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Forest Research Institute

Rotorua, New Zealand

Abstract

A model and estimation procedure for predicting the height growth
of even-aged forest stands was developed as part of a methodology for
modelling stand growth in forest plantations (Garćıa 1979). The data
consists of heights measured at several ages in a number of sample
plots. The ages and number of measurements may differ among plots
and the measurements may not be evenly spaced in time. The height
growth model is assumed to have some parameters which are common
to all plots and others which are specific to each plot. In addition to
random environmental variation affecting the growth, there are random
measurement errors.

The height growth is modelled by a stochastic differential equa-
tion in which the deterministic part is equivalent to the Bertalanffy-
Richards model (von Berfealanffy 1949, 1957, Richards 1959). The
model also includes a component representing the measurement errors.
Explicit expressions for the likelihood function are obtained.

All the parameters are estimated simultaneously by maximum like-
lihood. A modified Newton method which exploits the special structure
of the problem is used.

Some experience with the model and estimation procedure is dis-
cussed.

Keywords: Stochastic differential equations, growth, von Berta-
lanffy model, Richards model, maximum likelihood, estimation, forestry.

1 Introduction

A model and an estimation procedure for predicting the height growth of
even-aged forest stands has been developed, as part of a methodology for

∗Presented at the 5th Australian Statistical Conference. Sydney, August 1980
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modelling growth in forest plantations. The techniques developed may also
be useful in other applications.

The essential characteristics of the problem may be described as follows.
Heights are measured at several ages in a number of sample plots. The ages
and number of measurements may differ among plots and the measurements
may not be evenly spaced in time. The height growth model is assumed to
have some parameters which are common to all plots and others which are
specific to each plot. In addition to environmental fluctuations affecting the
growth, random measurement errors may be present.

After a brief review of the uses and methods of height growth predic-
tion in forestry, the proposed growth model is presented in section 3. The
model consists of a stochastic differential equation related to the Bertalanffy-
Richards growth model, and a measurement error component. Explicit ex-
pressions and an efficient computational procedure for the likelihood func-
tion are obtained.

In section 4 a method for the simultaneous maximum likelihood esti-
mation of common and specific parameters is presented. The log-likelihood
function is maximized using a modified Newton method. The special struc-
ture of the problem is exploited in order to handle the very large number of
variables involved in the optimization.

The approach has been successfully implemented, and some computa-
tional experience is reported in section 5.

2 Height growth and site index

The prediction of height growth in even-aged forest stands is used for two
related purposes: as a component of stand growth models and for assessing
site quality. By the height of a stand we will understand some measure of
”top height”, such as the average height of the 100 largest trees per hectare.
Top height has the advantage over mean height of being little affected (within
limits) by manipulation of the stand density through low thinnings, where
mainly small and malformed trees are extracted.

Stand growth models are used to predict the development of forest stands
subjected to different silvicultural regimes. In addition to equations for
predicting height growth, stand models include relationships for predict-
ing other variables such as mean diameter and natural mortality. Since
top height can be considered as approximately independent of these other
variables, the height prediction component constitutes a self-contained sub-
model, and can be developed separately (Garćıa 1979).
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As mentioned before, height growth is also used for assessing the poten-
tial productivity of forest land (site quality). Top height is used in preference
to more direct measures, such as volume production, because it is more eas-
ily measured and is relatively independent of variations in stand density and
thinning treatments1. The Site Index is defined as the height that a stand
would have at a specified age (20 years for radiata pine in New Zealand).
A family of height over age curves (site index curves) is used to estimate
the site index given the age and height of a stand (see figures 1 and 2). See
Spurr (1952), Jones (1969), and Carmean (1975) for a review of this and
other approaches to site quality evaluation.

Figure 1:

Although there has been some discussion about the need for different

1In New Zealand the top height in forest plantations is usually computed as follows.
In a sample plot, typically of 0.05 to 0.2 hectares, all trees are measured for diameter at
breast height (d.b.h.) and heights are measured in a sample of 10–15 trees. A curve of
height over d.b.h. is fitted using the height sample trees. Then the quadratic mean d.b.h.
of the proportion of trees in the plot which corresponds to the 100 largest-diameter trees
per hectare is computed. The height given by the height-d.b.h. curve for this “mean top
d.b.h.” is the “mean top height” or “top height”. It may be mentioned that there are
some standing questions about the effect of different plot sizes with procedures of this
type (Fries 1974, Matérn 1976, Rennolls 1978).
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Figure 2:

estimation procedures for height prediction and for site classification (Curtis,
De Mars, Herman 1974), the problem is essentially the same. Site index
curves are height growth curves. The site index concept, however, depends
on the assumption that variations in the height growth pattern, for a given
species and region, can be described by a one-parameter family of curves.

A large variety of procedures for developing site index (height-age) curves
has been used, and a review of these will not be attempted here. Site index
curves can be obtained by cross-sectional analysis using a large number of
single height-age measurements on different sample plots. This approach
has severe limitations and, whenever possible, curves based on a number of
consecutive measurements on each plot are preferred (Spurr 1952). These
sequences of measurements may be obtained by repeated measurements on
permanent sample plots, or by stem analysis, where the past growth of trees
is reconstructed from the annual growth ring patterns up the tree. In some
tree species the data can also be obtained from the position of branch whorls
marking the course of annual height growth.

