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December 1995

1 Introduction

The objective is to build models that explain the growth of branch and stem
diameters in an integrated way, being able to generate the observed patterns
for different silvicultural treatments.

This is just a periodic record of progress to date, largely for my own use.
As such, it does not pretend to be definitive nor very readable. I realize that
more explanation may be needed for a full understanding.

2 Some previous work

There is a great deal of information on the subject in the thesis of F. Colin [4].
In particular, data and regression models for the relationship between branch
diameter and distance from the tip. As indicated there, those are descriptive
empirical models, and do not address the developmental dynamics. We try
to interpret those observations introducing the dynamic aspects here. Also
to link with stem diameter growth.

Task 5 of the EEC forestry project obtained further branch diameter
regressions with additional data [5]. The Douglas fir results from the German
team are shown in Appendix 1. The graphs show the basal areas for the
whorl mean diameter branch. Presumably this variable would be closely
proportional to the total sectional area of branches per unit of stem length,
which may be a better variable for a first mechanistic model. The equation
for each tree can be written, with the notation to be used later, as

y(x, H) = (π/4)(ax/H + 2)3e−2bx/H ,

where x is the distance from the top, H the total tree height, and a and b
the regression parameters. Only the values for the green crown are shown.
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3 Growth distributions

I use, at least initially, continuous models (on continuous time, and describ-
ing branch sectional areas as continuous functions along the stem). Discrete
models can be used more directly for simulation, require less mathematics,
and may describe more realistically the presence of individual branches. But
continuous models are more easily manipulated to find relationships between
different aspects of the growth processes. They can later be discretized for
their application.

In this section I will deal with the distribution of branch and stem incre-
ments, sectional area and diameters along the stem and over time. Actually,
it is more convenient to work with total height instead of directly with time.
There is a one-to-one relationship through the height-age curve that can
be used for conversion later. This curve is usually almost linear over most
of the life of the tree, so we can also think of height and time as almost
equivalent.

Notation:

H: total tree height
h, u: height above ground
x = H − h, v: distance from tip
y(x, H) = y′(h, H): branch sectional area, per unit of stem
length
z(x, H) = z′(h, H): stem sectional area
f(x, H): branch sectional area increment (relative to dH)
(All values under bark).

3.1 Branches

By definition,

dy′(h, H)

dH
= f(H − h, H) ; y′(h, h) = y0 .

There may be a non-zero sectional area y0 at the time of formation of the
branches, essentially the size of the pith. Then,

y′(h, H) = y0 +

∫ H

h
f(u − h, u) du = y0 +

∫ H−h

0
f(v, v + h) dv

y(x, H) = y′(H − x, H) = y0 +

∫ H

H−x
f(u − H + x, u) du

= y0 +

∫ x

0
f(v, v + H − x) dv .

The increment f(x, H) should become zero beyond some distance x from
the tip (in general, varying with H). That is, branches do not grow in di-
ameter below this “base of the active crown” (BAC). Non-growing branches
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may still remain alive for some time, so the green crown base would be
somewhat lower. The relationship between these two crown bases will have
to be examined later.

Under some circumstances, for example if the stand density remains
constant, growth could be assumed to be approximately time-invariant (sta-
tionary). That is, independent of H: f(x, H) ≡ f(x), y(x, H) ≡ y(x). The
crown just moves up, without changing size or shape. Then, in this simple
case,

y(x) = y0 +

∫ x

0
f(v) dv .

Note that under invariance the branch diameters below the BAC remain
constant (dying or dead branches). The decrease in branch diameters near
or below the crown base that is often observed must be due to an increase
in f(x, H) with H associated to decreasing stand density.

