
NRES 798 — Lab 12

Hierarchical and mixed effects models

1 Data, pine height growth

Load the Loblolly data set (data(Loblolly)), inspect it: ?Loblolly,

summary, head, plot, etc.

“Seed” seems to be just a tree id number. We want an unordered id:
Loblolly$tree <- factor(Loblolly$Seed, ordered=FALSE).

table(Loblolly$age) shows that there are measurements on 14 trees at a
fixed set of ages. Most are at 5-year intervals. We will use 5-year height
growth increments. Within-tree increments can be expected to be more
nearly independent than current height (cumulative growth). At least if the
height measurement error is not too large.

Since the data is ordered by age within trees (verify), an easy way of ob-
taining the increments (including some garbage that we will eliminate soon)
is: Loblolly$growth <- c(diff(Loblolly$height), 0). Make sure that
you understand this; see what happens if you omit the c(·, 0).

Drop the rows for the 2-year increments at age 3, and the “increments”
at age 25 that are not increments at all, leaving ages 5 to 20: lob

<- Loblolly[Loblolly$age %in% c(5, 10, 15, 20), ]. Check what we
have now.

2 Two-level fixed effects models

What would be a good growth predictor? Plot growth over age, and over
height. Plot height over age. Multicolinearity? Which one do you think
makes more biological sense, size or elapsed time?
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2.1 Common model

Let’s choose height, it also looks more linear. Fit a simple linear regression:
slr <- lm(.... Plot growth over height, and add the regression line with
abline(slr). Seems reasonable?

This pools the data from all 14 trees. Maybe the trees have different slopes
and/or intercepts? Let’s see:

library(lattice)

xyplot(growth ~ height, lob, type=’b’, groups=tree)

2.2 Variable intercepts

Add the factor tree as a predictor: summary(ints <- lm(growth ∼
height + tree, lob)). We get a common slope, which is the coefficient
of height, and a different intercept for each tree. Remember that with the
default contrast, the first level (first tree) is left out, so that (Intercept)

is the intercept for the first tree. The intercepts for the other trees are ob-
tained by adding the respective coefficients. Which is the first tree? Try
levels(lob$tree).

If this confuses you, use the “sum” contrast: summary(ints.sum

<- lm(growth ∼ height + tree, lob, contrasts = list(tree =

’contr.sum’))). Now (Intercept) is the mean intercept, and the tree
coefficients are deviations from this. The deviations add to 0, so the last
tree is omitted. Check that you get the same intercepts (and slope, and fit
statistics).

Test the tree effect for significance: anova(slr, ints) (should get the same
with ints.sum). Is there evidence of different intercepts? Does this agree
with what you saw in the xyplot graph?

This is a (fixed-effects) hierarchical model or multilevel analysis (specifically,
two-level). There are two units of analysis, or hierarchical levels. The first
or lowest level are the growth measurements, which are nested into the next
level, the trees. Some parameters, here the slope, are common to all the
second level units (trees). Other parameters, here the intercept, are specific
(different for) each unit. Our model for measurement j in unit (tree) i can
be written as

Yij = αi + βxij + εij .
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2.3 Variable slopes

How about a common intercept and different slopes? That is,

Yij = α+ βixij + εij .

The computer equivalent is growth ∼ height:tree (think about it). Fit
it, save the result as slopes. Examine and understand the summary.

Compare the fit statistics with those of the variable intercepts model, which
one is better? Use anova to compare with slr and see if the contribution
of the interaction (variable slopes) is statistically significant.

2.4 Separate regressions

Try both variable intercepts and slopes: growth ∼ height + tree +

height:tree, or growth ∼ height * tree.

Note that this is the same as fitting separate regressions to each tree (we are
letting each tree to have its own intercept and slope). Fit the simple linear
regression to one tree, and check that the intercepts and slopes match.

Compare with the best model so far, see if there is a significant improvement.

The hypothesis testing side of all this, with balanced data, is an instance of
analysis of covariance (ANCOVA).

3 Random effects

Our best model was of the form

Yij = αi + βxij + εij ,

where Yij is the 5-year height growth increment in tree i, observation j, and
xij is the corresponding current height. There is a common slope β, and a
different intercept αi for each tree. There are lots of parameters: one β, 14
α’s, and σ.

A different way of modelling this is to assume that the trees are a simple
random sample from a large population of trees, where the α’s have a normal
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distribution. Instead of the αi being unknown parameters, they are assumed
to be normal random variables with an unknown mean α and an unknown
variance η2. The αi was a fixed effect, its replacement is a random effect.
The model becomes

Yij = α+ εi + βxij + εij ,

where εi is a normal random variable with mean 0 and variance η2.

This is a (linear) mixed effects model. Ordinary regression models have only
one random variable ε, these models have more than one. In R they are
fitted with functions from packages nlme or lme4. Of course, much more
complex examples are possible, there may be more than one random effect,
multiple hierarchical levels, and the regression can be nonlinear. We stick
with this simple one.

Load the package: library(nlme). The model translates to

lme(growth ∼ height, lob, random = ∼ 1 | tree)

The first formula is the fixed effects part. The second one under random

indicates a random intercept (1) varying among trees. Run and display the
summary. What are the estimated α, β, σ, and η?

Compare to summary(ints.sum), specifically the estimated slope and mean
intercept, the residual standard error, and the residuals. You can plot the
result of lme to get a graph of standardized residuals, compare it to the one
from plotting ints.
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