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Abstract

Returns of stock prices often exhibit cycles of matam and reversal. During various phases of
the cycles, trading volumes and trading behavidréneestors of different sizes often show
distinct characteristics. It has been a long stamdihallenge to describe the multiple patterns
simultaneously from a quantitative theory. In tpiaper, we present the theory of judgment,
which provides a common framework to integrate bihal and informational theories of
investment. The theory of judgment provides a gtative link between investors’ judgment and
their trading activities. As an application, a slenpnathematical model based on the theory of
judgment is constructed. The predictions derivednfthe model are consistent with the multiple
empirical patterns of trading volumes and invesitivities at the different phases of the cycle of

momentum and reversal.
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1. Introduction

Returns of stock prices often exhibit cycles of motam and reversal. During various phases of
the cycles, trading volumes and trading behavidréneestors of different sizes often show
distinct characteristics. It has been a long stamdihallenge to describe the multiple patterns
simultaneously from a quantitative theory (Lee &whminathan, 2000; Hvidkjaer 2006). In this
paper, we present an updated version of a matheah#teory on the value and bias of judgment,
which provides a common framework to integrate b&al and informational theories of
investment. The theory of judgment provides a qgtativte link between investors’ judgment and
their trading activities. As an application, a slenpnathematical model based on the theory of
judgment is constructed. The predictions derivednfthe model are consistent with the multiple
empirical patterns of trading volumes and investdivities at the different phases of the cycle of

momentum and reversal.

The theory of judgment is an extension from thenmfation theory. In real life, people have to
make subjective assessment of events without pgiagesomplete information. The theory of
judgment provides a measure to value one’s judgnidrd valuation of a judgment is against a
reference state, which is usually taken to be tlaimum entropy equilibrium state (Jaynes,
1988). Since no additional information is requitedietermine the equilibrium state, the value of
judgment from the decision making perspective aandturally measured against the equilibrium
state. However, the reference state can be a ndlibeiym steady state, such as a bubble state.
Intuitively, if one buys a stock at two dollars atid equilibrium price is five dollars, then the
value of your buying is three dollars. Howeverthé stock price can be momentarily moved to

six dollars and you can take advantage of this pigte, then the value of your buying is four



dollars. Mathematically, the value of judgment lie taverage of profit or loss under different

scenarios, which can be represented by a funceaerglized from relative entropy.

The value of judgment is always lower than or eqaahe value of information with the same
objective probability distribution. The value ofgment is equal to the value of information only
when the subjective assessment of the probabilggriloution is identical to the objective
probability distribution. Therefore, the conceptjodgment is a generalization from the concept
of information when a person does not have preestienation of a random event, which is the
case in most decision making processes. The diterdetween the values of judgment and
information is bias, which is defined by a mathdo@tfunction called relative entropy. Entropy
and relative entropy are the two most importantcfioms in information theory and statistical
mechanics (Schlégl, 1989; Cover and Thomas, 200&n,Q2009). Unlike the value of
information, which is always positive, the valuejofigment can be either positive or negative.
This means that the value of active trading by $twes can be either positive or negative.
Trading that earn positive returns are generaliybated to information while trading that earn
negative returns are generally attributed to beairavibiases. From the theory of judgment, the
same judgment will have different values at difféirémes due to changes of environmental
conditions. Empirical evidences show that smallitiial investors often execute trades similar
to those by large institutional investors but #dter stage. This could due to behavioral biases, o

due to the difficulty of small investors to obtéimely information.

Under certain conditions, a judgment that is moiesdd may be more valuable than a less
unbiased judgment. Intuitively speaking, an investbo is modestly favorable to a stock which

turns out to earn very high rate of return will foem better than an investor who is modestly
favorable to a stock which turns out to earn magdyrdigh rate of return. This shows that value

and bias of judgment are two distinct conceptswilt help clarify discussion in behavioral



literature, which often identifies bias with lowlua of judgment. The theory of judgment bridges
the chasm between the concept of information arghitwe bias. This will help provides a
common framework for behavioral and informationargpectives in understanding financial

market.

