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Abstract

Time plays a fundamental role in forest management. The interac-
tions between systems that develop over time with their environment
and with management actions can be confusing. Useful formalisms
for describing dynamic systems have been developed and are taken for
granted in many disciplines, but generally they are not fully understood
or consistently applied in forestry. I attempt a simple explanation of
these ideas, emphasizing their conceptual basis.
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Introduction

Time and models play a particularly important role in forestry. Planning is
done over long time horizons. Compared to agriculture, for example, there
is less value in experience, experimentation, and trial-and-error. Foresters
are forced to make long-term predictions based on indirect observations and
on an understanding of system behaviour.

I will not go into philosophical questions about the nature of time. The
aim here is pragmatic, seeing how to best represent time-related concepts
to facilitate understanding and prediction.

The way in which people think about time probably depends much on
individual background and training. Judging from the bulk of the forestry
literature, most foresters and forest researchers take what I will characterize
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as an input/output view. Perhaps the most natural, it derives from a long
forestry tradition rooted in the 17th and 18th Centuries. Physicists and
engineers, on the other hand, may find natural to resort automatically to a
view based on rates of change, due largely to Isaac Newton. The, in many
ways more efficient, “rates” view may appear obvious to many; in fact, it
tends to seem obvious once understood. Nevertheless, although the ideas
are basically simple, the insight necessary to make the switch may never
come. My intention here is to trigger that process, with apologies to those
already familiar with these matters.

The concepts are often intertwined with details pertaining to specific ap-
plications. In the 1960’s, System Theory abstracted the basic principles from
their origins in classical physics and in the theory of differential equations,
producing and formalizing a “disembodied” general theory of dynamical sys-
tems, applicable to any system that evolves in time. Some expositions, in
increasing order of rigour and mathematical difficulty, are found in Kalman
et al. (1969, Ch. 1), Zadeh (1969), and Windeknecht (1971). Much of this
is now part of Nonlinear Dynamics, although emphasis has shifted to chaos
and other topics less relevant for our purposes. For some forestry appli-
cations see, for example, Garcia (1990, 1994), Vanclay (1994), Franc et al.
(2000).

I will attempt an intuitive, non-mathematical explanation of the basic
principles, geared toward typical forestry situations.

Modelling time
Models

By models I do not mean necessarily mathematical models, but any repre-
sentation of an aspect of reality. In particular, the mental models that are
necessary for reasoning about a problem, models that may or may not be
eventually verbalized and expressed in natural or mathematical language.
Of course, there are philosophical issues about reality that we do not need
to get into. Suffice to say that no model is “true”; models may have more to
do with the structure of the human brain than with what exists “out there”
(if anything!).

Deterministic or stochastic?

A common objection to deterministic models is that nature is variable.
Every realization of a natural process is going to be different from every



other one: models should be stochastic. However, if instead of the actual
value of a future outcome we think of its expectation, most likely value, or
the median, a deterministic model for such a location parameter is perfectly
valid. In fact, that may be all what a decision-maker needs, wants, or is
able to use.

More generally, in practice stochastic models are just “deterministic”
models for a certain number (maybe even an infinite number) of probabil-
ity distribution parameters. Whatever we might mean by probability (Bar-
nett 1999, Jaynes 2003). To keep things simple I will consider deterministic
models, which might describe, e. g., a most likely behaviour.

Input/output

Forestry frequently deals with relationships between functions of time. For
instance, a yield table may predict volume over time for a given sequence of
thinnings, specified by their timing and intensity. Or a process model might
describe responses to a trend in temperature. In forest planning we might
be interested in the trend of timber supply, measured by the price of timber,
given past annual harvests. The time functions may be discrete (thinnings),
continuous (temperature), or we might have the choice of modelling them
either way (price, harvest). More generally, one may be interested in several
responses (outputs), affected by a number of input variables.

Roughly, the general problem may be pictured as in Figure 1. The inputs
and outputs can be lists of numbers (vectors), or even more general objects.
Outputs depend on the whole history of past inputs.