3.2 Stem

We will assume that the “pipe theory”, developed by Jaccard and others
around the end of last century [2] and re-discovered by Shiniozaki et al in
the 60’s, holds. At least in terms of increments. That is, the increment
in stem sectional area at some point equals the increment in sectional area
of all branches above that point. Actually, a simple proportionality could
easily be accomodated, to acount for different conducting efficiencies, etc.
Then,

dz′(h, H)

dH
=

∫ H

h

dy′(u, H)

dH
du =

∫ H

h
f(H − u, H) du =

∫ H−h

0
f(v, H) dv ,

with z′(h, h) = z0 being the sectional area at the tip (pith).
Integrating, and changing orders of integration, it is found that

z′(h, H) = z0 +

∫ H

h

dz′(h, w)

dH
dw = z0 +

∫ H

h

∫ w

h
f(w − u, w) du dw

= z0 +

∫ H

h

∫ w−h

0
f(v, w) dv dw = z0 +

∫ H−h

0

∫ H

v+h
f(v, w) dw dv

and

z(x, H) = z0 +

∫ H

H−x

∫ w−x+H

0
f(v, w) dv dw

= z0 +

∫ x

0

∫ H

v+H−x
f(v, w) dw dv .

Under invariance:

z(x) = z0 +

∫ x

0
(x − v)f(v) dv .
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3.3 Stem, in terms of y, y
′

z′(h, H) = z0 +

∫ H

h

∫ w

h
f(w− u, w) du dw = z0 +

∫ H

h

∫ H

u
f(w− u, w) dw du

= z0 − y0(H − h) +

∫ H

h
y′(u, H) du

z(x, H) = z0 − y0x +

∫ H

H−x
y(H − u, H) du = z0 − y0x +

∫ x

0
y(v, H) dv .

This shows that the pipe theory is implied also for the accumulated
branch and stem sectional areas, not just for the increments.

3.4 Summary

y′(h, H) = y0 +

∫ H

h
f(u − h, u) du = y0 +

∫ H−h

0
f(v, v + h) dv (1)

y(x, H) = y0 +

∫ H

H−x
f(u − H + x, u) du = y0 +

∫ x

0
f(v, v + H − x) dv (2)

z′(h, H) = z0 +

∫ H

h

∫ u−h

0
f(v, u) dv du = z0 +

∫ H−h

0

∫ H

v+h
f(v, u) du dv (3)

z′(h, H) = z0 − y0(H − h) +

∫ H

h
y′(u, H) du (4)

z(x, H) = z0 +

∫ H

H−x

∫ u−H+x

0
f(v, u) dv du = z0 +

∫ x

0

∫ H

v+H−x
f(v, u) du dv

(5)

z(x, H) = z0 − y0x +

∫ x

0
y(v, H) dv = z0 +

∫ x

0
[y(v, H) − y0] dv (6)

Under H-invariance (time-invariance):

y(x) = y0 +

∫ x

0
f(v) dv (7)

z(x) = z0 +

∫ x

0
(x − v)f(v) dv = z0 +

∫ x

0
[y(v) − y0] dv (8)
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Figure 1: Examples of branch sectional distributions. Average c = 0.078
used for example 6

3.5 Examples

Some examples of growth functions and resulting branch and stem sizes.
Time invariance is assumed here. To facilitate comparisons the functions
are normalized so that the length of the active crown is one (H −BAC = 1),
and the total branch sectional increment is one (y(1) = 1 + y0). Then f(x)
can be interpreted as a relative increment distribution. Results could be
re-scaled as necessary later.

The resulting curves are displayed in Figures 3.5 to 2. Fig. 2 is more
directly comparable with the published relationships; the “diameters” are
the square roots of the sections.

1. The simplest branch sectional increment function: constant at 1 above
the BAC.

f(x, H) = f(x) = 1 for x ≤ 1 0 otherwise.

Then,

y(x) = y0 +

∫ x

0
f(v) dv =

{

y0 + x if x ≤ 1
y0 + 1 if x ≥ 1

z(x) = z0 +

∫ x

0
[y(v) − y0] dv =

{

z0 + x2/2 if x ≤ 1
z0 + x − 1/2 if x ≥ 1
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Figure 2: Branch and stem relative sections for the examples

As always in the stationary case, z is linear below the crown, giving
the usually-assumed paraboloid stem shape. Here the form of the stem
within the crown is conical, another common assumption, but this is
not so with other branch increment distributions (see the examples
below).