Investment decisions are made according to inv&stadgment about returns of different assets.
To establish a precise link between investors’ jodgt and investment return, we consider a
simple market with only two assets: a risk freectséd a risky asset. Based on the subjective
assessment of the return distribution of the riakget, an investor can determine the optimal
portion of the risky asset in the portfolio andocddite the expected rate of return of this porfoli
We prove that the first order approximation of #wepected rate of return of the portfolios
constructed from a judgment is equal to the valuth® same judgment. Therefore, the theory of
judgment provides a quantitative link between thki@ of a judgment and the expected rate of
return of the portfolio constructed from the samadgment. In a broader sense, the theory of

judgment provides a link between ideas and themetary values.

Since the judgment about a stock determines thed t#vholding about the stock, the change of
judgment about a stock determines the volume diirtgain the market, which is considered as
the key ingredient missing from the asset pricingdeis (Banerjee and Kremer, 2010). The
theory of judgment provides a simple and intuitteel to model trading volume in the asset

market.

We will apply the theory of judgment to build a nebdo understand multiple empirical patterns
related to the cycles of momentum and reversaleiiptent pattern in the security market is the
price continuation in short to medium run and tersal of return in the long run (DeBondt and

Thaler, 1985; Jegadeesh and Titman, 1993). Senardéls have been developed to explain this



pattern (Barberis, Shleifer and Vishny,1998; Dartititshleifer and Subrahmanyam,1998; Hong
and stein,1999). However, these models could nolagx other patterns related to the cycles of
momentum and reversal (Lee and Swaminathan, 20@akjder, 2006). For example, the return
patterns are often accompanied by distinct pattednsrading volume. However, “existing

theories of investor behavior do not fully accofantall of the evidence. ... none of these models
incorporate trading volume explicitly and, therefothey cannot fully explain why trading

volume is able to predict the magnitude and penscst of future price momentum.” (Lee and

Swaminathan, 2000, p. 2066)

The value of judgment provides a quantitative memasaf the level of informedness of the
investors. In our model, investors are classifigd three groups as large, midsized and small
investors according to their wealth. The proportidrpeople in each group is determined by the
maximum entropy principle. The level of informedsi@$ each group of investors are determined
by or positively correlated to their level of thealth. The judgments of the investors about the
future movement of the prices of the risky assetsrmhine the level of their holdings. During the
cycles of the information processing, differentdstors, because of their different capacity in
information processing, hold different portionstio¢ risky asset. The changes of judgment about
the risky asset by differently informed investoreiotime determine the trading behaviors of
different groups of investors, the volume of trgdand the direction and magnitude of asset price
changes at different phases of cycles. The theafgiredictions generated by this quantitative
model is very similar to empirical patterns recatdle Lee and Swaminathan, (2000), Hvidkjaer

(2006) and others.

The theory of judgment discussed in this papears @f the entropy theory of mind (Chen, 2003,
2004, 2005, 2007, 2008). Thermodynamics and infoomatheory were established to

understand the value and cost of engineering popad information processing. Therefore the



entropy theory of mind is naturally an economicotiyeof mind. Instead of developing a
behavioral theory of economics directly, we propaseeconomic theory of behavior. Then we
integrate the value and cost of information procgssnto the overall picture in economic

decision making.

The rest of the paper is organized as follows.dnti®n 2, we present the theory of judgment. In
Section 3, we discuss how investors’ judgmentsraete their trading decisions and the returns
of their portfolios. Section 2 and 3 are updateninfran earlier work (Chen, 2008). In Section 4,
we will build a quantitative model based on theotlyeof judgment and show the predictions
derived from the model are consistent with multiphapirical patterns related to the cycles of

momentum and reversal. Section 5 concludes.