This is a confusing state of affairs. A time-function is here a function
of another time-function (what mathematicians call a functional). Tt is
not at all clear how one could go about modelling or reasoning about this
system. Many researchers have discovered correct or almost correct solutions
along lines similar to those described below. Especially in growth and yield,
however, others continue publishing models that are clumsy and/or logically
flawed. Examples of this are most uses of variable-density yield tables for
managed stands. I will show how to generate the functional through simpler
rate functions.

Output functions

As an intermediate step, let us introduce a state description, information
pertaining to the current situation at some point in time. For now, assume
that this description includes everything that might be relevant to the char-
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Figure 1: Input/output view.

acterization and behaviour of the system at a point in time, and perhaps
also data that is not relevant in that sense. In a harvest planning problem,
that state might include, among other things, the number of hectares in
each forest type and age class. In a stand yield projection it might include
the dimensions and relative locations of all trees, their nutritional status,
the amount of moisture in the soil, etc.

Clearly, by definition, the state at some given time determines the output
at that time. In other words, the current outputs are a (vector) function of
the current state:

outputs = g(state) (1)

(I use g(+) for the function to keep with tradition, reserving f for later).
Given this output function, we “only” need to know the state at the time of
interest.

Therefore, let us forget the outputs, and try to predict the state. Imagine
again a process like Figure 1, but with “state” in place of “outputs”. At
first sight it appears that we have gained nothing, on the contrary, we seem
to have made the prediction problem much worse. This is not the case.



State transitions

The crucial insight comes from realizing that any effect of the past on the fu-
ture has to pass through the present. Past history can only affect the future
through a changed present state (Figure 2). Causality requires mediation
through tangible properties of the system at a point in time. Knowledge of
the state makes history irrelevant.
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Figure 2: State projection.

It is important to understand that this is not an assumption; it is a con-
sequence of the definition of state. If systems with the same state and future
inputs behave differently, it means that more should have been included in
the state description. “Roughly, the state of a system at any given time is
the information needed to determine the behavior of the system from that
time on” (Zadeh 1969), “a kind of information storage or memory or an ac-
cumulation of past causes” (Kalman et al. 1969). Of course, in a model we
compromise, taking into account trade-offs between accuracy, complexity,
information requirements, and other considerations.

From Figure 2,

future state = F'(current state, time interval, interval inputs). (2)



This is called a (global) transition function. It is especially convenient and
easy to use for time intervals without inputs. For example, in-between thin-
nings when modelling stand density management. A thinning causes an
essentially instantaneous change of state.

The transition function (2) has reduced the problem to an input-state
relationship over a smaller time interval than in the original formulation.
Nevertheless, (2) must satisfy some consistency conditions. For instance,
splitting the time interval in two, and projecting the state over the two
intervals in sequence, should produce the same result as the one-step pro-
jection over the whole interval. Even without inputs, it is not obvious how
to obtain a function with these properties. The solution is to model the
change of state, or the rate of change per unit time, for small time steps,
and to iterate or accumulate. With small enough steps, ignoring any input
changes within the time-step,

next state = f(current state, current inputs) , (3)
Or, equivalently (different f),
rate of change of state = f(current state, current inputs) . (4)

These are known as a local transition function. Given an initial state and
any inputs over some time interval, the function can be repeatedly evaluated,
and (3) iterated, or the increments from (4) accumulated, to obtain the state
at the end of the interval as specified by (2).

Alternatively, the local transition function (4) can be defined as the
limit when the step length tends to zero (instantaneous rates, Figure 3).
The resulting differential equation can then be integrated, analytically or
numerically, to produce (2).

State-space modelling

The approach should now be clear. Instead of attempting to model directly
the input-output relationships of Figure 1, one first decides on an appro-
priate state description. Then, a rate equation (4) is obtained. Summation
or integration can produce state predictions for any initial state, any pro-
jection interval, and any inputs. Finally, outputs are estimated with the
output function (1). Unlike ad hoc input-output-based models, results are
logically consistent.