Some methods for deriving site index curves do not use height-age equa-
tions. An example of this is an interesting non-parametric nefchod devel-
oped by Tveite (1969). Among those using equations the procedure used

4



by Burkhart and Tennent (1977) is typical. They first estimate .the site
index for each plot by interpolation or extrapolation (only plots with mea-
surements close to the index age are used). Then an equation expressing
the height as a function of age and site index is fitted to the data using
non-linear least-squares. Bailey and Clutter (1974) use an approach based
on the idea of a one-parameter family of curves, which does not depend
on the arbitrary index age and which allows the use of all the data avail-
able. Some concern has also been expressed about using least-squares with
repeated measurements (Sullivan and Clutter 1972, Sullivan and Reynolds
1976, Ferguson and Leech 1978).

Here a model and estimation procedure for height growth based on
a stochastic differential equation and maximum likelihood estimation is
proposed. Some advantages over existing methodsd are: (a) the error
structure generated by repeated measurements is recognized; (b) different
parametrizations of the height-age curves can be tried and compared, in-
cluding multi-parametric families of curves; (c) atypical variation in early
growth caused by frosts, weed competition, establishing techniques, etc., can
be handled by shifting or leaving free the origin of the curves.

3 Model

3.1 Linear differential equations, power transformations,

and the Bertalanffy-Richards model

There are advantages in taking differential equations as the basis for growth
models, specifically equations of the form:

dH

dt
= f(H) , (1)

where H is the height (or any other size variable) and t is time (Hottelling
1927, Garćıa 1979). Deterministic models are discussed first.

One of the simplest differential equations is the linear equation

dH

dt
= b(a−H) . (2)

This is the well-known Mitscherlich or monomolecular model, and integrat-
ing it produces the growth function

H = a[1− (1−
H0

a
)e−b(t−t0)] , (3)
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where H0 is the height at time t. The height tends to an upper asymptote
a, and there is no inflection point.

Much greater flexibility is attained by substituting a power transforma-
tion Hc for H:

dHc

dt
= b(ac −Hc) . (4)

Calculating the derivative on the left-hand side, this can be written as

dH

dt
=

b

c
H[(

a

H
)c − 1]

or
dH

dt
= ηHm − κH , (5)

a model proposed by von Bertalanffy (1949, 1957) and studied by Richards
(1959). (Conversely, it may be observed that von Bertalanffy’s model is a
Bernoulli differential equation, for which the standard method of integration
involves its transformation to a linear differential equation through a power
transformation of H). The integrated form is (cf. equation 3)

H = a[1− (1−
Hc

0

ac
)e−b(t−t0)]

1
c . (6)

This function has generally a sigmoid shape, with upper asymptote a and
an inflection point at H = a(l − c)1/c. In most applications t0 = H0 = 0.

The Bertalanffy-Richards model is very flexible, including as special cases
several well-known growth functions such as the Mitscherlich (c = 1), logistic
(c = −1), exponential (c = 1, a = 0), and Gompertz (limit when c→ 0, see
below) (Richards 1959). It has been frequently used for site index curves
(e.g., Burkhart and Tennent 1977) and for modelling the development of
other forest variables (Pienaar and Turnbull 1973). It has also been used for
describing animal growth by von Bertalanffy (1949, 1957), and in fisheries
research by Beverton and Holt (1957) and Chapman (1961).

Note that (4) – (6) breaks down for c = 0. This value can be included if
instead of Hc we use the transformation

y =

{

1
c (H

c − ac) if c 6= 0
ln(H/a) if c = 0 ,

, (7)

and
dy

dt
= −by . (8)

Equation (7), as a function of c, is continuous at c = 0, and it is a mod-
ification of the Box-Cox transformation (Box and Cox 1964) suggested by
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Schlesselman (1971). Equations (7) and (8) are equivalent to (4)–(6) for
c 6= O, and to the Gompertz model for c = 0. We will have no need to
consider the case c = 0 because for height-age curves c is normally between
0.3 and 1, but the form (7)–(8) is slightly more convenient in some of the
developments that follow.

It may be mentioned that, if needed, a model even more flexible may be
obtained by adding to (4) a term in H2c. A Riccati-type differential equation
in Hc is obtained, which still can be integrated to obtain an explicit form
for the H – t equation. Levenbach and Reuter (1976) use a Riccati equation
in H for the forecasting of time series.

3.2 Stochastic components

We adopt the Bertalanffy-Richards model defined by (4), (5), or (7) and
(8) to describe the most probable course of the top height development of a
forest stand. Even if we are interested only in point estimates of height, and
not in the stochastic aspects of height growth, some assumptions about the
nature of the random deviations from the model are necessary for a rational
selection of parameter estimation procedures. For example, the usual ap-
proach of fitting the integrated equation by non-linear least-squares can be
shown to have some optimality properties if the deviations from the curve
are independently distributed with zero mean and common variance. It is
widely acknowledged, however, that repeated measurements on an individ-
ual or sample plot are correlated, and that the deviations tend to increase
with time (e.g., Hottelling 1927, Sullivan and Clutter 1972, Sullivan and
Reynolds 1976, Ferguson and Leech 1978, Sandland and McGilchrist 1979).

As pointed out by Hottelling (1927), apart from possible measurement
errors which may be considered as independent, deviations from the most
probable growth curve may be seen as caused by the accumulative effect of
numerous random disturbances operating for brief periods. It is then natural
to attempt modelling the process through stochastic differential equations
(Sandland and McGilchrist 1979, Garćıa 1979).