2. Value and Bias of Judgment

Suppose a random variab},hasn discrete statesx{, x, ...,%}, with probability {p;, ...p}. The
subjective judgment of a person may differ from dlbgective probability. Suppose the subjective
judgment of the probability distribution isif, ... q}, then the level of uncertainty of judgment

on eactly, is

H(g)=-Ing for 1<i<n 1)

The total uncertainty of judgment of a random everhe average of uncertainty of judgment of

each state, weighted by the objective probabiligyridhution of the random event.
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We will compare the uncertainty of the judgment iaglathat of a reference probability
distribution of a reference state. The referenedestan be the equilibrium state, or a non-
equilibrium steady state. Take a simple examplbioary states of up and down in the stock
market. Let {p, 1-p} represent the probability gf and down of market in the next period. If on
average, stocks are up 55% of the time and down db%e time, {0.55, 0.45} represent the
equilibrium state and {0.3, 0.7} represent a nonilorium state, which has a higher probability
to go down than to go up in the next period. Suppbsg reference probability distribution of a

random event isr{, ...r,}. Then the total level of uncertainty of the rafece state is

Zri:pj(—lnrj)

The value of judgment can be defined as the resluaif uncertainty from the reference state,

which is
Vp.q0 =Y P, (-Inr)- Y p,(-Ing,) = p,(n-1 @

The right hand side of Formula (3) is a functiomglized from relative entropy. We will call it

generalized relative entropy. When each

qj:pjl 1Sj£n



The value of judgment becomes the value of infoiznat
n
p.
>, p;(In=) (4)
=t hi

From Gibbs inequality (Gibbs, 1902),

n

> p,In(p;) 2" p, In(a;)

=

Therefore, the value of judgment is always less thraequal to the value of information with the

same probability distribution and reference distiiin.

In practice the reference probability distributipn, ...r} is often understood as the maximum
entropy distribution under known constraints. Wihiegre is no known constraints, the maximum

entropy distribution is {1/n, ... 1/n} and Formula) (3ecomes
V(p,a)=) p,Ing; +Inn (5)
j=1

The value of judgment can be positive or negaflfés means that active trading by investors
can increase or decrease the value of their inwagtrportfolios. The distance between the

objective distribution and one’s judgment is theam@e of bias, which can be defined as



B(p.0) =2 p, In(p)) -3 py In(@) = X pyn ©

J

which is the relative entropy function. It is alveayonnegative and is zero if and only if each

In general, the bias will be smaller whgns closer tq;.

For the simplicity of exposition, we will only coder events with two possible outcomes, state 1
and state 2 in remaining part of the paper. Wé apply some simple calculations to illustrate
the properties of the value of judgment and the suem of bias. First, we will assume the
reference state is the equilibrium state, whichssumed to be {0.55, 0.45}. We begin with the
calculation of the value of a judgment that is #ane as the equilibrium state. From (3), the

value of the judgment that agrees with the equilibrstate is

055 045
In—+@-p)iIn—=0
P 0.55 a=p 0.45

Hence the value of the judgment that agrees withetijuilibrium state is zero, regardless of the
actual probability distributions of the statesultively speaking, an investor who agrees with the

market does not believe he possess valuable infmmand put his money into an index fund.

Now consider two random events with different phulity distributions. Assume in the first

event, the objective probability of state 1 is 6886 the probability of state 2 is 40%. Someone



estimates the probability of state 1 is 57.5% dmedgrobability of state 2 is 42.5%. We assume

the equilibrium state remains {0.55, 0.45}. Fron), {Be value of his judgment is

06In O'575+ O.4In&25 =0.0038
0.55 0.45

From (6), the bias of this judgment is

06 + 04In 04

0.57¢ 0.42t

06In =0.0013

In the second event, the probability of state 575% and the probability of state 2 is 42.5%.
Someone estimates the probability of state 1 i8%7and the probability of state 2 is 42.5%.

