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1 Regression models, least-squares

Regression models relationships between a random variable Y (dependent
variable, response) as a function of other variables xi (independent variables,
predictors). The general form is:

Y = f(x,β) + ε ,
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where x = (x1, x2, . . . , xm) is a vector of predictors, β = (β1, β2, . . . , βp) is a
vector of unknown parameters, and ε is a random variable with mean 0 and
variance σ2. In other words, f(x,β) is the mean of Y , and depends on the
values of x.

An example studied in detail in the lab, is estimating tree volume (Y =
Volume) using variables that are easier to measure, the diameter at breast
height (x1 = Dbh) and the tree height (x2 = Height). A possible f might

be Y = β1x
β2
1 x

β3
2 . We want to �nd a β = (β1, β2, β3) that produces a good

�t.

The data is assumed to be obtained as a simple random sample, so that the
observations are independent, and they all have the same distribution as the
population (they are independent and identically distributed, iid):

Yi = f(xi,β) + εi , (1)

with i = 1, 2, . . . , n. The actual values obtained may be written as

yi = f(xi,β) + ei ,

where yi and ei are simple real numbers, not RVs. The residuals ei =
yi − f(xi,β) = y1 − ŷi are the di�erences between observed and predicted
values.

The parameters are usually estimated by the method of least-squares. It
consists of estimating β by the value β̂ that minimizes the residual sum of
squares

RSS =

n∑
i=1

e2i =

n∑
i=1

[yi − f(xi,β)]2 . (2)

For general f , this is done with iterative procedures, like the function nls

in R. That is called nonlinear regression. If f is a linear function of the
parameters (linear regression), then there are explicit formulas for β̂.

One reason for minimizing RSS is that we want the deviations (residuals)
to be small, and the function to go through the �middle� of the data. Posi-
tive deviations should balance negative deviations. Squaring the deviations
a square loss function is minimized, resulting in the estimated y approach-
ing the mean for a given x, subject to the constraints of the function form.
Instead of squares, absolute values could be used, tending to the median in-
stead of the mean; that is used in quantile regression. However, least-squares
is by far more commonly used and mathematically more convenient.

2



If the ε are assumed to be normally distributed, another justi�cation is
that then the least-squaresestimates are the maximum-likelihood (ML) es-
timates1. ML has desirable statistical properties, mainly asymptotically for
large samples.

It will be seen that in linear regression the Gauss Markov Theorem gives
yet another justi�cation for least-squares, that does not depend on assuming
normality.

The variance σ is estimated by

σ̂2 =
RSS

n− p
. (3)

The square root is called the standard error of regression or the residual

standard error (SE or RSE) 2.

2 Linear regression

Linear regression is a special case of the general equation (1), where f is a
linear function of the parameters. Usually, but not always, the �rst variable
is taken as the constant 1, with a corresponding parameter β0, representing
the intercept (the value of the function when all the xj are 0):

Y = β0 + β1x1 + · · ·+ βp−1xp−1 + ε ,

or
yi = β0 + β1xi1 + · · ·+ βp−1xi,p−1 + ei .

For p > 2, this is multiple linear regression. The special case p = 2 is simple

linear regression (SLR):

yi = β0 + β1x+ ei .

Explicit formulas for the parameter estimators can be obtained equating
to 0 the partial derivatives of

∑
e2i with respect to the β's, and solving

1 If εi ∼ N(0, σ), the PDF of Yi is exp[−ε2i /(2σ2)]/
√
2πσ2. Because the observations are

independent, the PDF for the sample is the product of these. The likelihood function is the
sample PDF evaluated at the observed data, looked at as a function of the parameters.
It is therefore proportional to

∏
i exp[−e

2
i /(2σ

2)] = exp[−
∑

i e
2
i /(2σ

2)] The maximum
occurs where

∑
i e

2
i is minimum.

2 Maximizing the likelihood gives the ML estimate σ̂2 = RSS/n. This is biased, and
the unbiased estimate (3) is usually preferred although it is somewhat less precise.
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these p equations for the β's (exercise!). Statistical software arranges the
calculations somewhat di�erently, to reduce the e�ects of rounding error in
di�cult situations. Anyhow, this is more reliable than nonlinear regression,
with no failures of convergence or the danger of converging to spurious local
optima.