We modify then (4) by adding a Brownian motion or Wiener process
which represents the effect of the fluctuating environment (to simplify the
notation we assume c 6= 0):

dHc(t) = b[ac −Hc(t)] dt+ σ(t) dw(t) . (9)

This is a stochastic differential equation (SDE), where w is a Wiener process
and σ is some function of age, possibly containing unknown parameters.
Essentially, this means that the variation or error in H c accumulated over
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a short time interval is normally distributed with zero mean and variance
increasing with the interval length, and that errors for non-overlapping time
intervals are independent (Karlin 1966, Gihman and Skorohod 1972). In
the present application we will assume that a is a constant, except possibly
for a few years after planting (and before the first measurement) where we
might expect a larger variation to occur. A multivariate generalization of
this model is discussed by Garćıa (1979).

In addition to the environmental variation, we allow for measurement
or observation errors. It is mathematically convenient to assume that for a
given sample plot the observed heights hi at ages ti are such that

hc
i = Hc(ti) + εi ; i = 1, . . . , n , (10)

where the εi are independent normal variables with zero means and vari-

ance η2. This implies that the variance of hi is approximately η2/(
dhc

i

dhi
)2,

that is, (ηh1−c
i )2. In our application c is typically around 0.7, which would

make the standard deviation of hi proportional to h1−c
i = h0.3

i , which seems
reasonable.

Any of the parameters, possibly after reparametrization, may have the
same value for all plots or different values for different plots.

We will also assume statistical independence between plots.
The stochastic aspects of the model are a compromise between realism

and mathematical tractability. Several over-simplifications and assumptions
that are not completely satisfactory may be mentioned. The error term in
(9) could conceivably cause the height to decrease with time or even cause
Hc to become negative. The additive effect of environmental fluctuations
in (9) is questionable; perhaps a multiplicative effect would be more real-
istic2. Environmental fluctuations are not necessarily serially independent
(Tomlinson 1976). More important, height increments for the same year
in different plots are not independent because they are affected by similar
weather conditions. Nevertheless, the stochastic structure of the model is
intended to be used only for the development of estimation procedures. The
widespread and successful use of linear models in statistics suggests that

2An alternative to (9) which is also tractable but has not been tried is (using the
notation of (7) and (8)):

dy(t) = −by(t) dt+ σ(t)y(t) dw(t) ,

or
d ln |y(t)| = −b dt+ σ(t) dw(t) .
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in most cases the performance of estimators is not too badly affected by
moderate deviations from the distributional assumptions in which they are
based.

3.3 The likelihood function

Many estimation methods require the knowledge of the likelihood function,
i.e., the probability density of the observations, considered as a function of
the parameters. Because of the assumed independence between plots, the
likelihood will be the product of the densities for each of the sample plots.
Then we first find the probability distribution of the observations for one
plot.

The model is:

dHc(t) = b[ac −Hc(t)] dt+ σ(t) dw(t) (9’)

H(t0) = H0

hc
i = Hc(ti) + εi (10’)

εi ∼ N(0, η2) , cov(εi, εj) = 0 if i 6= j ,

where w is a Wiener process and hi is the height observation at age ti,
t1 < t2 < . . . < tn

3. The linear SDE (9) is a special case of those considered
by Erickson (1971) and by Gihman and Skorohod (1972, p. 36–38). It may
be simplified using (7). Integrating between t0 and ti and using (10) we get

hc
i = ac − (ac −Hc

0)e
−b(ti−t0) + δi + εi , (11)

where

δi =

∫ ti

t0
e−b(ti−s)σ(s) dw(s) (12)

is a normal random variable with zero mean (compare with (6)). Heuristi-
cally, this result may be obtained by integrating (9) as an ordinary linear
differential equation, taking w as a fixed function of t. The covariances for
the δi are

cov(δi, δj) = E(δi, δj) =

∫ min{ti,tj}

t0
exp[−b(ti + tj − 2s)]σ2(s) ds . (13)

Equations (10), (11), and (13) completely define the joint (normal) dis-
tribution of the hc

i The joint density for the observations hi (and hence the

3The measurements are not necessarily evenly spaced in time. Moreover, the ti may not
be integers, as when seasonal adjustments (Garćıa 1979) or artificial time scales (Nelder,
Austin, Bleasdale, Salter, 1960) are used.
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likelihood function) can be obtained by multiplying the density of the hc
i

and the Jacobian of the transformation. A simpler expression can be found,
however.

Let
zi = (ac − hc

i )− e−b(ti−ti−1)(ac − hc
i−1) , (14)

i = 1, . . . , n, with h0 = H0 .

Then, from (11) and (12), defining ε0 = 0,

zi = δi + εi − e−b(ti−ti−1)(δi−1 − εi−1)

=

∫ ti

ti−1

e−b(ti−s)σ(s) dw(s) + εi − e−b(ti−ti−1)εi−1 .

It follows that the zi are normal random variables with

E(zi) = 0

and

cov(zi, zj) =



















∫ t1
t0

e−2b(t1−s)σ2(s) ds+ η2 , i = j = 1
∫ ti
ti−1

e−2b(ti−s)σ2(s) ds+ [1 + e−2b(ti−ti−1)]η2

− e−b|ti − tj |η
2 , |i− j| = 1

0 , otherwise

(15)

In the special case where σ(t) is a constant for t > τ and some τ ≤ t1,
σ2(t) = 2bσ2 say, and σ2(t) = 2bσ2 + ξ2(t) for t ≤ τ , the environmental
component in (15) is given by

∫ ti

ti−1

e−2b(ti−s)σ2(s) ds =

{

[1− e−2b(ti−ti−1)]σ2 + σ2
0 for i = 1

[1− e−2b(ti−ti−1)]σ2 for i > 1 ,
(16)

where σ2
0 =

∫ τ
t0
e−2b(t1−s)ξ2(s) ds.