From (3), the value of his judgment is

0.575In O'575+ 0.425In&25 =0.0013
0.55 0.45

while the bias of this judgment is zero. From thewe calculation, we find that, under certain
conditions, the judgment that is more biased turmeidto be more valuable than a less biased
judgment. Intuitively speaking, an investor wharmedestly favorable to a stock which turns out
to earn very high rate of return will perform bettigan an investor who is modestly favorable to a
stock which turns out to earn moderately rate ufrre By separating value and bias of judgment,
we will be able to perform more precise analysisnigestor behaviors, which we will discuss

later.



Next, we will consider values of judgments whenerefce states are equilibrium and non-
equilibrium states respectively. Intuitively, weeacomparing values of investment decisions
when market settles down in equilibrium state ovewinto a bubble state. Suppose an investor
spot a good stock with high growth potential. Assutime objective probability of this stock to
move up and down is {0.6, 0.4}. The investor’'s omssessment of the stock is {0.575, 0.425}.
We will calculate the value of his assessment & stock settles into the equilibrium state of
{0.55, 0.45} or a bubble state {0.40, 0.60}, whialeans that the stock will have 40% chance

going up and 60% chance going down the next timege

When the stock will settles into the equilibriuratst, the value of judgment is

0.57 0.42
06In + 0.1In(———) = 0.0038
( 0.555> ( 0.455)

When the stock will move into the bubble state,whleie of the same judgment is

0.57 0.42
06In + 04In(——) =0.0798
( 0.45> ( 0.65)

Il
The value of the judgment in a bubble state is nhigher the value of the same judgment in the
equilibrium state. Intuitively, investors holdingpases of a stock benefit from the high stock

price.
More systematic discussion on the properties oftlie®ry of judgment can be found in Chen

(2008). In the next section, we will discuss thk Ibetween investors’ judgment and their trading

decisions.
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3. Value of Judgment and the Expected Rate of Return of Portfolios

Investment decisions are made according to inv@glmigment about stocks. In this section, we
will investigate the quantitative relation betwgadgment and the portfolios constructed from
the judgment. We will consider a simple markethwat risk free asset and a risky asset. The
payoff of one unit risk free asset is -t the end of each time period. The payoffs of omé
risky asset can be either (1 + r)(1 + d) with pholity p or (1+ r )(1— d) with probability 1-p.

Investors can only assess the probabilities sutgdyt

Investors aim at maximize expected geometric refuatane and Tuttle, 1967; Fernholz, 2002;
Sinn, 2003). Based on the subjective assessmeheatturn distribution of the risky asset, an
investor determines the optimal combination of tisk free asset and the risky asset in the
portfolio. Then he can calculate the expected oateturn of this portfolio. Suppose an investor
assesses the return distribution of the risky atsdbe {g, 1-q}. Assume the portfolio he

constructed contains a portion x of risky assettaedemaining portion of 1 — x is risk free asset.

The expected geometric return over the risk fré=isa

(@=X)@Q+r)+x@+r)A+d) (A= X)@+1) +xL+r)L-d))"™ = L+1)
= ((A+xd)?@-xd)"™* -1)(1+7) (7)

To determine the value of at which the portfolio will have the maximal rabé return, we

differentiate the above formula with respeckto

11



9@+ xd)® (L= xd)* -1)
dx
=d@+xd)*™ (L-xd) ™ (2q-1- xd)

The above differentiation equals zero when
X=——" (8)

At this value of x, the portfolio obtains the highexpected geometric return. Plug the value of x

into (7), the expected rate of return is

(@+20-D°(@-(29-1)"" -1)(+r)
=(20° - -D(+r)

If the objective return distribution of the riskysset is {p, 1-p} instead of the subjectively

assessed {q, 1-q}, the expected rate of returh@pbrtfolio over the risk free rate is
29°(-q)"" -1 9)
The first order approximation of (9) is

In(20° (1-q)*")
=plng+@-p)In(l-q)+In2

12



Comparing the above result with (5), we find tha first order approximation of the expected
rate of return of the portfolio constructed fromeatain judgment is exactly equal to the value of
the judgment. As the value of judgment provideoadgapproximation to the rate of return on
investment, it can be conveniently used to undedsthe relation between human judgment and

patterns in investment returns and stock market.