In R all the calculations are done by the function lm (linear model). Use
summary on the result to get more outputs, including p-values, etc.

Note that the regression function is linear in the parameters, not necessarily
in the variables of interest. Both y and the x's can be variable transforma-
tions, so that the regression can represent curves (or curved surfaces, etc.)
on the original variables. E.g., log y = β0 + β1 log x, y = β0 + β1x + β2x

2,
1/z = β1/x+ β2/y

3.

The RSS and RSE are as before.

The correlation coe�cient r, and its square the coe�cient of determination

or R-square r2, are often calculated as an index of �t. For SLR,

r =
sxy
sxsy

,

where sxy = 1
n−1

∑
(xi − x)(yi − y) is the sample covariance, and s2x =

1
n−1

∑
(xi − x)2and s2y are the sample variances of x and y. Another way

of calculating r2 is shown in the next section. This is often misused and
misinterpreted. As a measure of association r is only valid when x = X
is random, with the pairs (X,Y ) being a random sample from a bivariate
normal distribution. Otherwise, it is seen from the formula above that r,
and the R-square, change depending on how spread out the xi are (sx). At
best, R-square can be used to compare alternative models based on the same
data, but then the RSE may well be more meaningful.

We saw a very general heuristic justi�cation for the least-squares method,
and also that it gives the ML estimates if the distribution is normal. It would
be nice if the estimates were always the best even without normality, for
instance in the sense of having the smallest sample variance and no bias. Of
course, that may be too much to ask. But the Gauss-Markov Theorem comes
close, saying that regardless of distribution, in linear regression the least-
squaresparameter estimators are unbiased with minimum variance among all
linear estimators, that is, those of the form

∑
wiyi, for some set of weights wi.

3An �inverse polynomial�, usually better �tted as xy/z = β1y + β2x
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They are best linear unbiased (BLUE). The limitation to linear estimators
might seem a little arbitrary, but perhaps not too unreasonable.

3 Hypothesis testing

One is often interested in testing a null hypothesis that one or more of the
β's are zero, or that they equal some given constant. This can be done with
t-values, test statistics having a t distribution, or with F -ratios, that have
an F distribution.

3.1 t-tests

Take as an example a SLR ŷ = β0+β1x. One might want to test H0: β0 = 0,
the hypothesis that the line goes through the origin. Or H0: β1 = 0, that
there is no relationship between x and y. Or H0: β1 = 1, that the slope is
1.

In general, for any k, the null hypothesis βk = b can be tested calculating
the test statistic

β̂k − b
SEβk

,

where the parameter estimate β̂k and its estimated standard error SEβk can
be obtained from the computer regression output. This test statistic, some-
times called a t-value, has a t distribution with n−p degrees of freedom.

The hypothesis test goes like always, let's go over it one more time (draw a
picture; the t PDF is bell-shaped, symmetric around 0). The observed test
statistic, call it t, can be positive or negative, and under H0 it should not
be too far from 0. If it is negative, the probability of observing a t less that
what we got is the area under the PDF to the left of t. It can be calculated
as the value of the CDF at t (function pt in R). As this is a two-tailed test,
we have to add the similar area at the other end, so that the p value is that
number multiplied by 2. If t was positive the procedure is similar, work it
through. If p is smaller than the standard signi�cance level α, e.g., 0.05,
then H0 is rejected, it seems unlikely to get a t like this by pure chance if
H0 is true. Otherwise, H0 is �accepted�.

With the more traditional method, the critical values are set in advance.
The acceptance region is the interval around 0 that has probability (area
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under the PDF) equal to 1 − α. Approximately [−2, 2] for α = 0.05; it can
be calculated with the t quantile function (qt). If the observed t falls outside
that, H0 is rejected, etc.

This is closely related to con�dence intervals. For t-tests in general, the
limits are of the form estimate± tαSE, where tα is the t-distribution quantile
for the con�dence level α, around 2 for α = 0.05. The con�dence interval
for βk is the rejection region centered around β̂k. You can see that H0 is
rejected if the con�dence interval does not contain b.