The joint density of the observations is then

f(h1, . . . , hn) = (2π)−
1
2
n|C|−

1
2 exp(−

1

2
z′C−1z)J , (17)

were z = (z1, . . . , zj)
′, C is the covariance matrix with elements cij =

cov(zi, zj) given by (15), and J is the Jacobian of the transformation (14):

J =

∣

∣

∣

∣

∣

det[
∂zi
∂hj

]

∣

∣

∣

∣

∣

= |c|n(
n

∏

i=1

hi)
c−1 . (18)

It is often convenient to work with the negative log-likelihood:

− lnL =
1

2

∑

[n ln(2π)+ln |C|+z′C−1z−2n ln |c|+2(1−c)
n

∑

i=1

lnhi] . (19)

The sum is over the N plots.
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3.4 Computing the likelihood

An efficient procedure for evaluating ln |C| + z′C−1z in (19) has been ob-
tained by using Cholesky factorization and exploiting the fact that the ma-
trix C is tridiagonal.

The symmetric positive-definite matrix C can be factorized as

C = LDL′ , (20)

where D is a diagonal matrix and L is lower triangular with ones on the
main diagonal (Martin, Peters, Wilkinson,1971). Moreover, due to C being
tridiagonal, (20) takes the form

















q1 p2 0 · · · 0
p2 q2 p3 · · · 0
0 p3 q3 · · · 0
...

...
...

. . .
...

0 0 0 · · · qn

















= (21)

















1 0 0 · · · 0
r2 1 0 · · · 0
0 r3 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

































s1 0 0 · · · 0
0 s2 0 · · · 0
0 0 s3 · · · 0
...

...
...

. . .
...

0 0 0 · · · sn

































1 r2 0 · · · 0
0 1 r3 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

















where qi = cov(zi, zi) and pi = cov(zi, zi−1) are given in (15),
The determinant of C can be written as

|C| = |LDL′| = |L||D||L| = |D| =
n

∏

i=1

si ,

and

ln |C| =
n

∑

i=1

ln si .

Also,
z′C−1z = z′(LDL′)−1z = (L−1z)′D−1(L−1z) .

Let L−1z = u. Then

z′C−1z = u′D−1u =
n

∑

i=1

u2
i /si ,
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We can then write

Q = ln |C|+ z′C−1z =
n

∑

i=1

(ln si + u2
i /si) . (22)

From (21),










q1 = s1

qi = si−1r
2
i + si

pi = si−1ri ; i = 2, . . . , n .

It is easy to see then that the si can be computed recursively from the
elements of C:











s1 = q1

ri = pi/si−1

si = qi − ripi ; i = 2, . . . , n .
(23)

Analogously, from z = Lu ,

{

u1 = z1

ui = zi − riui−1 ; i = 2, . . . , n .
(24)

Summarizing, Q = ln |C|+z′C−1z can be computed recursively as follows:4

s ← q1

u ← z1

Q ← ln s+ u2/s

For i = 1 to n :

r ← pi/s (25)

s← qi − rpi

u← zi − ru

Q← Q+ ln s+ u2/s.

3.5 Derivatives

The method used to estimate the parameters of the model requires the
computation of first and second derivatives of the log-likelihood with respect
to the parameters. That is, for each plot we need the derivatives of

F = n ln(2π) + ln |C|+ z′C−1z − 2 ln J . (26)

4Although it requires extra computing effort, the accumulation of the sum of ln s instead
of the product of s seems preferable in order to avoid potential numerical problems.
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Explicit formulas can be obtained using matrix derivatives (Dwyer 1967,
Neudecker 1969). Using subindices to denote derivatives with respect to
parameters θ and µ, we get

Fθ = tr(C−1Cθ)− z′C−1CθC
−1z + 2z′C−1zθ − 2(ln J)θ , (27)

Fθµ = tr(C−1Cθµ)− tr(C−1CθC
−1Cµ)− z′C−1CθµC

−1z

+2z′C−1CθC
−1CµC

−1z − 2z′C−1CθC
−1zµ

−2z′C−1CµC
−1zθ − 2z′θC

−1zµ − 2z′C−1zθµ − 2(ln J)θµ . (28)

These formulas, however, are computationally inefficient, except perhaps
in programs written in interpretative languages with fast built-in matrix
operations, such as APL and some versions of BASIC. They have been
used during program development for checking the coding of the methods
described below.

A second possibility, used in an earlier version of the computer program,
is to derive from (23) and (24) recursive expressions for the derivatives.
This resulted in a reasonably efficient program, but the expressions were
somewhat cumbersome to use. The formulas are rather complex, and most
terms are not used in the computation of the derivatives with respect to
individual parameters. Program changes require extensive recoding.

The method used in the current version of the program is as follows.
First, a subroutine for computing (26), based on (25), was written. This
subroutine is needed in the program. Then this subroutine was used as a
framework for coding the subroutine which computes the derivatives. This
was achieved by inserting, after each assignment statement, code for com-
puting the derivatives of the variable on the left-hand side with respect to all
the parameters involved in the statement. These derivatives are generally
functions of other derivatives computed earlier in the subroutine.