From (8), the judgment about a stock determinesetved of holding about the stock. The change
of judgment about a stock determines the volumteagfing in the market, which is considered as
the key ingredient missing from the asset pricingdeis (Banerjee and Kremer, 2010). The
theory of judgment provides a link between investprdgment and trading volume in the asset
market, which will be applied to understand cyadésading in the next section. In the following,

we will apply the theory to calculate several nucarexamples.

When interest rate is measured on the inflationstdfl basis, the risk free interest rate can be set
to be zero as a good approximation to reality. géngoffs of one unit risky asset can be either 1 +
d with probability p or 1- d with probability 1-p.We can calibrate the equilibrium value of
andd with the empirical data on return and standardaden. The arithmetic mean rate of return
of the risky asset is

pd+(@1-p)(-d) = (2p-1)d (10)

and the standard deviation of the risky asset is

{plpd-(2p-1d]* +(1-p)(1-p)(-d)- (2p-1)dF}** = 2dypl-p)  (11)

13



respectively. Setting p = 0.55 and d = 0.25 resuksin rate of return to be 2.5% and standard
deviation to be 24.87%, which are similar to acteal rate of return and standard deviation of
many stock markets in the world in the last terrge@/ithp = 0.55 andd = 0.25, the proportion

of risky asset in the equilibrium portfolio, follamg formula (8), is

2p-1_2x055-1 _
d 0.25

04

These numbers will be regarded as default values efquilibrium portfolio in the next section.

Different people at different times in differenapks may have different opinions about the future
of the stock markets. We will calculate the projoors of asset to allocate to the risky assets with
different expectations. Whenis equal to 57.5%, 60%, 62.5% while keepihfixed at 0.25, the

optimal allocations to risky asset are

2x0.575-1 _ 06
025

2x060-1 _ 08
025

2x0.625-1 _ 10
0.25

while the arithmetic means of the risky assetpfelhg formula (10), are

(2x 0.575-1) x 025= 375%
(2x 06-1)x 025= 5%
(2% 0.625-1) x 025= 625%

14



The real returns of the best performing stock marke the worlds, such as United States, over
the second half of the last century are close talmyve 6.25%. This justifies the standard
statement of high risk, high return and the commuarctice of allocating most or all assets in
risky securities in long term investments. Howevethe future expected real returns of risky
assets are lower, as some researchers have suggbestproportions of risky assets in investment

portfolios should be lower as well to achieve higiepected returns.

4. Investor Heter ogeneity in Information Processing and Related Market Patterns

Empirical and theoretical investigations suggeat the heterogeneity in information processing
by investors of different sizes is the main causmany market patterns. In this section, we will
apply the theory of judgment to build a simple mot® study trading behaviors of the

heterogeneous investors and the resulting marktsrpa.

First we will determine the statistical distributi@f investors with different levels of wealth.
From earlier studies, such as Silva and YakovenR00%), wealth distribution follows
exponential law as a first approximation. Investoes be classified based on their wealth.
Suppose each investor in groupasi unit of wealth. Since the number of investorsaategroup

of wealth follows the exponential law, the propaontiof investors with unit of wealth is

Since

15



the proportion of investor population is normaliz&étie total wealth of the economy is

Because the investor population is normalizedatlerage wealth of an investor is 2.

From calculation, the Gini coefficient of this mbaeonomy is 33.3. The Gini coefficients of
industrialized economies are roughly between 254mdo the wealth distribution in this model

economy is representative of real economies.

