
NRES 798 — Lab 9

Linear models

More on regression, and a peek at ANOVA and ANCOVA.

1 Nonparametric regression

Load the data set used in the last lab: data(trees). Check it out with
names(trees), etc.

An example of nonparametric regression, aka smoothing : do
scatter.smooth(trees$Girth, trees$Volume). It uses a local ap-
proximation procedure (see ?loess). That is, the ŷ at a point x is based
on observations close to x, trying to produce a smooth curve.

There are several alternatives, try lines(supsmu(trees$Girth,

trees$Volume), col=’red’) and lines(smooth.spline(trees$Girth,

trees$Volume), col=’blue’). Splines are pieces of (usually cubic)
polynomials, conditioned to join smoothly at their ends. That was a
smoothing spline, function spline gives an interpolating spline that passes
through each point, try it.

For output that is more interesting, repeat the three fits with Height sub-
stituted for Girth. See ?scatter.smooth, etc., for more details.

This can be useful in exploratory data analysis. It can also help to check
the residuals for trends, or to demonstrate that there is none in a more
“objective” way:

fit <- lm(Volume ~ I(Girth^2 * Height), trees)

scatter.smooth(fitted(fit), resid(fit))

abline(0, 0)
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The curve in the first diagnostic plot from plot(fit) is also produced with
loess. By the way, including the argument which=1:5 in plot gives all the
5 available diagnostic plots, including a q-q plot for normality, not just the
default three.

2 Model selection

Remember the last lab, we fitted many different models to the trees data.
Which is the best?

2.1 Same y and p

For models with the same y and the same number of parameters p, the one
with the smallest residual standard error (RSE) gives the best predictions.
The r-squared gives the same ranking, provided that the models are based
on the same data.

Compare d2 <- lm(Volume ∼ I(Girth^2), trees) and d2h <-

lm(Volume ∼ I(Girth^2 * Height), trees). Hint: use summary.

But note that this is not the only consideration, d2 does not require expen-
sive height measurements, and might be “better” in practice.

2.2 Different y, same p

Fit lg <- lm(log(Volume) ∼ log(Girth), trees). Is it better or worse
that d2? The RSE are not comparable, they are in different units, and
neither is the r-squared. There are no completely satisfactory answers. One
possibility is to compare the (maximized) log-likelihoods, use logLik, try
it. But be aware that this compares not just the goodness of the regression,
but also how good the assumption of normal iid residuals is. The residuals
of Volume and of log(Volume) are very different, and for instance one may
be more homoscedastic than the other.

Note: the likelihood is only defined up to an arbitrary factor, and therefore
its logarithm, the log-likelihood, has an arbitrary additive constant. Only
differences of log-likelihoods are meaningful, their specific values are not.
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Another possibility might be to compare the regression confidence inter-
vals. First, let’s see how to get them. For d2, do cd2 <- predict(d2,

interval=’confidence’). The result (display it) is a matrix where the
columns are the regression estimates and the confidence interval limits,
evaluated at the data points by default. Do the same for the prediction
intervals, substituting prediction for confidence: pd2 <- ... (ignore
the warning). Now we can draw the textbook confidence curves:

plot(trees$Girth^2, cd2[,1], type=’l’) # the regression line

lines(trees$Girth^2, cd2[,2]) # add one confidence limit

lines(trees$Girth^2, cd2[,3]) # and the other

lines(trees$Girth^2, pd2[,2]) # add the prediction limits

lines(trees$Girth^2, pd2[,3])

Now let’s compare the prediction limits for the two models, in the original
variables. Try to understand what this does:

plot(trees$Girth, pd2[,1], type=’l’)

lines(trees$Girth, pd2[,2])

lines(trees$Girth, pd2[,3])

# Now for lg, back-transforming the log

plg <- exp(predict(lg, interval=’prediction’))

lines(trees$Girth, plg[,1], col=’red’)

lines(trees$Girth, plg[,2], col=’red’)

lines(trees$Girth, plg[,3], col=’red’)

Conclusions? Be aware, however, that the intervals depend on the assump-
tions about the residual distributions, which are different in the two models.

2.3 Different p

If we kep adding x’s, the r-squared always increases. The RSE decreases,
only increasing a little when p is fairly large, because of the denominator n−
p. So none of these are directly useful for evaluating the fit, or for indicating
when to stop, these statistics do not account for overfitting. Again, there
are no good answers.
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One may leave out terms where the t or F test indicates that the βk is not
significant at some chosen significance level. Try fitting Volume adding suc-
cessively the predictors Girth^2 * Height, Girth^2, Height (remember
the I()!), and look at the p-values. There are automatic ways of doing this
kind of thing, called stepwise regression; we will see a variation in a minute.
Something similar can be done with an ANOVA table. Somewhat arbitrary,
and usually one should also take parsimony into account.

Another way is to prevent overfitting by penalizing complexity, represented
by the number of parameters p. The adjusted r-squared, shown in the output
from summary.lm, is a modification of the r-squared that decreases with p:
r2adj = 1 − (1 − r2)(n− 1)/(n− p). Check the values for your models above.

More popular these days are Akaike’s Information Criterion (AIC) and
Schwartz’s Bayesian Information Criterion (BIC). The AIC penalizes the
log-likelihood by subtracting the number of parameters, and BIC subtracts
the number of parameters multiplied by one half of the logarithm of the
number of observations. Specifically, AIC = −2(logLik − p), and BIC =
−2 logLik + p log(n) (lower is better). As before, only differences are mean-
ingful. And the values reflect the quality of all the regression assumptions,
not just the fit. Use functions AIC and BIC to compare the models.

Function step searches for a model like in stepwise regression, but using the
AIC criterion instead of F tests. To try it, add the transformed predictors
Girth^2 and Girth^2 * Height to the trees data frame: trees$G2 <-

trees$Girth^2, . . . . Then to start from the model that includes all the
variables, do step(lm(Volume ∼ ., trees)).

3 Caveats

Try this:

x <- 1:12

y <- x^2

fit <- lm(y ~ x)

summary(fit)

Does that look like a good r-squared?
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plot(y ~ x)

abline(coef(fit))

Moral: plot your data, and do not trust r-squares.

Another one:

data(anscombe)

mean(anscombe) # look at the means

sapply(anscombe, sd) # standard deviations

summary(lm(y1 ~ x1, anscombe))

summary(lm(y2 ~ x2, anscombe))

Compare the results of the two regressions. Do the regressions for the other
pairs, compare. Now plot them: plot(y1 ∼ x1, anscombe). etc.

4 Categorical predictors

Load the CO2 data set: data(CO2). Inspect it: summary, head, str,

?CO2.

A linear model with a continuous (numerical, quantitative) response and cat-
egorical predictors: lmout <- lm(uptake ∼ Type + Treatment, CO2).
Alternative function: aovout <- aov(uptake ∼ Type + Treatment,

CO2). Try a few things, see if you can figure it out:

summary(lmout)

summary(aovout)

anova(lmout)

No problem mixing categorical and quantitative predictors:
anova(lm(uptake ∼ Type + Treatment + conc, CO2)).

To be continued. . .
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