2. Increment linearly decreasing.

f(x) = 2 max{1 − x, 0} = 2(1 − x)+

Then,

y(x) =

{

y0 + x(2 − x) if x ≤ 1
y0 + 1 if x ≥ 1

z(x) = z0 +

∫ x

0
[y(v) − y0] dv =

{

z0 + 1
3x2(3 − x) if x ≤ 1

z0 + x − 1/3 if x ≥ 1

3. Parabolic increment distribution.

f(x) = [6x(1 − x)]+

y(x) =

{

y0 + x2(3 − 2x) if x ≤ 1
y0 + 1 if x ≥ 1

z(x) = z0 +

∫ x

0
[y(v) − y0] dv =

{

z0 + 1
2x3(2 − x) if x ≤ 1

z0 + x − 1/2 if x ≥ 1
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Figure 3: Branch and stem relative diameters for the examples

4. The increment implied by the segmented polynomial of Colin and
Houllier [3], in the stationary case. Above the BAC it is a quadratic
for branch diameter (assume constant number of branches per unit
stem length):

y(x) =

{

[x(2 − x)]2 if x ≤ 1
1 if x ≥ 1

Then,

f(x) =
dy

dx
= [4x(1 − x)(2 − x)]+

z(x) =

{

z0 + 1
15x3(20 − 15x + 3x2) if x ≤ 1

z0 + x − 7/15 if x ≥ 1

5. The increment implied by the model used by Task 5 of the EEC
project, in the stationary case [5]. Simplified by making the io pa-
rameter equal to zero.

y(x) =

{

(xe1−x)3 if x ≤ 1
1 if x ≥ 1

Then,
f(x) = [3x2(1 − x)e3(1−x)]+
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z(x) =

{

z0 + 2e3/27 − 1
27e3(1−x)(9x3 + 9x2 + 6x + 2) if x ≤ 1

z0 + x − (53 − 2e3)/27 if x ≥ 1

6. The increment implied by the model used by Task 5 of the EEC
project, in the stationary case, with their io = 2 (Appendix 1). The
normalization makes the whole thing a bit messy.

y(x) =

{

y0 + (dx+c)3e3d(1−x)
−c3e3d

1−e3d if x ≤ 1

1 if x ≥ 1

where c = 4b
3a , d = 1 − c, and y0 = c3e3d/(1 − c3e3d).

For the Germany Douglas fir data the estimated values of c range from
0.061 to 0.093, with a mean of 0.078. With c = 0 we have the previous
example.

It is found,

f(x) = [
3d2(dx + c)2(1 − x)e3d(1−x)

1 − c3e3d
]+

z(x) =























z0 + [(e3z(9z3 − 36z2 + 51z − 26)
−e3d(27c3dx + 9d3 − 36d2 + 51d − 26)]
/[27(1 − c3e3d)] if x ≤ 1

z0 + x − e3d(−27c4+9d3
−36d2+51d−26)+53

27(1−c3e3d)
if x ≥ 1

3.6 Comments

Considering the high variability in the data, perhaps a simple model such
as the parabolic of Example 3 may be a reasonable approximation, at least
for the moment.

It is not entirely clear why the increment distribution should have the ob-
served shape. It would be desirable to look further into mechanistic models
for this.

Models where branch growth rate is a function of current branch size,
and not just depth into the canopy, might become necessary. That would
involve (partial?) differential equations, but it should not be too difficult to
handle.

4 Effect of stand density

The examples looked at the stationary case. More generally, the crown
growth and dimensions will vary over time (and H), following changes in
stand density.
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We may start from a normalized branch growth distribution f̄(x), and
scale it as

f(x, H) = αf̄(x/β) , (9)

where the scale factors α and β vary with H. The factor β is roughly pro-
portional to crown depth, and α to the average branch sectional increment.

