Chapter 27

Origins of Quantum Theory. Home Work Solutions

27.1 Problem 27.20

What is the minimum voltage required in an x-ray tube to produce photons whose wavelength is 0.10 nm

Solution

- Given: x-ray photons with wavelength $\lambda=0.10 \times 10^{-9} \mathrm{~m}$
- Required: Minimum voltage required to produce these x-ray photons.

The energy carried by a photon $E=h f$ where f is the frequency of the photon and h is Planck's constant.

$$
\begin{aligned}
E & =h f \\
& =\frac{h c}{\lambda} \\
& =\frac{\left(6.626 \times 10^{34} \mathrm{~J} \cdot \mathrm{~s}\right) \times\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{0.10 \times 10^{-9} \mathrm{~m}} \\
& =1.988 \times 10^{-15} \mathrm{~J} \\
& =\frac{1.988 \times 10^{-15} \mathrm{~J}}{1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}} \\
& =12.4 \times 10^{3} \mathrm{eV}
\end{aligned}
$$

So the minimum voltage required to produce x-ray photons with $\lambda=0.10 \mathrm{~nm}$ is 14.2 kV .

27.2 Problem 27.29

A photoflood lamp operates at a temperature of 3400 K
(a) What is the wavelength of the peak in its blackbody spectrum?
(b) What is the energy of a photon with with the wavelength found in (a)? Give your answer in eV

Solution

- Given: A photoflood lamp at a temperature of $T=3400 K$
- Required: The peak wavelength λ_{m} of the emitted spectrum assuming the lamp behaves as a black body and the energy of photons with wavelength of λ_{m}
(a) The peak wavelength λ_{m} is related to the temperature by Wien displacement law:

$$
\begin{aligned}
\lambda_{m} T & =2.90 \times 10^{-3} m \cdot K \\
\lambda_{m} & =\frac{2.90 \times 10^{-3}}{T} \\
& =\frac{2.90 \times 10^{-3}}{3400} \\
& =8.53 \times 10^{-7} \mathrm{~m} \\
& =853 \mathrm{~nm}
\end{aligned}
$$

(b) The energy of such a photon is:

$$
\begin{aligned}
E & =h f \\
& =\frac{h c}{\lambda_{m}} \\
& =\frac{6.626 \times 10^{-34} \times 3.00 \times 10^{8}}{853 \times 10^{-9}} \\
& =2.33 \times 10^{-19} \mathrm{~J} \\
& =\frac{2.33 \times 10^{-19}}{1.602 \times 10^{-19}} \\
& =1.45 \mathrm{eV}
\end{aligned}
$$

27.3 Problem 27.33

As the integer n_{2} in the Rydberg equation (Eq. 27.2) approaches infinity, the the spectral lines converge to a minimum wavelength known as the series limit. Calculate the series limit for the Balmer lines.

Solution

- Given: Balmer series spectral lines.
- Required: The series limit of the Balmer lines.

The Rydberg formula is:

$$
\frac{1}{\lambda}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

where $R=1.097 \times 10^{7} \mathrm{~m}^{-1}$ is the Rydberg constant. For Balmer series $n_{1}=2$ and $n_{2}=$ $3,4,5, \cdots \infty$. The wavelength corresponding to $n_{2}=\infty$ is called the series limit. We then have:

$$
\begin{aligned}
\frac{1}{\lambda} & =R\left(\frac{1}{2^{2}}-\frac{1}{\infty}\right) \\
& =\frac{R}{4} \\
\lambda & =\frac{4}{R} \\
& =\frac{4}{1.097 \times 10^{7}} \\
& =3.646 \times 10^{-7} \mathrm{~m} \\
& =364.6 \mathrm{~nm}
\end{aligned}
$$

