
NRES 798 — Lab 8

Regression

1 The trees data set

Load the trees data set: data(trees). Examine the summary and str.
See the variables description in the Help (?trees).

“Girth” is actually diameter at breast height, change the variable name to
“Dbh” (use names for that). Change the values to metric (trees$Dbh <-

2.54 * trees$Dbh cm, etc. 1 foot = 0.3048 m). Check if the numbers make
sense.

Do pairs(trees). What is it?

2 Nonlinear regression

We want a relationship for estimating volume from height and/or dbh mea-
surements. See your previous graph, which variable looks more promising?
What kind of curve might work?

2.1 One predictor

Let’s try dbh alone first (measuring heights is more hassle). Plot volume over
diameter, diameter squared, diameter cubed. Set xlim and ylim to include
the origin (Dbh = Volume = 0). By the way, besides plot(x, y), one
can also use a formula: plot(y ∼ x, data). Just be careful of enclosing
expressions with the identity function I(), because the arithmetic operators
in formulas can have special meanings: Dbh^2 does not work, I(Dbh^2) does
(try it!).

It looks like we could use V ≈ β1D
β2 , for some β1 and β2. Use

nls to estimate the parameters: nls(Volume ∼ ..., data=trees,
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start=c(b1=..., b2=...)). In nls it is not necessary to use I(). For
initial estimates you can use a rough estimate of the slope from one of your
graphs. Interpret the output. See what happens if the starting values are re-
ally bad. In nonlinear least-squares, and in general optimization algorithms,
there is a danger of converging to a spurious local optimum; the only defense
is to use decent starting points, and/or several different ones.

One can get more info from the result by using summary or other func-
tions, so that it can be useful to store the result, e.g., fit <- nls(...).
Use summary. Study the output. Std. Error is a rough estimate of the
parameter standard error (standard deviation of β̂i), sβi , based on a linear

approximation. The t value is β̂i/sβi (check!), a test statistic for the hypoth-
esis H0 : βi = 0. The test statistic has a t-distribution, and the last column
are the p-values. What are the results of these hypothesis tests? Would you
have expected otherwise? The residual standard error is another name for
the SE of regression; check that it is the square root of the RSS (obtained
before) divided by the degrees of freedom n− 2.

A more interesting H0 might be β2 = 2, for example. One could use the test
statistic (β̂i − 2)/sβi (note that with the alternative hypothesis β2 6= 2 the
test should be two-sided). An easier way is to run the fit again, reparametriz-
ing β2 → 2 + β2 (why?). Do it. Compare the parameter estimates to the
previous ones. Is the hypothesis rejected?

Plot Volume over Dbh, as before, and add the fitted model. You can use
curve with the parameter add=TRUE.

2.2 Two predictors

Let us try now including Height as a predictor, V ≈ β1D
β2Hβ3 . Fit this

with nls, call the result fit2. You can start with the previous estimates
and β3 = 0, which is the same as the currently best model (yes?). Stepping
up from simpler models is a good strategy.

Better? Compare the RSS and RSE. The p-value for β3 suggest that it is
not 0. Think about what exactly that hypothesis might mean. Another
formal test for model differences uses ANOVA and an F -ratio: anova(fit,
fit2), try it.

Notice that a null hypothesis β1 = 0 would not be rejected. What might
that mean?

A number of functions extract further information from the regression result.
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coefficients(fit) or coef(fit) returns the parameter estimates. fitted
gives the estimated y for all the data points, and residuals or resid gives
the residuals, observed minus estimated. The function predict can be used
to estimate y for new observations. Calculate the summary and the standard
deviation (sd) of residuals(fit2). Is the mean close to 0? (is equals 0
in linear models). Compare the SD to the RSE, why the difference? Hint:
denominator.

A model should be checked (“validated”) by plotting the residuals. Plot
the residuals of fit2 over the estimated volume, over dbh, and over height.
Add the 0 line with abline(0, 0) or abline(h=0). We look for lack of
pattern, balanced positive and negative values, and homogeneous variance.
Notice the poor residuals over height in fit. A common mistake is to plot
residuals over the observed y; patterns would be expected in that case (can
you see why?). A q-q plot of the residuals can be used to check for normality
(qqnorm / qqline).

Some of the graphs suggest an increase of variance with tree size (hetero-
cedasticity), contrary to the regression theory assumptions. If that happens,
estimates are still approximately unbiased (exactly unbiased in linear mod-
els), but not as efficient as they could be (the variance of the parameter
estimates is inflated). Things may be improved by transforming y, usu-
ally with the logarithm. Another way is to use weighted regression, making
weights in nls or lm a vector proportional to the residual variance. For in-
stance, the graphs might suggest a residual standard deviation proportional
to height, so the weights equal the heights squared. An equivalent result is
obtained by dividing the left- and right-hand sides of the model equation by
a value proportional to the standard deviation, in this example fitting V/H
instead of V (note that the variance of V/H is the variance of V divided by
H2).

3 Linear regression

Pretty much the same as above, except that the models are of the form

y = β0 + β1x1 + · · ·+ βp−1xp−1 .

The case p = 2 is called simple linear regression, and p > 2 is multiple linear
regression. Instead of nls, the R function is lm (linear model). The same lm
is used with categorical variables in ANOVA and ANCOVA. For regression,
the first argument is a formula of the form y ∼ x1 + x2 + .... Here +

3



does not mean sum, but inclusion of variables. Remember to protect any
expressions within I(). The intercept can be excluded with -1.

Using our trees data set, fit a model V = β0 + β1D
2. Proceed as with

nls, but the formula is Volume ∼ I(Dbh^2). No starting values are used,
estimates are obtained from explicit equations, not an iterative algorithm.
Notice any differences with the output of nls.

In fact, the model could be fitted with nls, try it. But lm is more effi-
cient (saves a few milliseconds!), and importantly, more reliable (no false
convergences), and can produce some additional information.

Fit and compare the following models (the fit statistics for different y’s
cannot be directly compared):

V = β0 + β1D
2H

V = β0 + β1D
2 + β2H + β3D

2H

log V = β0 + β1 logD + β2 logH

V/H = β0/H + β1D
2

V/D2 = β0 + β1H

In the second one, drop non-significant terms, one at a time.

Do graphical examinations of residuals for those models. Plotting the lm

result, e.g., plot(lfit2), gives several diagnostic graphs, see ?plot.lm.

Some of the models predict negative volumes for small D and H (how can
you tell?). Any implications for the choice of regression data?

Classical ANOVA tables for regression are produced as anova(lfit2).

4 R Commander

If you have time left, or sometime later, try out the R Commander. If you
have not already done it install the package: install.packages("Rcmdr")
(or use the Tools menu. That can take a while.

Load it: library(Rcmdr). Explore the menus. R Commander types the
necessary R commands for you. It can be useful for infrequent users, and/or
may help in learning R. Of course, only a small part of the whole system is
available that way, but many of the common statistical analyses are there.
Note that many calculations are done by special functions; in principle, one
can find out what they do by typing the function name and pressing Enter.
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