4.1 Closed stands

The total branch sectional area growth, and therefore the stem basal area
increment, is αβ. Let us assume for now that the basal area increment per
hectare in a closed stand is constant, c. Then, with N being the number of
stems per hectare, we must have (in “average”)

c/N =

∫

∞

0
f(x, H) dx =

∫

∞

0
αf̄(x/β) dx = αβ

∫

∞

0
f̄(u) du

= αβ .

Actually, we assume for now that all trees are identical, and will worry about
size variation later. What about the relative values of α and β?

Many canopy models have assumed similarity in crown shapes, with
crown diameter and length proportional to tree spacing. That is, α ∝
N−1/2, β ∝ N−1/2. Actually, studies with radiata pine in New Zealand
have shown that this is not so. Beekhuis [1] found that canopy depth is
related to both average spacing and top height. Models of the form depth

= aN bHc have been used (Garćıa published in [8], and unpublished work by
Lawrence and Dunningham). The effect of H is much less important than
that of spacing. Ignoring H, crown depth was roughly proportional to the
square root of average spacing. Then, we may take

α = aN−3/4 , β = bN−1/4 . (10)

Note that, with branch extension proportional to the spacing N−1/2, this
would imply branch diameters approximately proportional to the branch
length to the power of 3/4. This seems reasonable, meaning a branch form
somewhere between parabolic (1/2) and conic (1).

Having the history of stand density over time (and thus N as a function
of H), equations (9) and (10), together with the relationships from the
previous section, allow us to simulate the branch and stem development of
the “average” tree in any closed stand.
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4.2 Open stands

The above is probably sufficient to model trees over most of their life under
typical European silviculture employing light to moderate thinnings. The
modelling of less than fully closed stands may be necessary for the early
growth, and for regimes using heavy thinning and/or pruning.

Here we may think of α and β describing a “potential” or “equilibrium”
crown. The potential crown length (and branch size) increases instanta-
neously with a thinning. Then the crown base remains stationary while the
potential is reached through height and branch growth. Pruning also pro-
duces a similar discrepancy between actual and potential crown. The same
happens in the early growth, while crown length is limited by the tree total
height.

Let us try finding the instantaneous change in growth caused by a thin-
ning. The amount of assimilating materials (foliage, active roots) is reduced
proportionally to the basal area or volume removed. Expressed as a pro-
portion of the equilibrium amount, this is called relative closure in [6, 7]. If
the stand is closed before the thinning, and with our uniform tree sizes, the
relative closure after the thinning is R = N/N0, where N0 and N are the
numbers of trees before and after thinning, respectively. The increment per
hectare, however, does not drop in the same proportion. In [7] the (total
volume) increment per hectare, relative to that in a closed stand, is called
occupancy . Let us take it in terms of basal area, and denote it by Ω.

Before the thinning the increment is c = ab, and the crown parameters

are α0 = aN
−3/4
0 and β0 = bN

−1/4
0 . Inmediately after the thinning the base

of the active crown (BAC) remains at x = β0, so the basal area increment
per hectare is

N

∫ β0

0
αf̄(x/β) dx = Nαβ

∫ β0/β

0
f̄(u) du = ab

∫ (N/N0)1/4

0
f̄(u) du .

The relationship between occupancy and closure is then

Ω =

∫ R1/4

0
f̄(u)du . (11)

For the parabolic model of example 3 we have

Ω = R1/2(3 − 2R1/4) .

This function is plotted in Figure 4.2, together with that of [6]. Admittedly
the agreement is not too good.

5 Where to from here?

It is not entirely clear to me if this line is worth pursuing. Perhaps some of
the fundamental premises are wrong or too unrealistic. Maybe something
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similar has already been done by others. On the other hand, this approach
might actually lead to compatible, integrated, well-behaved models. Opin-
ions are sought.

If it is decided to continue, there are obviously some loose ends, and
things that are not too clear and need more thinking. The modelling of
open stands would have to be developed further. Also the isue of variability
in sizes, although that does not seem too dificult. Some graphic simulations
and testing against field data could be tried. Or the whole thing could just
as well simply end here.
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Toward consistent branch and stem dynamic

models.