The summary of the lm �t in R gives the t- and p-values for the common case
b = 0. The con�dence limits are obtained with confint.

All this works the same for nonlinear regression, but there the results are only
approximate because the test statistic does not have exactly a t-distribution.

3.2 F -ratio tests, variance components

This is less intuitive than the t tests for most people that are not ANOVA
experts. It is based on splitting the variability into components, and forming
ratios among them. We explain the process in detail in a SLR, because the
ideas form the basis for the classical analysis of variance (ANOVA).

The picture shows an SLR line ŷ = β̂0+β̂1x
4. The deviations from the mean

can be partitioned into a a part �due to� the regression, and the residual

4 It can be shown that it can also be written as ŷ = y+ β̂1(x− x), which is sometimes
useful.
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deviation from the regression line:

yi − y = (ŷi − y) + ei .

Squaring and adding over all the observations:

(yi − y)2 = (ŷi − y)2 + e2i + 2(ŷi − y)ei∑
(yi − y)2 =

∑
(ŷi − y)2 + 0

SSy = SSreg +RSS

The sum of products turns out to be 0 because the components are �or-
thogonal�, we omit the proof. The result is that the sum of squares around
the mean can be partitioned into a sum of squares due to regression and a
residual sum of squares.

If there were no relationship, β1 = 0, the line would be close to horizontal
and SSreg should be around 0. If the relationship were perfect, all the points
would be on the line, RSS would be 0, and SSreg would equal the total sum
of squares SSy. Therefore SSreg, or some function of it could be used as a
test statistic for the null hypothesis H0: β1 = 0. The ratio of mean squares
(F -ratio)

SSreg/1

RSS/(n− 2)

has an F distribution with 1 and n− 2 degrees of freedom, and can be used
to test H0. The null hypothesis would seem unlikely if the F -ratio is large,
the test is one-tailed.

This F -ratio test is equivalent to the corresponding t-test, giving the same
p-value. In fact, the square of a t variable has an F distribution.

Incidentally, the ratio

r2 =
SSreg
SSy

is another way of computing the R-square from the previous section. It
shows it as the proportion of the variation in y that is �explained by� the
regression.

3.3 ANOVA for linear regression

It is conventional to present the F -ratio test above in the form of a table,
based on how the calculations were done by hand in the old days. It is
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perhaps curious that this historical artifact has persisted, but we discuss
it in detail because its use is standard in what is known as the analysis of
variance. The �rst column in the table shows the �sources� of variation, with
the sums of squares in the second column (frequently the degrees of freedom
are shown in second place, but I will leave them for later):

Source SS df MS F -ratio p-value

Regression SSreg 1 SSreg SSreg/[RSS/(n− 2)]
Residual RSS n− 2 RSS / (n− 2)

Total SSy n− 1

SSy and RSS are easy to calculate, SSreg not so much. So the SSreg entry
used to be �lled from the di�erence SSy −RSS. The degrees of freedom (df)
for the total are n− 1, because one estimates the mean. For the residual it
is n − 2, from the estimation of the two β's, and the regression df can be
�lled-in as a di�erence. Then the mean squares (MS) are calculated dividing
the sums of squares by the degrees of freedom. Finally, the ratio of the
regression MS to the residual MS is the F -ratio. The corresponding p-value
may be included, or the signi�cance can be shown with stars or by saying
�< 0.05� or �< 0.01�, or both.

Nowadays the last row is commonly omitted in publications. More complex
ANOVAs include more sources, but the principles are the same.

4 Con�dence intervals for y in simple linear regres-

sion

Writing ŷ = y + β̂1(x− x), the usual properties of the variance and the fact
that y and β̂1are independent give V [ŷ] = V [y] + V [β̂1](x − x)2. Using the

estimated sample variances V [y] = σ̂2/n and V [β̂1] = σ̂2/SSx, the variance
of the regression estimate is

V [ŷ] = σ̂2
[
1

n
+

(x− x)2

SSx

]
.

The SE is the square root of this. As might be expected, it coincides with the
SE of the mean when x = x, but increases as x gets away from x. This can be
used to draw con�dence limits around the regression line as ŷ± tαSEŷ.
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Also of interest might be the con�dence limits for the y in a future (x, y) pair.
The new y would be the ŷ at x plus a residual ε. Therefore, the estimated

variance would be the one above plus V̂ [ε] = σ̂2.