The choice in (4) between discrete or continuous time (difference or dif-
ferential equations), can be largely a matter of personal taste. Finite steps
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Figure 3: Rates.

can be less intimidating, and maybe easier to implement, although some
awkward approximations may be needed when the projection interval is not
a multiple of the basic step. Instantaneous rates are more general, more
“accurate”, and the model’s mathematical properties are easier to study.

The most appropriate level of detail in a state description (the model
scale or resolution level) can vary, depending of many factors. The classic
Goulding-Munro classification of forest growth models reflects those dif-
ferences: a few variables in whole-stand models, sizes of many trees in
individual-tree distance-independent models, additional spatial coordinates
in distance-dependent models (Goulding 1972, Munro 1974, Vanclay 1994).
Fundamentally, the state must satisfy two conditions: (a) the rate of change
must be predictable from the current state and current inputs, and (b) it
must be possible to estimate the outputs of interest from the state. Other
considerations include the model purpose (prediction or understanding), the
data available for parameter estimation, and in predictive models the relia-
bility of initial state estimates.

With research models the choices are less clear, due to the varied and
sometimes ill-defined purposes that they serve, and to the fact that they do
not need to be limited to variables that are economical or even feasible to
measure. Computing advances have made it easier to produce complex mod-



els rather than simpler ones, ignoring the motto of Hamming (1962):“The
purpose of computing is insight, not numbers”. It has been suggested that,
as a rough guide, one should model at the next scale below (more detailed
than) the scale of interest. On the contrary, in predictive models for decision-
making, the most direct link between actions and consequences should prob-
ably be used. Paraphrasing Einstein, “use as few state variables as possible,
but not less”.

An active and still incipient area of research, relates to the linking of
different scales. See, for instance, Picard and Franc (2004), and references
therein.

Conclusions

Thinking about systems that evolve over time can be confusing, and logi-
cal errors are often made. The theory of dynamical systems can help. It
is taken for granted in many disciplines, but curiously, it has rarely been
systematically applied in forestry.

Once the basic ideas are understood, it becomes natural to model any
time-dependent system through rates of change.

Literature Cited

Barnett, V. (1999). Comparative Statistical Inference. Wiley, third edition.

Franc, A., Gourlet-Fleury, S., and Picard, N. (2000). Une Introduction a la
Modélisation des Foréts Hetérogénes. ENGREF, Nancy, France.

Garcia, O. (1990). Linear Programming and related approaches in forest
planning. New Zealand Journal of Forestry Science, 20:307-331.

Garcia, O. (1994). The state-space approach in growth modelling. Canadian
Journal of Forest Research, 24:1894-1903.

Goulding, C. J. (1972). Simulation techniques for a stochastic model of the
growth of Douglas fir. PhD thesis, University of British Columbia.

Hamming, R. W. (1962). Numerical Methods for Scientists and Engineers.
McGraw-Hill.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge
University Press.



Kalman, R. E., Falb, P. L., and Arbib, M. A. (1969). Topics in Mathematical
System Theory. McGraw-Hill.

Munro, D. D. (1974). Forest growth models - a prognosis. In Fries, J., editor,
Growth Models for Tree and Stand Simulation, pages 7-21. Royal College
of Forestry, Stockholm, Research Note 30.

Picard, N. and Franc, A. (2004). Simplifying spatial interactions in a model
of forest dynamics. FBMIS, 1:91-103. http://www.fbmis.info/.

Vanclay, J. K. (1994). Modelling Forest Growth and Yield: Applications to
Mized Tropical Forests. CAB International.

Windeknecht, T. G. (1971). General Dynamical Processes: A Mathematical
Introduction. Academic Press.

Zadeh, L. A. (1969). The concepts of system, aggregate, and state in system
theory. In Zadek, L. A. and Polak, E., editors, System Theory, pages 3—42.
McGraw-Hill.


http://www.fbmis.info/

	Introduction
	Modelling time
	Models
	Deterministic or stochastic?
	Input/output
	Output functions
	State transitions
	State-space modelling

	Conclusions
	Literature Cited