For example, suppose that we are considering a statement

C = A * B

and we have previously computed A3, the derivative of A with respect to
parameter 3, B1, B3, B11 and B33, the first and second derivatives of B
with respect to parameters 1 and 3, and B13, the cross-derivative of B with
respect to parameters 1 and 3. Then, after C = A * B we insert:

C1 = A * B1

C3= A3 * B + A * B3

C11 = A * B11

C13 = A3 * B1 + A * B13

C33 = 2 * A3 * B3 + A * B33
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This is essentially a manual version of an automatic technique for computing
derivatives devised by Wengert (1964, see also Wilkins 1964 and Lesk 1967).
The procedure, although tedious, is straightforward and reasonably flexible.

4 Parameter estimation

4.1 Maximum likelihood estimation

The proposed model, if (16) is used, contains eight parameters for each sam-
ple plot: a, b, c, σ0, σ, η, t0, and H0. In specific “versions” of the-model some
of these are assumed known, others may be common to all plots (“global”
parameters), and others may be specific to each plot (“local” parameters).
Functional relationships between parameters may also be imposed through
reparametrization of the model. The data consist of pairs of age-height
observations for each sample plot,

t1, h1, . . . , tn, hn ,

where n may differ among plots. We are interested in estimating the pa-
rameters for different model versions.

The parameters will be estimated by the method of maximum likelihood
(ML). The ML estimates are the values of the parameters fcr which the
likelihood function reaches a maximum, for the given data. These estimates
will be computed through minimization of the negative log-likelihood (19),
using a modification of Newton’s method. This function has the general
form

F (θ) =
N

∑

k=1

Fk(θ0,θk) , (29)

where θ = (θ0,θ1, . . . ,θN ), θ0 is the vector of global parameters, and θk is
the vector of local parameters for plot k.

The statistical properties of the ML estimates in this case are not clear
(see 4.4). Nevertheless, besides usually producing reasonable estimates, the
ML method has two attractive characteristics: It specifies an objective, well-
defined procedure for estimating parameters, no matter how complicate the
model might be, and the method is invariant under parameter transforma-
tions. The invariance property means that any quantity which is a function
of the parameters is estimated by substituting the parameter ML estimates.

The methods developed here will be applicable to any model containing
global and local parameters, such that the function to be minimized is of
the form (29). The same procedures could also be used with criteria other
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than ML. For example, Bayesian estimates would involve minimizing (19)
minus the logarithm of the prior distribution, a function which is also of the
form (29).

4.2 Newton’s method and some variants

There are a number of algorithms which could, in principle, be used for min-
imizing (29) (Jacoby, Kowalik, Pizzo,1972, Fletcher 1972, Chambers 1973).
Algorithms based on Newton’s method have the disadvantage of requir-
ing the computation of second derivatives but, on the other hand, tend to
be more reliable and to take significantly fewer iterations than alternative
methods. This is important in the present application, which involves a
complicate function of a large number of variables.

Newton’s method for finding the minimum of a function F (θ) is based on
approximating the function by the first three terms of its Taylor expansion
around an initial estimate θ0:

F (θ) ≈ F (θ0) + g′(θ − θ0) +
1

2
(θ − θ0)′H(θ − θ0) (30)

where g is the gradient

g = (
∂F

∂θ1
, . . . ,

∂F

∂θp
) ,

and H is the Hessian matrix

H =











∂2F
∂θ1

2 . . . ∂2F
∂θ1∂θp

...
...

∂2F
∂θp∂θ1

. . . ∂2F
∂θp

2











,

both evaluated at θ = θ0. If (30) were an equality, the optimum θ could be
obtained immediately by equating to zero the derivative of (15) with respect
to θ:

g +H(θ − θ0) = 0 ,

θ = θ0 −H−1g . (31)

Since (30) is only an approximation, the value given by (31) will not in
general be the optimum, but usually it will be an improvement over θ0.
Formula (31) can then be iterated using the new value as θ0, until no fur-
ther improvement is possible. The repeated application of (31) is the basic
Newton method.

Two problems may cause convergence to a minimum to fail:
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(a) If at θ0 the Hessian is not positive-definite (the function is not convex
at θ0), F may not decrease in the direction given by−H−1g. A solution
is to temporarily substitute for H some other postive-definite matrix.
This is discussed below.

(b) Even if H is positive-definite, taking a step −H−1g may overshoot the
minimum in that direction and fail to decrease the value of F . The
usual way around this is to use, instead of (31),

θ = θ0 − αH−1g , (32)

where α is selected at each iteration in such a way that F decreases. In
the current version of the program, for each iteration initially α = 1,
and if it fails in reducing F it is halved until F (θ) ≤ F (θ0).

Several ways of solving problem (a) are discussed by Murray (1972) and
Fletcher and Freeman (1977). A slight variation of Murray’s approach has
been used here. To explain the method, the application of (32) can be
described as follows. In each iteration, if H is positive-definite, we compute
a vector δ defining the direction of movement by solving

Hδ = −g , (33)

and then we move by a multiple α of this vector:

θ = θ0 + αδ .

If H is positive definite, an efficient way of solving (33) is by using the
Cholesky factorization H = LL′, where L is lower triangular (Martin et al.
1971). Making L′δ = y it is easy to see that (33) can then be solved in two
stages:

Ly = −g , L′δ = y .