II. Simulating branch and stem diameters.

Oscar Garćıa

January 1996

1 Introduction

In the previous report [3] tree basal area growth was derived from crown
dimensions. Here, instead, basal area is assumed given, possibly from pre-
dictions with a growth model. Knowing also the base of the active crown
(BAC) and the potential BAC, the branch and stem sectional areas along the
stem are obtained through the pipe theory. Therefore, assumptions about
crown effects on growth, crown efficiency, etc., are not needed. Total growth
is known, and just needs to be distributed along the stem.

2 Data

For the simulation the model is discretized in time, for example using annual
increments. For each year we know the tree dbh D, height H, BAC C, and
potential BAC P .

The BAC may be somewhat higher than the actual green crown base,
because there may be branches at the base of the crown that are not growing
but are still alive (the BAC is the green crown base or the level of zero branch
diameter growth, whichever is higher). This is actually necessary to explain
the decreasing branch diameter toward the base of the crown that is often
observed.

The potential BAC P is the level at which there would be zero branch
growth. It may be equal to C, if the stand is fully closed and the canopy
base is rising. Or it may be lower than C, if the stand has just been opened
by a thinning, or in young stands, or if the tree has been pruned. It is a
function of stand density, and may be estimated as a function of trees per
hectare and top height [1].

1



3 Theory

As in (9) of [3], assume a branch sectional area growth distribution

αf(x/β) ,

where x is distance from the tip, f is a normalized density distribution, and
α and β are functions of time.

The normalization means that f(0) = f(1) = 0, and
∫ 1
0 f(u) du = 1.

Therefore, β = H − P . Also, the total branch sectional area increment is

∫ H−C

0
αf(x/β) dx = αβ

∫ (H−C)/β

0
f(u) du = α(H − P )F (

H − C

H − P
) ,

writing
∫ v
0 f(u) du = F (v) for the cummulative normalized distribution.

According to the pipe theory this increment must equal the known tree
basal area increment ∆b, thus determining the value of α. The tree basal
area increment is available from the D’s.

We conclude, then, that the sectional area increment of the branches at
height h is

∆y =
∆bf( H−h

H−P )

(H − P )F (H−C
H−P )

(1)

for h ≥ C, 0 otherwise. More precisely, this is the annual increment per unit
of stem length. The sectional area for any year and any h can be obtained
by adding the yearly increments. Knowing the number of branches per unit
of stem length, the (quadratic) mean branch diameter may be calculated.

The increment in stem sectional area at a level h is equal to the increment
of all branches above h, that is, ∆z(h) =

∫ H
h ∆y(u) du. Therefore,

∆z =
∆bF ( H−h

H−P )

F (H−C
H−P )

(2)

if h ≥ C, ∆z = ∆b if h ≤ C. As with the branches, by adding the increments
the stem sectional areas and diameters at any level and age may be obtained.

4 Evidence for the pipe theory

The “pipe theory”, or at least its name, is usually associated with the work of
Shiniozaki and others in the early 60’s, but it is actually much older. It was
well-known for Jaccard around the beginning of the century [2], and Pressler
had done some related work earlier. J-C.H̃ervé brought to my attention a
paper that attributes it to Leonardo da Vinci! [6]

In a most interesting paper [5], Jacobs reports, among other things, on an
experiment supporting the theory for radiata pine plantations in Australia.
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The study involved the measurement of all the branches of 36 trees for three
years (ages 8 to 11), evenly distributed in spacings of 6×6, 9×9, and 12×12
feet. Graphical and statistical analysis showed that the cross sectional area
of the stem at any point was always consistently close to the total sectional
area of the branches lying above it.

In Scots pine (20 trees in one stand), Hari et al [4] found proportionality
between the cross sectional area of the stem at the base of the crown and
the total cross sectional area of the branches (and that of the roots, and
also for main and their secondary branches). The proportionality factor
was not exactly one, however, what might reflect different water conducting
efficiencies or might be due to the measuring procedures. Such a coefficient
could be easily incorporated in the simulations shown here. They cite several
similar studies.

