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1 Frameworks

Because of time limitations we will focus on parametric classical statistics.

This is by far the approach most commonly used in scienti�c reporting.

The Bayesian approach has already been discussed in the Introduction and

following notes. In hypothesis testing it works in a very similar way to that

of credibility intervals.

Nonparametric or distribution-free methods do not assume any particular

population distribution. They rely on properties of the empirical distribution

that are always valid. For instance, on test statistics based on ranks or

other functions of the ordered observations, the so-called order statistics.

Nonparametric Statistics includes randomization or permutaion tests, called

Monte Carlo analysis in the textbook. Another example is the histogram,

which is a simple nonparametric estimate of a population distribution.
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Nonparametric methods are more robust than parametric ones, in that they

are not a�ected by deviations from an assumed distribution. This is specially

important in small samples,in large samples the Central Limit Theorem tends

to make distributional assumptions more plausible. Many nonparametric

tests are also computationally simpler. On the other hand, the tests are less

powerful, and estimators less precise, provided that the parametric model is

reasonable.

2 Example, models, sampling

The running example in this chapter is the nest density of ants in forest and

�eld habitats (number per unit area, not probability!). The data, stored in

a data frame in R, is:

> ants <- data.frame(habitat = c(rep('forest',6), rep('field',4)),

+ nests = c(9,6,4,6,7,10,12,9,12,10))

> ants

habitat nests

1 forest 9

2 forest 6

3 forest 4

4 forest 6

5 forest 7

6 forest 10

7 field 12

8 field 9

9 field 12

10 field 10

>

Two ideas previously discussed are important, and should avoid being con-

fused by irrelevant details (irrelevant to the statistical analysis):

First, we are dealing with amodel, a simpli�ed representation of some aspects

of a real situation. For purposes of the current analysis, the relevant part of

the model is a population of nest counts on an in�nite number of possible

quadrants. Speci�cally, a probability distribution of such counts, or possibly

one distribution for Forest and another one for Field. Any conclusions from

the analysis apply to this model. If the model is �close enough� to reality,

we may be con�dent in applying the results to the real thing. It has been
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assumed that the only relevant factors are the two habitats, however de�ned,

ignoring any seasonal variation, spatial gradients, etc. That may or may not

be good enough in practice; but that is an issue of scienti�c modelling, not

statistical analysis.

Second, it is assumed that the sample is �representative� and suitably �ran-

domized�, obtained by simple random sampling. It applies to this particular

site. Precisely, what this mean is that we assume that the observations are

independently distributed, each with the same probability distribution as

the population.

In any case, the �rst step should be to produce summaries and graphs in

order to: (a) check for possible data errors or outliers, and (b) assess if the

model assumptions appear reasonable.

3 Parametric analysis

Hypothesis testing follows the steps already discussed in the notes to the

previous chapter:

1. Formulate the null hypothesis. H0: the population has a normal distri-

bution N(µ, σ), irrespective of habitat. The alternative is that Forest
and Field have normal distributions with the same σ but di�erent

means1.

2. Choose a test statistic. The F ratio, which is the ratio of a measure

of variance between groups (habitats) to the variance within groups

(details in Chapter 10)2. If there is a common distribution (H0), F
should be around 1. If the means di�er, the ratio should be greater

than 1.

3. Ascertain the sampling distribution of the test statistic (under H0). It

is known that ifH0 is true then F has the F distribution. If the number

1 Actually, we know from Chapter 2 that this kind of data is more likely closer to a
Poisson than to a normal distribution. And in the Poisson the variance equals the mean
(both are equal to the rate parameter λ). A normal approximation might not be all that
good in samples of this size. The square root transformation of Poisson variables is closer
to the normal, and mean and variance are then more independent. It might be better then
to do the test using the square root of the nest counts instead of the counts themselves.

2 For two groups, like here, a common alternative test statistic is the t-statistic, the
di�erence of means divided by the standard deviation. There are also versions of the F
and t tests that do not assume equal variance.
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of groups is m, here 2, the distribution parameters are m− 1 = 1 and

n−m = 8.

4. Test. The calculated F is 8.78 (do not confuse the test statistic F with

the CDF). Either

(a) Traditional method, compare to critical values for given α. The

critical value for α = 0.05 is a value c such that P{F > c} = 0.05,
or P{F ≤ c} = 0.95. That is, the 0.95-quantil. It can be found

from statistical tables, or computed with the quantil function

F−1
F (0.95) = 5.32. In R this is qf(0.95, 1, 8). Similarly, the

critical value for α = 0.01 is F−1
F (0.99) = 11.26. We reject H0 at

the 0.05 level, but not at the 0.01 level. The di�erence between

the number of ant nests in forests and in �elds is statistically

signi�cant, F = 8.78∗ (one star).

(b) Reporting a p-value. Find P{F > 8.78} = 1−FF (8.78) (suitable
computer software required). In R, 1 - pf(8.78, 1, 8) gives

the p-value 0.018. This is less than 0.05 but greater than 0.01.

Same conclusion.

In R the whole thing can be done by oneway.test(nests ∼ habitat,

ants, var.equal=T).

4 A nonparametric test

To get the �avour, let's see the sign test, a simple nonparametric hypothesis

test. It uses paired data, that is, compares pairs of observations within

experimental units, or within (hopefully relatively homogeneous) groups.

Assume that in the ant nests problem one has counted ant nests in one �eld

quadrat and one forest quadrat in each of 6 di�erent sites:

site �eld forest

1 13 7

2 8 3

3 5 7

4 14 7

5 3 10

6 7 3

4



H0 says that �eld and forest observations within each site belong to the

same population. Or at least that they have the same median. There may

be di�erences between sites, but not between �eld and forest within a site.

The alternative is that the number of nests tends to be higher in �elds than

in forests.

Compare the counts for each site. Field is larger than forest in 4 out of 6

cases. How likely would this be ifH0 were true? Ignoring ties, the probability

of �eld > forest would be 0.5, the same as that of �eld < forest. The

observations are independent. Therefore, the probability of obtaining m �>�

out of n would be a binomial with parameters n and 0.5. The probability of

4 or more out of 6, the p-value, is 1 - pbinom(3, 6, 0.5) = 0.34. Not all
that unlikely, so H0 is not rejected.

Typically this would be tested with a paired t-test, which has higher power

(you can verify that here it gives p = 0.19). Or a two-way ANOVA. But

these assumes normality. The Wilcoxon test is also nonparametric, and is

more powerful than the sign test. But the sign test is simpler, and it can

be used even if there are no numerical measurements, only comparisons, for

instance, �A is prettier than B�. In the ants study, it might be possibly to

estimate visually if there are more nests in �eld than in forest, perhaps using

photographs, without making any measurements.
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