To further simplify discussion, we lump investonoi three groups. The wealth for each member
of the three groups of investors are 1, 4 and Pedssely. The first group is the uninformed
small investors; the second group is moderatelyrinéd midsized investors and the third group
is the highly informed large investors. The promm$ of three groups of investors are

determined by maximum entropy principle (Jayne$§,7)vith the constraints on total wealth

Pt P+ p;=1
P, +4p, +9p; =2 (12)

Solving the maximum entropy problem

16



max{-p,Inp, = p,In p, = p;In p,)

subjecting to the constraints (12) gives the follmpanswer

p, = 073
p, = 023
p; = 004

The total wealth for each group of investors are

w, =1p, = 073
w, =4p, = 095
w, =9p, = 033

Roughly speaking, small investors with 1 unit ofaltle represent individual investors. Empirical
evidences show that individual investors as a gltoap money from their trading activities. So
we will assume this group of investors does nosgss information of positive value. Midsized
investors with 4 unit of wealth possess informatdmoderate value. Large investors with 9 unit
of wealth possess information of high value. Thec#r values of information possessed by

investors will be quantified later.

From calculations performed in the last sectior, gquilibrium levels op, d and the proportion

of risky asset are set to be 0.55, 0.24 and Opkntively. From time to time, the price movement
of the risky asset will deviate from the equilibriulevel because of various reasons. For
simplicity, we will assumel to be constant whilp may change over time. Investors with higher

wealth level can detect more valuable informat®pecifically, we assume large investors with 9

17



unit of wealth can detect all information {p, 1-plith p up to 0.6 and midsized investors with 4

unit of wealth can detect all information {p, 1-wjth p up to 0.575.

We follow the standard literature on the assumgtiohprice movement of securities. The price
of the risk free asset is assumed to be constdrg. pfice movement of the risky asset is

proportional to net active trading by the investors

Now we consider a trading process that lasts far fone periods. At the beginning of period
one, the firm underlying the risky security statproject. Investing in this security will generate
payoff either 1 + d with probability 0.6 or 1— dttviprobability 0.4 at the end of period two, at
which time the earning from the project becomediplybknown. Large investors with 9 unit of

wealth detect this information and purchase adutichares of the risky security. The proportion

of wealth they invest in the risky security aftee fpurchasing, according to formula (8), is

2p-1_2x06-1_
d 0.25

0.8

Since the total wealth of this group of investars i

w, = 033

The total volume of buying, which is the new hofgliminus the equilibrium holding at 40%, is

033% (08— 04) = 013

18



The purchasing by large investor increases the mfiche shares and reduces the future expected
returns. When the price increases to a certainl,léliss security will generate payoff that is
equivalent to either 1 + d with probability 0.576 - d with probability 0.425 at the end of
period two. This is the end of period one and tegitning of period two. In period two,
midsized investors with 4 unit of wealth detecstmformation and purchase shares of the risky

security. The proportion of wealth they investhe tisky security, according to formula (8), is

2p-1_2x0575-1 _

0.6
d 0.25

Since the total wealth of the midsized investors is

w, = 095

The total volume of their buying, which is the nbalding minus the equilibrium holding at 40%,

is

095x (06— 04) = 019

In period two, large investors with 9 unit of wéalWill also keep sixty percent of their wealth in
the risky asset. As a result, they will reducedhginal holding. The total volume of their selling

is

033x (06— 0.8) = -0.066

19



At the end of period two, the earning from the pcbjbecomes publicly known and the share
price of the risky asset fully reflects the undemyfundamentals. Small investors with 1 unit of
wealth do not possess private information. Instéaely observe the share price movement in the
last two time periods and the earning announcemetiie end of period two. They extrapolate
the past results to the future and invest accolyli@ecause the share prices have moved up
steadily over the last two time periods, it will batural for small investors to base the trading
decisions on the best trading decisions from twaode earlier. Specifically, in period three, on
average, small investors will allocate eighty patoef their assets in the risky security. Since

total wealth for the small investors is

w, = 073

The total volume of buying by the small investovghich is the new holding minus the

