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    Abstract 
 
Utility function is the most important concept in economic theory. In academic literature, utility 
functions can take many different forms. Human preferences are long term evolutionary products. 
They should provide beneficial outcomes in regular environments. From this perspective, it is 
unlikely that utility functions in return, standard deviation spaces are convex, as often assumed in 
literature. We prove that under a very general condition, utility function is the logarithmic 
function. 
 
Keywords: utility function,  logarithmic function 
  

http://web.unbc.ca/%7Echenj/


1 
 

In the standard economic theory, decision makers are assumed to maximize their utility functions. 
So utility function is the most important concept in economic theory. In academic literature, 
utility functions take many different forms. But what is our own utility function? If we don't 
know our own utility function, how can we maximize it? In this article, we will show that utility 
functions cannot be convex functions in a return, standard deviation space. Then we prove that 
under a very general condition, utility function is the logarithmic function.  
 
 
When the concept of utility was first introduced about three hundred years ago, it was a 
logarithmic function (Bernoulli, 1738). But in later literature, many forms of utility functions are 
used. More recently, there is an evolutionary argument that logarithmic functions should be the 
dominant preference for utility functions. Please refer to Sinn (2003) for more detailed 
discussion. We augment the discussion by providing a simple mathematical derivation that under 
a very general condition, utility function is the logarithm function. With this result, maximizing 
utility function is equivalent to maximizing geometric rate of return. This unifies the concept of 
utility, a subjective measure with the concept of return, an objective measure. 
  
On quadratic utility functions and convex utility functions 
 
In finance literature, quadratic utility functions are popular choices in investment theories. They 
take the form of  
 

𝑈𝑈 = 𝐸𝐸(𝑟𝑟) −
1
2
𝐴𝐴𝜎𝜎2 

 
where E(r) is the expected rate of return and 𝜎𝜎 is the standard deviation of the return. A is the 
coefficient of risk aversion. For simplicity, we will assume A is equal to one in the following 
discussion. In this case, the quadratic utility function becomes  
 
 

𝑈𝑈 = 𝐸𝐸(𝑟𝑟) −
1
2
𝜎𝜎2 

 
 
Suppose there is a group of assets, whose final payoff are 1 with 50% probability and x with 50% 
probability. The price of all these asset is 1. So the expected returns of these assets are  
 

1
2

(𝑥𝑥 + 1) − 1 =
1
2

(𝑥𝑥 − 1) 
The standard deviation of the return of these assets are 
 

𝑥𝑥 − 1 −
1
2

(𝑥𝑥 − 1) =
1
2

(𝑥𝑥 − 1) 
 
The utility of holding an asset in this group is 
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=
1
2

(𝑥𝑥 − 1){1 −
1
4

(𝑥𝑥 − 1)} 

=
1
8

(𝑥𝑥 − 1)(5 − 𝑥𝑥) 
 
             
This means that when x = 1 and x = 5, the investor will obtain the same level of utility as zero. 
However, x = 5 is a higher return than x = 1. We are choosing two assets with the same price. 
The first has final payment of 1. The second has final payoff of 1 with 50% probability and 5 
with 50% probability. The second one dominates the first one. Yet they have the same utility. 
Figure 1 present the level of utility with different x. When x increases beyond 5, the utility of the 
asset will drop below zero. This occurs because the utility function is first order in return and 
second order in standard deviation. When volatility is high, standard deviation of the return will 
dominate. The above discussion shows that quadratic utility does not provide good description of 
actual investment preferences.  
 

 
 
Figure 1 
 
In general, a convex utility function in expected return, standard deviation space looks like 
Figure 2. Let A, B represent the return and standard deviation of two assets on the utility curve. 
If the returns of the two assets are perfectly correlated, the return and standard deviation of the 
weighted combinations of these two assets form the straight line AB, which is above the utility 
curve. These weighted combinations of assets A and B offers better return, volatility trade off 
than the utility curve. If A and B are not perfectly correlated, their weighted combinations will 
offer even better return, volatility trade off. The efficient frontiers of assets are concave curves 
(Markowitz, 1952; Chen, 2010). Human preferences are long term evolutionary products. While 
the types of decisions human take in the past may not be identical to modern portfolio selections, 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7



3 
 

the benefits from diversity should be similar. For example, eating different types of foods may 
provide more complete nutrients humans need. Therefore, human utility functions should be 
similar to curves of efficient frontiers, which are concave. It is unlikely that many people will 
have convex utility functions assumed in investment theory (Sharpe, 1964). In view of this, 
utility functions suggested in investment literature and textbooks should be revised.  
 
 

 
Figure 2. 
 
 
Logarithm utility functions 
 
Suppose we go to a store to buy two things, one battery and one book. If the battery and the book 
are independent from each other, then the utility of battery and book considered together should 
be the same as considered separately. (Does your utility function satisfy this condition?) 
Mathematically, for a utility function f, if two variables x, y, are independent from each other, 
then f(xy) = f(x) + f(y). It can be proved (see appendix) by a simple method that if f(xy) = f(x) + 
f(y), then f(x) must be a logarithmic function (Applebaum,1996). So under a very general 
condition, our utility function is a logarithmic function. When the utility function is a logarithm 
function, it is equivalent to geometric rate of return. Subjective utility becomes equivalent to 
objective return.  
 
 
The above derivation is very simple. Yet the method can be used to establish some of the most 
profound results in science. A simple formula was engraved on Boltzmann's tombstone. It was S 
= k logW. The formula linked entropy, S, to the number of microstates, W, with a logarithmic 
function. In Shannon's information theory, the amount of information, S, is related to the 
probability of a signal, P, by a logarithmic function as well, S = -logP (Shannon, 1948). The 
similarities among physical entropy, information and utility functions, are not accidental. Rather, 
it indicates that human mind, including mathematical capabilities, is an adaptation to the physical 
world (Chen, 2016). 



4 
 

 
 
Traditionally, differences in human behaviors are often attributed to differences of utility 
functions. For example, differences in investment patterns between young people and old people 
are often attributed to their differences in preferences. If the utility functions are the same, 
differences in investment patterns between young people and old people can be attributed to their 
differences in income and expense. Old people generally have higher expense than income. So 
their investment portfolio often have higher proportion of fixed income assets to compensate for 
cash outflow. Young people generally contribute to their pension funds regularly. So their 
investment portfolio often have lower proportion of fixed income assets to compensate for cash 
inflow. 
 
 
In standard economic theory, utility functions can take infinitely many forms. There can only be 
finitely many empirical data. The standard economic theories can be difficult to test empirically. 
We show that utility functions for most people cannot be convex. In many cases, the utility 
functions should be the logarithm function. When utility functions narrow down, many economic 
theories become easier to test empirically and can be improved from empirical testing. 
 
 
 
Appendix 
 
If for all variables x, y, f(xy) = f(x) + f(y), then f(x) = k log(x). 
Proof： Differentiate both side of  f(xy) = f(x) + f(y) with respect to x，we       obtain 
       y f’(xy) = f’(x) 
Let y = 1/x, the above equality becomes   

 1/x f’(1) = f’(x).  
Therefore 
       f(x) = k log(x) + C,  
Substitute the above equality into f(xy) = f(x) + f(y), we obtain  C = 0. Hence 

 f(x) = k log(x)  
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