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Abstract

Some data analysis of Netherlands Douglas-fir growth data is re-
ported. The reduction of variability and biases in measures of top
height was studied, and site index models were fitted.

Noise can be reduced considerably by using heights estimated from
height-diameter regressions instead of using the dominant height mea-
surements directly. The problem of bias when estimating top height
from sample plots of various sizes was examined, and a satisfactory
estimator was developed.

Site index equations were obtained through maximum-likelihood
estimation with stochastic differential equations. There are indica-
tions of heterogeneity in the data, suggesting a need to stratify by re-
gions or other categories, or to separate some plots that show peculiar
growth patterns. An analysis of this issue employing local knowledge
and additional information would be necessary for producing a wholly
satisfactory site index model.

Data

Using height-diameter regressions

The standard method of calculating top height in the Netherlands is based
on the tallest (or thickest?) tree in 1/100 ha. The measured height in a
sub-plot of that area is generally used. Unfortunately, height measurements
are difficult and imprecise, and using the observed height directly intro-
duces considerable noise into the data. An alternative would be to fit a
regression of height over dbh with all the plot height measurements, and use
the estimated regression heights for the largest sub-plot trees. This would
smooth-out the height measurement errors.

To test this approach, either the Henriksen semi-logarithmic equation
H = a + b log D or its quadratic extension H = a + b log D + c(log D)2 was
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used. The best equation was selected for each plot according to the adjusted
R2 criterion [5]. The Henriksen is simple and convenient to use and, although
occasionally can predict negative heights for small trees (not a problem in
this application), has usually been found among the most accurate height-
dbh equations [7, 4, 6, 1]. The quadratic semi-log can be justified by the
relatively large height samples (often over 50) found in this data, and our
interest in predicting height just for the top diameter.
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Figure 1: Differences between top heights from measured and from regression
values. Mean of heights of the largest tree in 16 sub-plots of 1/100 ha for each 0.16
ha plot

Figure 1 shows that there is no appreciable bias when using the regression
heights in place of the actual measurements. The variability, however, is
smaller (Figs. 2, 3.) Regressed heights have therefore been used in what
follows.

Estimating top height

As used in the Netherlands, top height may be defined as the expected height
of the largest tree in a 1/100 ha plot (the largest dbh tree, for convenience.)
In the WAU data the permanent sample plots are subdivided into 1/100 sub-
plots, and it is known to which sub-plot each tree belongs. It is therefore
straightforward to compute the plot top height as the mean of the largest
trees from each sub-plot.
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Figure 2: Standard deviations of measured and regression heights of the largest
sub-plot trees. Each point based on 16 1/100 ha sub-plots in a 0.16 ha plot

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n,
 m

ea
su

re
d 

(%
)

Coefficient of variation, regression (%)

Figure 3: Coefficients of variation for measured and regression heights of the largest
sub-plot trees. Each point based on 16 1/100 ha sub-plots in a 0.16 ha plot
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In the IBN-DLO data, however, no such partition in subplots is available.
This would be also the case in many model applications based on inventory
data. It is necessary, then, to estimate top height for plots where the relative
positions of the individual trees are not known.

The usual way of calculating top height for plots of varying sizes is as the
mean height of a number of largest trees corresponding to the proportion
of 1 in 1/100 ha. For example, with a plot of 0.1 ha the largest 10 trees in
the plot would be used, or the largest 4 in a plot of 0.04 ha. This, however,
produces a systematic overestimation of the top height as defined above
[11, 13, 12]. This is easier to see in the 0.04 ha example: the mean of the 4
largest trees in the plot tends to be greater than that of 4 trees constrained
to be each in a different 0.01 ha sub-plot.

Using the 0.16 ha plots in the WAU database, the extent of the potential
biases and the performance of alternative estimators was studied. This
research will be described in detail elsewhere, but the main results may be
summarized as follows.
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Figure 4: Bias of conventional top height estimates. Mean height of the 16 largest
dbh trees in 0.16 ha plots minus the mean of the largest in each 0.01 ha sub-plot

Figure 4 Shows the differences between the conventional method of av-
eraging the heights of the largest (by diameter) 16 trees in the plot and the
mean for the largest in each 0.01 ha sub-plot. The bias might be considered
as not too large, especially when expressed on a relative basis. But it is not
negligible, and it would be desirable to reduce it as much as possible.
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Figure 5: Ratio of dbh variances for 0.01 ha subplots to those for the whole 0.16
ha plots

Developing less biased estimators becomes complicated if tree sizes are
spatially correlated. Then, in addition to the purely sampling effect de-
scribed above, spatial structure may also contribute to biases in a complex
manner. A simple way of testing for spatial structure is to compare the
diameter variance computed for a plot with that obtained for sub-plots [9].
Figure 5 shows the ratios between the two variances for the 0.16 ha plots
from the WAU database. Similar results were obtained subdividing into 0.04
ha plots. For comparison, data from young unthinned eucalypt plantations
in Chile is shown in Figure 6. There is no evidence of any substantial spatial
structure in the Douglas-fir data. It has been observed that thinning can
destroy spatial correlations arising from competition and microsite effects
[14, 9], and the frequent thinnings might play a role here. Note however
that very young stands are not represented in the data, so it is not clear if
the absence of spatial structure would apply to them.