5 Design

Very often one can in�uence the predictors (the x's) through the sampling
strategy in observational studies, or they can be freely chosen in experimental
work. No statistical assumptions are violated by doing that, provided that
one is careful not to in�uence the y for a given x. What would be the best
way of choosing x?

In simple linear regression, it was seen in Section 4 that both the SE of β̂1 and
the regression and prediction errors have SSx in a denominator. Therefore,
precision improves if the spread (SS, variance, SD) of x is wider. Clearly,
the best would be to choose half of the observations with an x as large as
we can get, and the other half with x as small as possible. That assumes
that we trust the model; it is usually a good idea to get some observations
around the middle to check the linearity.

The same is true for each predictor in multiple regression. An additional
issue in this case is multicolinearity. It is common to �nd relationships
between some of the predictors, for instance between diameter and height in
the example of estimating tree volumes. If there is a close linear relationship
between two predictors, then it is di�cult to disentangle the corresponding
parameters. Con�dence intervals for the parameters become large, and the
power of some hypothesis tests are low. The consequences for y predictions
are less serious, the main problem being the use of predictors that become
redundant. In some instances of observational studies there is little that can
be done about this, in other situations one may strive to spread out the
observations away from the correlation line.

In general, in regression getting samples that are �representative� or evenly
distributed is not a good idea. It is better to try covering the extremes, with
some points elsewhere to check the appropriateness of the models.
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6 Model selection

See Lab 9.

7 Transformations

Important assumptions in linear regression are that the relationship is linear
on the parameters, and that the variance of the residual RV ε is indepen-
dent of the predictors (homoscedasticity). A third assumption, that ε has a
normal distribution, is important for hypothesis testing but not so much for
response estimation and prediction.

Transformations of the predictors can help with linearity. For instance, re-
member the use of logarithms, Dbh�2 and Dbh�2 * Height for tree volume
estimation in Lab 8.

Transformations of the response can help with linearity, homoscedasticity,
and normality. It may be optimistic to expect that one transformation will
produce a model satisfying the three assumptions, but in some instances it
can get reasonably close.

It is common for the standard deviation of a measurement error. ε to increase
roughly proportionally to the size of the measurement Y . Then, log Y is ap-
proximately homoscedastic. Typically Y is a non-negative variable, and the
predictors and error are multiplicative. In that case, the logarithm produces
a linear relation with the logs of the predictors and the error term, and also
can make the distribution more symmetric. For these reasons, logarithmic
transformations, changing Y → log Y , are commonly used.

Small counts usually tend to be approximately Poisson. Apart from Y then
being asymmetric, the variance iincreases with the mean (in the Poisson
both equal the rate parameter λ), failing the homoscedasticity assumption.
A square root transformation, Y →

√
Y , improves the situation.

When Y is a proportion, Y n tends to be close to a binomial distribution,
where again the variance is related to the mean. In addition, it is desir-
able to constrain the predicted Y to be between 0 and 1. Three di�erent
transformations are commonly used in this case: the arc sine transformation
Y → sin−1

√
Y , the logit Y → log[Y/(1 − Y )], and the probit, which is a
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normal quantile function. A simple linear regression using the logit is called
logistic regression.

An more sophisticated alternative to transformation in these cases is to
use generalized linear models (GLM). These are a special form of nonlin-
ear model, and are implemented in R in the glm package.

It should be recognized that many (most?) variables used in practice cannot
have exactly a normal distribution, because they cannot be negative (weights,
lengths, pH, etc.). What is usually required is a rough approximation.

Care may be needed when values are close to zero. In the tree volumes
example V ≈ β0 + β1D

2H, if V is a utilizable or merchantable volume then
β0 is usually negative, there is no volume in small trees, forD2H smaller than
some positive value. Negative volume estimates do not make sense, and the
model is actually max{β0 + β1D

2H, 0}. Data to the left of the zero-crossing
point should be excluded, because it does not correspond to the linear model
and would bias the estimates. In fact, points close to that point on the right
cannot have a near-normal V , and should be excluded too.
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