These equations are easy to solve due to L being triangular. For a general
H, not necessarily positive-definite, Murray (1972) uses a modified Cholesky
factorization that is equivalent to applying Cholesky’s method to H + D,
where D is a diagonal matrix. D is zero if H is sufficiently positive-definite.
The modification is such that the method is numerically stable. A sim-
ilar method based on the three-factor Cholesky decomposition (20) saves
seme computing time, at the cost of additional programming effort (Gill
and Murray 1974).

The algorithm may now be summarized as follows:
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(i) Compute g and H at θ

(ii) Find the modified Cholesky factor L of H

(iii) Solve Ly = −g for y and L′δ = y for δ

(iv) If δ and g are small enough, stop.
Otherwise set α← 1 (34)

(v) Compute F (θ + αδ)

(vi) If F (θ + αδ) > F (θ) set α← α/2 and go to step (v)

(vii) Otherwise set θ ← θ + αδ and go to step (i).

It is possible for the algorithm to stop at a saddle point instead of at a
minimum, a case which can be recognised because at that point the Hessian
is not positive-definite. Special techniques may be included in the algorithm
to handle this contingency (Gill and Murray 1974). However, convergence
to a saddle point seems unlikely, and if it happens we can simply make
a perturbation of θ and restart the program from the new point (Murray
1972). More troublesome is the possibility of convergence to local minima
different from the absolute minimum. The only way of guarding against
this possibility is to rerun the program several times with different starting
points.

A direct application of algorithm (34) for minimizing (29) is impractical,
due to the large size of the Hessian H. It is possible, however, to exploit the
special structure of (29) and arrange the computations in a sequential form
with only modest memory requirements.

4.3 Exploiting special structure

It is convenient to redefine θ in (29) as a column vector partitioned as:

θ =













θ1
...
θN

θ0













,

where θk, k 6= 0, is a column vector of local parameters for plot k and θ0 is
a column vector of global parameters. δ, the gradient and the Hessian may
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be partitioned in the same way:

δ =













δ1
...
δN
δ0













, g =













g1
...
gN

g0













, H =













H11 · · · H1N H10
...

. . .
...

...
HN1 · · · HNN HN0

H01 · · · H0N H00













.

We note that

g0 =
∂F

∂θ0
=

N
∑

k=1

∂Fk

∂θ0
≡

N
∑

k=1

gk0

gk =
∂F

∂θk
=

∂Fk

∂θk
; k = 1, . . . , N

H00 =
∂2F

∂θ0∂θ0
=

N
∑

k=1

∂2Fk

∂θ0∂θ0
≡

N
∑

k=1

Hk00

H0k = H′k0 =
∂2F

∂θ0∂θk
=

∂2Fk

∂θ0∂θk
; k = 1, . . . , N

Hkk =
∂2F

∂θk∂θk
=

∂2Fk

∂θk∂θk
; k = 1, . . . , N

Hkm =
∂2F

∂θk∂θm
= 0 ; k,m = 1, . . . , N , k 6= m .

If H is positive-definite, the Cholesky factorization of H takes the form

















H11 H10

H22 H20

. . .
...

HNN HN0

H01 H02 · · · H0N H00

















=

















L11

L22

. . .

LNN

L01 L02 · · · L0N L00

































L′11 L′10
L′22 L′20

. . .
...

L′NN L′N0

L′00

















.(35)

Working with the submatrices analogously to the matrix elements in Cholesky’s
method (Martin et al. 1971) it is found that the non-zero submatrices of the
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Cholesky factor can be obtained as follows:



















Lkk = Cholesky factor of Hkk

L0k = L−1
kkH0k ; k = 1, . . . , N

L00 = Cholesky factor of H00 −
∑N

k=1 L0kL
′
0k

or
∑N

k=1(Hk00 − L0kL
′
0k) .

(36)

For non-positive-definite H, if the Cholesky factorization in (36) are re-
placed by Murray’s modified Colesky factorizations the resultant factoriza-
tion of H is not the same as the one which would be obtained from Murray’s
method applied to H. Nevertheless, it is easy to see that the result is also
equivalent to a Cholesky factorization of H plus some diagonal matrix. It
can be shown that this diagonal matrix is in general closer to zero than
Murray’s and that Murray’s conditions for numerical stability still apply.

Using this approach, the computations for steps (i) to (iii) in (34) can
be arranged sequentially:

(a) For k = 1 to N :

(i) Read in the data and current value of θ for plot k, and compute
gk, gk0, Hkk, H0k, and Hk00

(ii) Find the modified Cholesky factor Lkk of Hkk

(iii) Solve Lkkyk = −gk for yk and LkkL0k = H0k for L0k

(iv) Accumulate
∑

gk0 = g0,
∑

L0kyk, and
∑

(Hk00 − L0kL
′
0k)

(v) Store in a file yk, Lkk and L0k

(b) Find the modified Cholesky factor L00 of
∑

(Hk00 − L0kL
′
0k)

(c) Solve L00y0 = −g0 −
∑

L0kyk for y0 and L′00δ0 = y0 for δ0

(d) For k = 1 to N :

(i) Read from file yk, Lkk and L0k and solve L′kkδk = yk −L′0kδ0 for
δk

(ii) Store in file δk

Steps for the computation of the norms of g and δ to be used in the con-
vergence tests can be added. It is clear that steps (v) and (vii) of (34) can
also be implemented sequentially, processing one plot at a time.
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4.4 Statistical inference

Under certain conditions, it has been proved that ML estimators are consis-
tent, asymptotically efficient, and the estimates are asymptotically normal
with covariance matrix equal to the inverse of the matrix of second deriva-
tives of the negative log-likelihood. In addition, logarithms of likelihood
ratios are asymptotically distributed as Chi-squared, a fact that can be
used for testing hypotheses and comparing different models. However, the
standard conditions are not satisfied in this model, so that the properties of
the estimates are uncertain.