Many other papers have been published on the subject, usually showing
the pipe model to be a reasonable approximation. Its accuracy, however, is
not always good. For example, it is well-known that the area of growth rings
below the crown can be far from uniform (“Pressler law”). Of course, the
butt swell, related to mechanical factors different from the water conducting
principles inspiring the pipe theory, is not modelled at all.

5 Examples

The simulation described above was implemented in APL. The program
takes series of values of H, D, C and P , and generates data for plotting
branch and stem sectional area and diameter curves.

A stand growth model for radiata pine in New Zealand was used to
generate some plausible test data. Three silvicultural regimes were tried for
a stand of site index 30 (meters at age 20). One was planted at 1600 stems
per hectare and left unthinned. The second one was a typical New Zealand
heavy early heavy thinning and pruning regime. The third regime applied
thinnings of 30% of basal area at intervals of three years, being probably
closer to some European practices. The stand densities are compared in
Figure 5. The model generated annual (and before and after thinning)
values of top height, number of trees, basal area per hectare, and green
crown level. The potential green crown level was also calculated, with a
regression on height and stand density used internally by the model.

The basal area divided by the number of trees was used to obtain a “mean
tree basal area”. Actually this does not corresponds exactly to any tree,
because the “mean tree” changes with time and with thinning. However, it
is probably good enough for illustration purposes, and a more sophisticated
procedure was not deemed necessary. Before and after thinning values were
averaged. The tree diameters thus obtained are shown in Figure 5.

The mean tree height was taken as the top height minus 0.5 m. For the
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actual and potential BACs, 1.5 m was added to the estimated green crown
level, except before the start of crown base rising and in the case of pruning.
Figure 5 displays the various height trajectories for each of the three trees
(regimes).

A simple quadratic distribution was used for the simulation:

f(x) = 6x(1 − x)

if 0 ≤ x ≤ 1, and 0 otherwise.
The annual branch and stem sectional area increments were computed

and accumulated. For the graphs of Fig. 5 a constant number of 10 branches
per meter was assumed to display an average branch diameter. Each curve
gives the mean branch diameters at every height for each age (ages 1.6, 2,
3, 4, 5,. . . years). The stem diameters are in Figure 5.

6 Discussion

This approach gives results consistent with growth model projections. Given
the total increments, only their distribution along the stem needs to be mod-
elled. The correctness of the procedure depends on the validity of the pipe
theory and on the distribution function used. The effect of using different
distribution functions is not obvious, but can easily be investigated. Clearly,
the butt swell is not represented and would have to be modelled separately.

It is not clear to me how plausible the predictions of Fig. 4 are. At
least those for the light and frequent thinnings look similar to some of those
reported by F. Colin. It might be interesting to simulate the development
of trees for which data is available.

Some irregularities are visible in the graphs. Apparently some are due
to the discretization, especially for the fast developing crowns in young and
pruned trees, and others to rounding in the input data. The growth model
projections were rounded to one decimal place (or to the nearest integer in
the stems per hectare). I believe that the fact that such minor perturbations
in the input produce highly visible effects in predictions should be taken as
a warning. It seems to me unavoidable that the results of trying to model
at a high level of detail must be unreliable. It is not the first time that
I find small input rounding errors amplified by a model, a nice sensitivity
demonstration often masked by accurate computing!

I do not know if data exists or could be obtained to verify branch in-
crement distributions. With only final branch diameter data it would be
possible, in principle, to estimate indirectly the model components. How-
ever, that might well be an ill-defined and badly conditioned problem if the
models happen to be very sensitive to noise and relatively insensitive to the
underlying relationships. If my suspicions are true, then (a) the exact shape
of f(x) may not make much difference, (b) it may be impossible to determine
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it from real data, and (c) whatever we do, predictions will be very rough
anyway. Warning: I have not really done much thinking about all this.
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