FSTY 405 — Forest Growth and Yield

Final Exam, 3 December 2008

Name:

- Answer in the spaces provided after each question, writing down the intermediate steps. Use the reverse as scratch pad. Writing just the final numerical answer is *not* acceptable.
- Write legibly, and use ink, not pencil.
- Answer clearly and to the point. Nonsense will be penalized.
- Pages: 5. Questions: 6, worth 1 mark each.
- Time: 2.5 hours.
- Info (you may or may not need this):

$$\begin{array}{ll} a^x a^y = a^{x+y} \;, & (a^x)^y = a^{xy} \;, \quad y = a^x \Leftrightarrow x = \log_a y \;, \\ \log_e x \equiv \ln x \;, & \mathrm{e}^x \equiv \exp(x) \;, \\ \log_a xy = \log_a x + \log_a y \;, & \log_a x^y = y \log_a x. \end{array}$$
 Area of circle of radius $r \colon \pi r^2$.

1. We have the following model:

$$V = 0.3BH - 4.2 (1)$$

$$\Delta B = 3 - 0.02B - 0.04H \tag{2}$$

$$\Delta H = 1.7 - 0.03H \tag{3}$$

where V is volume (m³/ha), B is basal area (m²/ha), H is top height (m), and t is time (years). Increments are for 4-year periods.

A 40 year-old stand has $V=75,\,B=22,\,H=12.$ At age 44, a thinning removes 40% of the current basal area. Estimate the basal area at age 48.

2. These are types of growth models: spatial, whole stand, individual tree, distance-independent. These are models used in BC: STIM, FPS, $\operatorname{Prognosis}^{BC}$, SORTIE, TADAM, DFSIM, TASS, Scube, TASSIE, FORCYTE, VDYP6, VDYP7, SYLVER, TIPSY, STANLEY, MGM, SDMD.

From these, fill in the correct model types in the following classification scheme, and give **one** example of each:

(a)	Example:
-----	----------

ii. Example:

3. We have the following relationship between top height (H, metres) and age (A, years):

$$\ln H = a - b/\sqrt{A} ,$$

where b = 11.5, and a varies with site quality. The site index (base age 50) is 21. Estimate the top height at age 32.

4. What is:	
(a)	Ingrowth?
(b)	Stochastic?
(c)	Area potentially available (APA)?
(d)	State vector, state variable?
(e)	Eichhorn's rule?

5. Draw a System Dynamics (rate-level, Vensim) diagram for the model of question 1. Label the elements appropriately.

6. Explain how/why the (absolute or squared) mean size difference for competing trees could be smaller than that for trees that are further apart.