For inference about the global parameters, the situation is similar to a
class of problems studied by Kiefer andWolfowitz (1956) and Kalbfleisch and
Sprott (1970) (see also Cox and Hinkley 1974, p.292 and 298). For the local
parameters, ignoring the global parameters we have the case of dependent
observations discussed by Weiss (1971), Cox and Hinkley (1974, p.293 and
299), and Crowder (1976). The small number of observations in each sample
plot, however, means that any results about asymptotic properties for the
local parameters would be of doubtful value.

On the other hand, if one accepts the ideas of Likelihood Inference, it
is possible to make use of the ML estimates, likelihood ratios, and second
derivatives of the log-likelihood in a very direct way (Barnett 1973 section
8.2, Edwards 1972). Likelihood Inference is a controversial subject (as most
other approaches are, see, e.g., Barnett 1973), but it seems to provide at
least some useful qualitative guidelines for comparing models and for making
other inferences.

Whatever the interpretation, it seems useful to compute the inverse of
the matrix of second derivatives of the negative log-likelihood, that is, the
inverse of our Hessian H evaluated at the point of convergence. This inverse
can be computed from the stored values of Lkk, and L0k using formulas
derived from (35).

The computed minimum of the negative log-likelihood may be used as an
aid in comparing different versions of the model. Edwards (1972) indicates
that a difference of about two units in the negative log-likelihood might be
taken as “significant”. When comparing models with different numbers of
parameters, Edwards suggests adding half a unit for each additional param-
eter; other approaches suggest adding one unit (Akaike 1973, Stone 1977).
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5 Implementation and computational experience

5.1 Computer program

The parameter estimation procedure has been implemented in Fortran for
the ICL 2980 computer. The program contains approximately 800 lines
and is available from the author. Except for the direct access file handling
statements, only standard ANS 66 Fortran has been used so that conversion
to other computers should be relatively easy.

The log-likelihood and derivatives for each sample plot are computed
as shown in 3.4 and 3.5, using the eight parameters a, b, c, σ0, σ, cη, t0,
and Hc

0. Particular versions of the model are specified through two user-
supplied subroutines. One produces the eight basic parameters, a to H c

0,
given the global and local parameters in θ0 and θk. The second subroutine
transforms the derivatives with respect to the basic parameters to derivatives
with respect to θ0 and θk. Some care is needed to ensure that there are no
errors in these subroutines, and that the model is identifiable. For example,
at least one of t0 and H0 must be fixed, and the possible number of local
parameters is limited by the smallest number of observations in any sample
plot.

The minimization is done essentially as described in 4.3. The height-age
data are held in a sequential file. Heights and ages are scaled down by 10
in order to cause the parameters to be more nearly of the same magnitude,
and reduce the likelihood of over- underflow and roundoff problems. All
computations are done in double precision. It was found necessary to limit
the step size in order to guard against overflow, specially in the initial iter-
ations. A bound of 0.5 for the largest component of δ is used. The current
values of θk, Lkk, L0k, and other plot information that needs to be updated
are stored in a direct access file.

If the program converges within the pre-specified number of iterations,
approximate variances and covariances for the parameters, based on the
inverse Hessian as described in 4.4, are computed. Only a weighted average
over all plots is printed for the cross-correlations of local parameters.

5.2 Results

Experience with the program to date has been limited to two sets of data.
One consists of 91 sample plots with a total of 543 measurements of radiata
pine in Kaingaroa Forest, New Zealand (figure 1). The other contains 58
plots with 247 measurements of radiata pine in Southland Conservancy (fig-
ure 2). Simulated data with similar characteristics have also been used (see
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below). Only plots with three or more measurements were used for some
model versions.

Convergence is satisfactory, provided that reasonable starting points are
used. Most of the time is spent in regions of the parameter space where the
Hessian is not positive-definite. In these regions the step length often has
to be reduced several times in each iteration. Once the Hessian becomes
positive-definite the rate of convergence tends to be much faster. The use
of good starting points seems important. The best approach appears to be
to start with a model version having a small number of parameters, and use
the estimates for this model as starting point for the next more complex
version.

No accurate timing has been carried out. The number of iterations
needed varies widely, depending on the starting point and number of pa-
rameters. As a general guide, the number of iterations is typically between
10 and 50, and a run with the Southland data using three global and two
local parameters and requiring 18 iterations took less than 20 seconds on
the ICL 2980.

The most complete analysis was carried out with the Southland data,
and results have been reported by Garćıa (1979). The main tests involved
model versions with t0 = H0 = σ0 = 0, c and η global, σ local, and three
alternatives for parameters a and b: (i) a global and b local, (ii) b global
and a local, and (iii) S local and a = α + βS, where α and β are global
parameters and S = a[1 − exp(−2b)]1/c is the site index. Case (iii) covers
(i) and (ii) as special cases (β = 0 and α = 0, respectively), at the cost of
one additional parameter. The maximum log-likelihoods were found to be
374.6, 377.3, and 377.9, for (i), (ii), and (iii), respectively. No appreciable
improvement was observed when t0 was allowed to take values different from
zero. No alternative local minima have been found, other than the trivial
ones obtained by changing the sign of the standard deviations.