Under the assumption of no spatial structure, and various other as-
sumptions about the tree size distributions, several theoretically unbiased
or nearly unbiased estimators of top height can be obtained. Estimators
were tested with the WAU 0.16 ha plots. Both bias and variance need to be
considered, as well as ease of use.
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Figure 6: Ratio of dbh variances for 0.0111 ha subplots to those for 0.10 ha plots,
eucalypt plantations in Chile

Best results were obtained estimating the logarithm of top dbh by

log Dtop =
∑

i≤n−m+1

(

n− i
m− 1

)

(

n
m

) log Di , (1)

where Di are the dbh of the n trees in the plot, ordered from largest to small-
est, and m is the corresponding number of trees in 1/100 ha (interpolation
can be used if m is not an integer.) It is shown that (1) is a non-parametric
uniformly minimum variance unbiased (UMVU) estimator of the expected
largest log D in samples of size m (expected largest order statistic), given a
random sample of size n. Using Henriksen’s height-dbh equation, this gives
us the UMVU estimator of top height, if there is no spatial structure and
we neglect any effects of the variability in m. The empirical tests showed no
appreciable bias. For consistency, all top heights were computed with this
estimator.

Data screening

The data was plotted and examined in a number of ways, to check for errors
and irregularities. Only a small number of obviously anomalous measure-
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ments were rejected on this basis. The height-dbh relationships were also
assessed, and measurements with less than 10 height-dbh pairs were not
used.

As usual, ages were computed changing close to the middle of the growing
season (1st July). However, because of the variable proportions of growth
achieved near the culmination of the growing season and the consequent
uncertain “physiological age”, measurements carried out during the months
of May, June and July were excluded from the site index computations. A
total of 838 measurements from 153 plots were used.

Site index models

Model and parameter estimation

The methods described in [8] were used. The site index curves are based on
the commonly-used von Bertalanffy-Richards model. In differential equation
form this can be written as

dHc

dt
= b(ac −Hc) , (2)

with the general solution

H = a[1− (1−Hc
0)e

−b(t−t0)]1/c . (3)

Here H is top height, t is age, and (H0, t0) is an initial condition, i. e., some
height-age point on the curve. To obtain site index curves one of the param-
eters a, b, or c, or some function of these, is assumed to be site-dependent,
varying across plots (“local” parameter), while the rest are common to all
plots (“global”.) The initial t0 and H0 can be fixed at 0, or one of them can
be included as an additional parameter to be estimated.

For estimation, environmental perturbations are represented by a Wiener
stochastic process with variance σ2 added to the right-hand-side of (2), and
the observed Hc are assumed to deviate from their actual values by inde-
pendent normal measurement errors of variance η2. A different perturbation
variance of average magnitude σ2

0 for young stands (before the first measure-
ment) can also be included.

The resulting stochastic differential equation can be integrated to ob-
tain the likelihood function. Then the computed likelihood is maximized
with a specialized numerical procedure over all the global and local param-
eters (a, b, c, σ2, η2, and possibly t0,H0, and σ0) to obtain their maximum-
likelihood estimates. See [8] for details.

Several versions of the basic model were tried:

1. a local. This gives anamorphic site index curves, with different asymp-
totes a, a popular choice in the literature.
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2. b local. The curves have a common asymptote a, differing in the time
scaling factor b. This was found to be the best model in all but one of
the regional growth models for radiata pine and Douglas-fir developed
in New Zealand [10].

3. Burkhart and Tennent’s model [3], obtained by substituting b = βS
and a = S/(1 − e−βSk)1/c, where β is a new global parameter, S is
the site index (local), and k is the chosen site index age [10]. Values
of 20 and 50 years were tried for k. Note that, in more direct analogy
with the models that follow, this could also be written keeping b as
the local variable and making a = pb/(1 − e−bk)1/c.

