fact that the total energy < E > is sharp and then < E >= E. Let us
now find < U(r) >.

U(r) = −kZe
2

r

< U(r) > = −
〈
kZe2

r

〉
= −kZe2

〈
1

r

〉
= −kZ

2e2

a◦

Using the above equation and

E = −kZ
2e2

2a◦
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The average kinetic energy then becomes:

< K > = −kZ
2e2

2a◦
+
kZ2e2

a◦

=
kZ2e2

2a◦
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9. A π◦ meson is an unstable particle produced in high energy particle collisions. It
has a mass-energy equivalent 135 MeV , and it exists for an average life-time of only
8.7 × 10−17 s before decaying into two gamma rays. Using the uncertainty principle
estimate the fractional uncertainty in its mass determination.

Solution

Since:

E = mπc
2

∆E = ∆(mπ)c2

Applying the uncertainty principle we get:

∆E∆t ≥ 1
2
~

∆(mπ)c2∆t =
1

2
~

∆m− π =
~

2∆tc2

∆mπ

mπ

=
~

2∆tmπc2

=
6.582× 10−16(eV · s)

2× 8.7× 10−17(s)× 135× 106(eV )

= 2.80× 10−8
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10. A hydrogen atom is in the 6g state.

(a) What is the principal quantum number?

(b) What is the energy of the atom?

(c) What are the values for the orbital quantum number and the magnitude of the
electron’s orbital angular momentum?

(d) What are the possible values for the magnetic quantum number? For each value,
find the corresponding z component of the electron’s orbital angular momentum
and the angle that the orbital angular momentum vector makes with the z axis.

Solution

For a 6g state we have:

(a) n = 6

(b) The energy of a state n in a hydrogen atom is:

En =
−13.6 eV

n2

E6 =
−13.6 eV

36
= −0.378 eV

(c) For a g-state ` = 4. The orbital angular momentum is given by:

L =
√
`(`+ 1)~

=
√

4× 5~
=

√
20~

= 4.47 ~

(d) The values of magnetic quantum number m` are:

m` = 0,±1,±2,±3, · · · ± `

= −4,−3,−2,−1, 0, 1, 2, 3, 4
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The z component of the electron’s orbital angular momentum, Lz, and the angle,
θ, that the orbital angular momentum vector makes with the z axis are given by:

Lz = m`~

cos θ =
Lz

L

=
m`√
`(`+ 1)

=
m`

4.47

The values of m` and the corresponding values of Lz, θ in degrees, and θ in radians
are shown in the following table.

m` -4 -3 -2 -1 0 1 2 3 4
Lz -4~ -3~ -2~ -1~ 0 1~ 2~ 3~ 4~
θ 153.4◦ 132.1◦ 116.6◦ 102.9◦ 90◦ 77.1◦ 63.4◦ 47.9◦ 26.6◦

θ (rad) 2.677 2.306 2.035 1.796 1.571 1.346 1.107 0.836 0.464
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11. An electron has a wavefunction

ψ(x) = Ce−|x|/x◦

where x◦ is a constant and C = 1/
√
x◦ for normalization. For this case, obtain ex-

pressions for < x > and ∆x in terms of x◦. Also calculate the probability that the
electron will be found within a standard deviation of its average position, that is, in
the range < x > − ∆x to < x > + ∆x, and show that this is independent of x◦.

Solution

The expectation value < x > is given by:

< x >=

∫ ∞

−∞
x|ψ(x)|2 dx = C2

∫ ∞

−∞
xe−2|x|/x◦ dx

The function ψ(x) = e−i|x|/x◦ is symmetric about x = 0, i.e. it is an even function.
However, the function x|ψ(x)|2 is an odd function i.e. antisymmetric about x = 0.
thus the contribution from x > 0 exactly cancels the contribution from x < 0, and as
a result < x >= 0.

On the other hand the function x2|ψ(x)|2 is an even function, i.e. symmetric about
x = 2 and the contributions from the negative values of x are identical to those from
x > 0, so , x2 is:

< x2 >=

∫ ∞

−∞
x2|ψ(x)|2 dx = 2C2

∫ ∞

0

x2e−2|x|/x◦ dx

Using the standard integral: ∫ ∞

0

xne−ax dx =
n!

an+1

putting n = 2 and a = x◦/2, we get:

< x2 >= 2C22
{x◦

2

}3

=
4

x◦

{x◦
2

}3

=
1

2
x◦

∆x can then be calculated from:
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∆x =
√
< x2 > − < x >2 =

√
< x2 > −0 =

x◦√
2

The probability P the electron will be found in the interval < x > −∆x = −∆x and
< x > +∆x = ∆x is given by:

P =

∫ +∆x

−∆x

|ψ(x)|2 dx = 2C2

∫ ∆x

0

e−2x/x◦ = 2C2
(x◦

2

) [
e−2x/x◦

]∆x

0
= 1− e−

√
2 = 0.757

Of course the P is independent of x◦.
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12. Compute the probability that a 2s electron of hydrogen will be found inside the Bohr
radius for this state, 4a◦. Compare this with the probability of finding a 2p electron
in the same region.

Solution

The radial wavefunction of the 2s state (n = 2, ` = 0) of the hydrogen atom is given
by:

rR20 = r

(
Z

2a◦

)3/2 (
2− Zr

a◦

)
e−Zr/2a◦

and the radial wavefunction of the 2p state (n = 2, ` = 1) of the hydrogen atom is
given by:

rR21 = r

(
Z

2a◦

)3/2
Zr√
3a◦

e−Zr/2a◦

The probability P2s of finding the electron inside the Bohr radius of the 2s state is
given by, taking Z = 1:

P2s =

∫ 4a◦

0

|rR20|2 dr

=

∫ 4a◦

0

1

8a◦

(
r

a◦

)2 (
2− r

a◦

)2

e−r/a◦ dr

=
1

8a◦

∫ 4a◦

0

(
r

a◦

)2 (
2− r

a◦

)2

e−r/a◦ dr

Changing variables to z = r/a◦ and dz = dr/a◦ the last equation becomes:

P2s =
1

8

∫ 4

0

z2(2− z)2e−z dz

=
1

8

∫ 4

0

(4z2 − 4z3 + z4)e−z dz
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The above integration can be carried out by successively using the following standard
form: ∫

xneax dx =
xneax

a
− n

a

∫
xn−1eax dx

We then get for P2s:

P2s =
1

8

[{
−(4z2 − 4z3 + z4)− (8z − 12z2 + 4z3)− (8− 24z + 12z2)− (24 + 24z)− (24)

}
e−z

]4

0

=
1

8

[
−(64 + 96 + 104 + 72 + 24)e−4 + 8

]
= 0.176

For the 2p state electron, the probability of finding it inside r = 4a◦, using Z = 1, is:

P2p =

∫ 4a◦

0

|rR21|2 dr

=

∫ 4a◦

0

[(
1

2a◦

)3/2
r2

√
3a◦

e−r/2a◦

]2

dr

=

∫ 4a◦

0

1

24a◦

(
r4

a4
◦

)
e−r/a◦ dr

Once again we change variables to z = r/a◦ to get:

P2p =
1

24

∫ 4

0

z4e−z dz

Using the general integral given above, P2p becomes:

P2p =
1

24

[{
−z4 − 4z3 − 12z2 − 24z − 24

}
e−z

]4

0

=
1

24
(−824e−4 + 24)

= 0.371
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