
A Stochastic Heuristic Object-Oriented Approach

to Satisficing Multiple-Objective Forest

Management Problems ∗

Stephen M. Dewhurst and Oscar Garćıa

University of Northern British Columbia †

Abstract

Lurch, a forest management decision support tool utilizing an
object-oriented architecture, has been developed and tested in the con-
text of multiple-objective and multiple-stakeholder forest management
planning problems in British Columbia. A satisficing approach based
upon Criteria and Indicators, goal programming, and stochastic heuris-
tic sub-optimization is used. The system is controlled interactively
through an intuitive graphical user interface.

The object-oriented architecture provides fast response, for a very
high rate of combinatorial simulation and evaluation cycles. The result
is an accessible interactive environment for exploring potential man-
agement solutions to complex forest management planning problems.
Lurch has been applied to real-world issues in British Columbia.

1 Introduction

Planning for, and implementing, the integrated resource management of
public forest lands for multiple values is a daunting task. In British
Columbia (BC, Canada), the public forests are still managed primarily for

∗Presented at the Symposium on Systems and Models in Forestry, Punta de Tralca,

Chile, March 4–7, 2002.
†3333 University Way, Prince George, B.C., Canada V2N 4Z9. dewhurst@unbc.ca,

garcia@unbc.ca

1



timber production, but as public land they must also be managed for a
variety of other values as well. To a large extent, the continuation of the
public mandate for industrial timber production in Crown forests is depen-
dent upon assuring the people of BC, and the domestic and international
customers for BC forest products, that the forests are being managed in a
sustainable and responsible manner. This involves explicit recognition of
forest values such as biodiversity, wildlife and visual quality, and the oppor-
tunity for public participation.

Optimization approaches that have been successful in other situations (see,
e.g., Dykstra 1984, Garćıa 1990, and references therein), are not that useful
for forest management planning and analysis in public forests that pro-
vide a wide variety of “resources” to an even wider range of stakeholder
groups. The artificial translation of complex management situations into
single factor objective function formulations, using such measures as net
present value, becomes inadequate in integrated resource management plan-
ning situations involving significant non-market resource values. A satisfic-

ing approach (Simon 1957) may be more appropriate. When dealing with
politically contentious issues in public planning contexts, requiring that a
broker (the analyst) take the objectives of the stakeholder, translate those
objectives to a complex mathematical programming formulation, conduct
the analysis, and interpret the abstract analytical results in terms of the
original desires and objectives of the stakeholders can lead to accusations of
bias, hidden agendas, and insincerity. What is needed are tools that allow all
participants to examine tradeoffs in a transparent and easily comprehensible
way.

In response to these challenges, an Operational Research tool, Lurch, has
been developed in the context of the management of Crown forest lands in
British Columbia, attempting to overcome some of the difficulties. Lurch im-
plements some aspects of the Criteria and Indicators framework, and caters
to the demand from an increasingly sophisticated public for a much more
direct role in the analysis and management planning of our public forests.
A combination of goal programming and heuristic optimization within a
satisficing framework is used, together with an interactive graphical user
interface. The implementation, based on novel object-oriented techniques,
reduces software complexity and enhances algorithmic efficiency and respon-
siveness.

Lurch has been placed in the public domain subject to the Gnu Public
License (GPL), and can be obtained from http://researchforest.unbc.

2



ca. It runs on any computer platform supporting the SUN Java Virtual
Machine, version 1.3 or higher.

2 The forest model

Users interact with Lurch through the graphical user interface shown in
Figure 1. Spatial distribution of indicators over the forest in any selected
time period are visualized in the right-hand-side panel. The user-supplied
indicators are listed and selected for display above the map, and the time
periods below it. Commonly, the planning horizon is divided into 4 to 15
periods of 10–20 years each.

Figure 1: The Lurch graphical user interface

Indicator targets and their preference weights are specified graphically on
the left. Targets apply to Tally Units, which may be the whole forest, or
members of any one of three kinds of land groupings indicated in the tabs.
In addition, a target may apply to the full planning horizon, or individually

3



to each planning period. The objective function to be minimized is therefore
of the form ∑

u,t,i

(w+

utid
+

uti + w−utid
−
uti) , (1)

where u, t and i indicate tally unit, period and target, respectively, d+ and
d− are the deviations above and below target, and w+ and w− are preference
weights. By selecting a tab, any targets associated with the grouping can
be chosen for display and/or modification. Both the specified targets and
currently realized results are shown. Targets for each period are set by
clicking on the graph, and preference weights are modified through the rows
of buttons shown above and below the targets graph. The goal-seeking
algorithm runs continuously, adjusting to altered targets and weights in
real-time. A slider adjusts the display updating frequency, relative to the
algorithm cycling rate which is of the order of 1000 changes per second.
Several other functions are controlled through the cluster of buttons on the
upper-left.

The targets correspond to the indicators, applied on a per hectare basis.
These indicators can be real numbers, e. g., volume per hectare, or qualita-
tive binary variables, e. g., presence of old growth.

The three land groupings that form tally units are called Landscape Units,
Habitat Types, and Special Management areas. These are overlayed static
land classifications associated with different sets of indicators (Figure 2). Al-
though their precise interpretation is flexible, Landscape Units are typically
administrative subdivisions, such as compartments, while Habitat Types
represent bio-ecological classifications or site types. Unlike these, the op-
tional Special Management Areas are not a partition of the forest, but rep-
resent discrete areas where certain specific targets are relevant, for instance,
riparian zones or caribou breeding areas.