An unexpected result was that in all cases, including runs with the Kain-
garoa data, the estimator for σ was zero. This prompted a thorough checking
of the whole system, and eventually the writing of a completely new version
of the program including σ0 as an additional parameter. In order to test if
the effect was due to the data, artificial data sets were generated by taking
the ages in the Southland and Kaingaroa data sets, and computing heights
according to the model (with σ 6= 0) using pseudo-random numbers. In all
cases the estimte for σ was found to be zero.

Finally, a simplified discrete version of the model, with only one sample
plot, has been studied through simulation and likelihod plotting (see Ap-
pendix). It was found that, depending on the true values of the parameters,
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the maximum likelihod estimate of either σ or η is usually zero. Difficul-
ties in estimating the variances occur then even in cases where the data are
generated according to the model, the stochastic process is discrete on time,
and there are no local parameters. This indicates that the effect is probably
not caused by the use of the Wiener process, by the presence of both global
and local parameters, by the minimization algorithm, or by lack of fit of
the model to the data. The most likely explanation appears to be simply
that the data do not provide enough information for a reliable separation
of the random variation into the “environmental” and the “measurement”
components. It is also possible that the ML estimator performs poorly for
this model and that other estimators might be more appropriate.

5.3 Discussion

The use of stochastic differential equations for approximating the stochastic
structure of growth data should conduce to better estimators than an indis-
criminate use of least-squares. It would be interesting to study also other
SDEs, such as the one in the footnote on page 8.

The failure in the simultaneous estimation of σ and η has been somewhat
disappointing. One possible way of aproaching this problem is to assume
some value for σ or η) . The standard error of the height-diameter regres-
sions used for computing the top height (see footnote on page 3) provides
information about the magnitude of η . In data from stem analysis η may
be negligible. The other parameters may then be estimated with η fixed
at a given value, although this might still give σ = 0. Different values of
η could be tried to examine the sensitivity of the parameters of interest to
changes in σ and η. Limited experience with the simplified model of the
Appendix indicates that the parameters of interest may be rather insensi-
tive to changes in the variances. Another possibility is a Bayesian approach,
adding the logarithm of a prior density for σ and η to the log-likelihood.

In the development of site index curves the local parameters are nuisance
parameters, and techniques based on partial likelihoods might be worth
investigating (Kalbfleisch and Sprott 1970, Cox 1975). In any case, some
research on the properties of estimators for this class of models, starting
with the simple model in the Appendix, would be desirable.

The procedure proposed in 4.3 is a feasible and reasonably efficient esti-
mation method for models containing both “global” and “local” parameters.
Processing time could be reduced by using a more sophisticated line search
method instead of the halving of α (Gill and Murray 1974). Some recent
Newton-type methods perform better than Murray’s in non-convex regions
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of the parameter space (Fletcher and Freeman 1977, More and Sorensen
1979), but it is not clear if they could be modified in order to exploit the
special structure of the Hessian.

Appendix

In order to investigate the difficulties experienced in trying to separate the
“environmental” and “measurement” components of the random variation,
a simplified model using only one “sample plot” was studied. This model is
obtained by applying (8) to evenly spaced observations. The model assumes
that x1, . . . , xn is a set of n observations such that

xi = yi + εi and

yi = byi−1 + δi ; i = 1, . . . , n , (37)

where the δi and εi are all independent normal random variables with zero
means, and var(δi) = σ2, var(εi) = η2. (b and δ here are related to, but not
the same as the b and δ in the body of the paper). We assume that y0 < 0
is known, and we want to estimate b, σ and η given x1, . . . , xn.

Defining

zi = xi − bxi−1 = εi − bεi−1 + δi ; i = 2, . . . , n ,

z1 = x1 − by0 = ε1 + δ1 , (38)

it is easy to see that the log-likelihood is

−
1

2
[n ln(2π) + ln |C|+ z′C−1z] , (39)

where z = (z1, . . . , zn)
′, and the elements of the covariance matrix C are

cij =



















σ2 + η2 , i = j = 1
σ2 + (1 + b2)η2 , i = j 6= 1

−bη2 , |i− j| = 1
0 , otherwise .

(40)

To study the properties of this model, sets of five observations were
generated according to (37) using pseudo-random numbers, with y0 = −3,
b = 0.95, and various values for σ and η. The ML estimates for b, σ and
η, or for σ and η with b fixed at 0.95, were computed using a version of
the Nelder-Mead simplex algorithm on a microcomputer (Nelder and Mead
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Figure 3:
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Figure 4:
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1965). In some cases contours of the log-likelihood obtained by fixing one of
the parameters were plotted. A typical form of the log-likelihood function
for b = 0.95 is shown in figures 3 and 4.

Based on a limited number of simulations, the following preliminary ob-
servations may be made: (a) With b = 0.95 (fixed), most simulations result
in either σ = 0 or η = 0, depending on the true values of the parameters.
A simulation with a = 0.02 and η = 0.03 resulted in non-zero estimates for
both parameters (0.013 and 0.021, respectively), (b) All simulations with
b free have resulted in zero estimates for σ. (c) No singularities or other
anomalies in the log-likelihood have been observed in the contour plots.
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