4. A new composite model that can take forms intermediate between 1
and 2. This is very general, in that covers situations in which a and
b are replaced by any power transformations of the form µαθβ, where
θ is a local parameter and the others are global. Actually, it is seen
that it is sufficient to keep b as a local parameter, and to substitute
pbq for a, where p and q are globals.

5. Like 4, but with linear transformations: b local and a = p + qb.

In addition, versions with and without the additional parameters t0, H0 or
σ2

0 were tried. These and the variances σ2 and η2 were treated as global.

Results

Little or no improvement in the likelihood was obtained by allowing the
origin to differ from zero, or by introducing the different variance for young
stands. The estimated t0 was always small, below one year. Therefore, only
the results for t0 = H0 = 0 and σ0 = σ are shown in Table 1. Model 3 with
index ages 20 and 50 are indicated by 3/20 and 3/50, respectively. Units
are meters for height and years for age.

Table 1: Results

Model log-likelihood a b c σ η
1 1200.0 local 0.03928 0.5763 0.02973 0.03627
2 1236.5 34.30 local 0.6029 0.03036 0.05371

3/20 1235.0 see text 0.003144S 0.6155 0.03170 0.05553
3/50 1247.9 see text 0.001610S 0.5618 0.02521 0.04955

4 1247.4 81.29b0.2827 local 0.5673 0.02577 0.05019
5 1248.2 23.71 + 222.6b local 0.5665 0.02564 0.05030

When comparing the log-likelihoods for models with the same number
of parameters, differences of more than about two units may be seen as
“significant”, and between 1/2 and 3 units should be discounted for each
additional parameter [8, 2]. By this criterion there is little to chose between
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Figure 7: Data, and site index curves for model 5. Site indices 16, 19, . . . , 34 for
index age 50

models 3/50, 4 and 5, at least if the index age in 3 is counted as a parameter.
In fact, graphing the curves these are seen to be very close. Model 5 may
be preferred for its higher likelihood value, and for not depending of the
somewhat arbitrary selection of an index age. Figure 7 shows the data, and
site index curves from model 5.

Unfortunately, these models are somewhat cumbersome to use. Unlike
with 1 and 2, given an (H, t) pair it is not possible to solve analytically
(3) for the local parameter (or site index), and iterative numerical methods
have to be used. Four or five Newton iterations are sufficient, but it is not
as convenient as having an explicit formula. Therefore, model 2 might still
be worth considering. This model is compared to model 5 in Figure 8.

Most of the plots show a strong tendency for the height growth to slow
down considerably at older ages. There are however a few that have grown
to much greater heights than usual, and are not well represented by neither
model. The low final heights suggest some soil limitation, or apical damage
caused by wind, salt spray, or other factors (New Zealand Douglas-fir data,
unpublished, shows strong height growth beyond 40 meters, well fitted by
model 2 with an asymptote around 67 meters.) The plots that do not exhibit
this slow down, notably plots 11, 12, 47, 977 and 978, might represent
different or atypical growing conditions.
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Figure 8: Data, and site index curves for models 2 and 5

Height prediction and site index estimation

As just mentioned, as long as the observed growth pattern differences are
not clarified it is not possible to have much confidence in the models that
we have obtained. It may be useful, however, to describe the necessary
computations with the models for experimentation or other uses.

Given one or more height-age measurement pairs for a plot or stand, it is
typically desired to estimate a site index and/or perform height projections.
This is a two-stage process: first the local parameter (b) is estimated, and
then this is used to predict the height(s) at other age(s) — at the index age
for the site index.

For model 2 the basic equation is

H = a(1− e−bt)1/c , (4)

where a and c are given in Table 1, and b is the site-dependent parameter
varying from plot to plot. Given a height-age pair, (4) can be solved for b:

b = − ln[1− (H/a)c]/t . (5)

(Of course, this fails if the height is above the 34.3 m asymptote.) Then,
the height at any age is estimated by substituting the age in equation (4).
In particular, the site index is obtained by inserting the index age k. Or,
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having calculated the site index S, the height at other ages is given by

H = a{1− [1− (S/a)c]t/k}1/c .

If there are several H − t pairs available, various procedures could be
devised. For most applications it would be probably sufficient to use the
average of the site indices calculated for each observation.

For model 5, p + qb is used in place of a in (4), with the constants p and
q given in Table 1. It is not possible to get an explicit expression like (5) for
b. The following Newton iteration may be used instead:

b← b +
H − (p + qb)(1− e−bt)1/c

(p + qb)t/c + [q − (p + qb)t/c](1 − e−bt)1/c
.

This can be started with b = 0.04 (near the average value) and repeated until
there is no significant change. Or, to simplify programming, just iterated 5
times, which would guarantee sufficient accuracy.
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