Besides these classifications with fixed attributes, within each tally unit the
land is subdivided according to cover type (species, etc.) and age class. The
contiguous areas with a same cover type, age class, and tally unit, are stands,
the atomic management units (Figure 2, also called blocks in the program
documentation). There are typically several thousand stands. The cover
type and age class of a stand can change with management prescriptions
and the passage of time, but the stands are indivisible. Age classes are the
same size as time periods, and uneven-aged stands are handled as being in
a steady-state, with every age class having the same properties.

4



Figure 2: Land classification. Landscape Units, Habitat Types and Special Manage-
ment areas are generically called Tally Units.

Management options cause a stand to change its state, that is, change cover
type and/or age class. For instance, a clearcut changes the age to zero,
with regeneration into the same or a different cover type. Only single-entry
regimes were initially implemented, that is, there was only one treatment
within the planning horizon; generalization to multiple entries has just been
completed. Therefore, a management option is characterized by a timing,
when the treatment(s) occur(s), and a prescription, the change(s) in cover
type. The set of feasible options is specified based on the habitat type and
cover type. The result of a management option is a particular sequence of
indicator values for the stand.

5



3 Algorithms

Lurch uses an object-oriented paradigm, which obviates the need for explic-
itly maintaining and handling complicated data structures. For our pur-
poses, we can view an object as an encapsulation of data, which defines
the object current state, and procedures which can be applied to it. The
procedures either change or interrogate the state. An object procedure is
activated by passing a message (Gosling et al. 1996).

Written in Java, Lurch implements almost everything as objects. However,
conceptually we can limit a description to three simple types of objects: a
Control agent, Stand objects, and Tally Units. Oversimplifying a little, the
algorithm that seeks a minimum for (1) works as follows (Figure 3).

Figure 3: Goal-seeking algorithm loop. (1) and (2) indicate messages on first and
second time around.

Initialization:

1. Each stand is assigned at random a feasible management option
(timing and prescription).

2. The stand calculates the sequence of indicator values, and passes
it to its tally unit.

6



3. The tally units aggregate the indicator streams, and passes the
result to the control agent, which computes the total objective
function value.

Loop:

1. Control picks a stand at random, and tells it to try a new man-
agement option.

2. The stand chooses to change both timing and prescription with
probability 0.1, or timing only with probability 0.9. Calculates
the sequence of indicator values, and passes it to its tally unit.

3. The tally unit calculates the resulting change in its contribution
to the objective function, and communicates it to Control.

4. Control checks if there is an improvement in the objective. If
there is, it tells the stand to make effective the change. Otherwise,
the change is forgotten.

The process runs continuously, tracking target and weight changes made
by the user. The Shake button causes the algorithm to randomly reinitial-
ize the timing and prescription of each stand, as a guard against possible
local optima. In practice, it has been found that this simple greedy algo-
rithm approach is quite effective, and differences between repeated solutions
are generally negligible. The initial intention of implementing an annealing
strategy (Lockwood and Moore 1993) has been found largely unnecessary,
although experimentation with these techniques continues.

4 Discussion

The object-oriented message-passing mechanism avoids complex explicit
data structures, and automatically exploits sparsity in a very efficient man-
ner. Only the minimal set of changes in indicators arising from the stand
state change in each cycle is calculated, furthering efficiency.

As an example, in a problem with 6800 stands, 10 planning periods, 3 land-
scape units, 3 habitat types, 15 special management areas, and 20 indicators,
approximately 1000 stand changes per second were evaluated on a 1 GHz
Pentium III computer. Given 30 goals, from a random start this typically

7



leads to convergence at a near-optimal solution in less than 30 seconds. The
response to incremental changes in targets and weights is very fast.

Some extensions and refinements are under development. Experimentation
with various annealing strategies, and the handling of multiple-entry stand
management regimes, has already been mentioned. Simultaneously changing
more than one stand in each cycle is also under investigation. A recent ad-
dition uses a planar adjacency graph data structure to implement adjacency
constraints.

The most extensive real-life application of Lurch to date has been to partic-
ipatory, strategic-level planning on the John Prince Research Forest, which
is jointly managed by the Tl’azt’en Nation and the University of Northern
British Columbia (Karjala 2001). Members of the native community, in-
cluding elders with little formal education and no background or training in
systems analysis or forestry, were able to be fully involved in the planning
and decision-making. They found Lurch to be useful and accessible as a tool
to help them understand the concepts of management for multiple objec-
tives, analysis of tradeoffs between competing goals, and long-term effects
of alternative management policies.

References

Dykstra, D. P., 1984. Mathematical Programming for Natural Resource
Management. McGraw-Hill.

Garćıa, O., 1990. Linear Programming and related approaches in forest plan-
ning. New Zealand Journal of Forestry Science 20, 307–331.

Gosling, J., Joy, B., Steele, G., 1996. The Java Language Specification.
SunSoft Java Series. Addison Wesley Developers Press,, Menlo Park, CA.

Karjala, M. K., December 2001. Integrating aboriginal values into strategic-
level forestry planning on the John Prince Research Forest, Central In-
terior, British Columbia. Master’s thesis, University of Northern British
Columbia.

Lockwood, C., Moore, T., 1993. Harvest scheduling with spatial constraints:
a simulated annealing approach. Canadian Journal of Forest Research 23,
468–478.

Simon, H. A., 1957. Models of Man. Wiley.

8