equilibrium holding at 40%, is

073x (08— 04) = 029

Now we will consider the trading activities of larqand midsized investors. Their trading
decisions are based on the information they redeiBg default, we assume no new information
in the future. In this case, the movement of staige will return to its equilibrium condition. As

a result, the holdings of the risky asset by laagel midsized investors will return to the

equilibrium state of forty percent. The total ambtey will sell is

(033+ 095) x (04— 06) = -025

20



The net active trading by all investors is

029- 025= 004

Because of the small net active trading in periockd, the price movement in this period is
moderate. However, trading at the beginning of querihree could be dominated by small
investors who mainly depend on easy to understafmimation, such as earning data, which is
distributed widely to the general public at veryroav time frames. So trading by small investors
is highly correlated (Barber, Odean and Zhu, 2009bAding decisions by large and mid size
investors depend more on intangible informationicihis the main determinant of future returns
(Daniel and Titman, 2006). But intangible infornaatiis less precisely defined and trading
activities generated by intangible informationdsd concentrated. This means that the beginning
of the period three is marked by rise of assetegriwhile prices decline over the rest of period
three. This is consistent with the empirical eviteiiHvidkjaer 2008; Barber, Odean, and Zhu,

2009a, 2009b).

In period four, most relevant information has beaeted upon and share price will finally reach
equilibrium. Since share price at the end of petwal has already fully reflect the fundamentals,
the expected price level at the end of period fwilirbe equal to the share price at the end of
period two. Therefore, the combined net activeitrgabf period three and four should be zero,
which means that the net active trading in perma Should be -0.04. Since large and midsized
investors already balanced their portfolio to dfililm state in period three, the active trading is
mainly generated by small investors who are reduthieir holding from last period’s buying. As

there is little new information to generate extading, the total trading can be approximated by

the net active trading.

21



We can summarize the trading activities in the tome periods into the following table:

Period one Period two Period three Period four
Net trading 0.13 0.12 0.04 -0.04
Trading volume | 0.13 0.19 0.29 0.04

The average net trading of the four periods is
% (013+ 012+ 004- 004) = 006

Since the net trading of the first two periods laigher than the average, share prices increase in
the first two periods are higher than the averddgey are the winner periods. In the last two
periods, the net trading is lower than the aver&gpare prices change in the last two periods are
lower than the average. They are the loser perfaa®ng the winner periods, the trading volume
of the first period is lower than that of the sedtgeriod. Among the loser periods, the trading
volume of the fourth period is lower than that e third period. The four trading periods can be

summarized as

Period one Period two Period three Period four

Low volume winner High volume winner High volumes&y Low volume loser

This is exactly the same as the empirical patterrudhented in Lee and Swaminathan (2000),

which they call momentum life cycle.

22



Hvidkjaer (2006) examined the trading behaviorsnekstors of different sizes at the stages of
low volume winner, high volume winner, high volurwoser and low volume loser. He inferred
the background of investors from the sizes of thdds. In his classification, large trades are two
times or more as large as small trades. In our mtdtemidsized and large investors are four and
nine times larger than the small investors. Scsinatural to merge the midsized and large
investors into one group as large investors whenpawing our theoretical predictions to the
empirical results discussed in Hvidkjaer (2006). Wik examine how trading patterns predicted
from our model correspond to empirical patternse Tdlearest resemblance between the
predictions of model and the empirical patternsuo@e high volume loser stage. From Figure 2
of Hvidkjaer (2006), small investors are active éngywhile large investors are active sellers in
this stage, which is exactly what the model haglipted. Our results are also consistent with
Feng and Seasholes (2004), who showed that informex$tors are selling while uninformed
investors are buying after information releasethi@a low volume loser stage, from Figure 3 of
Hvidkjaer (2006), small investors are more actigkess than large investors. In the low volume
and high volume winner stages, from Figure 2 amaf Blvidkjaer (2006), large investors are
more active buyers than small investors. If we rjpriet trading activities calculated from our
model as dominate activities instead of all adgsit the predictions of our model during these

stages are consistent with the empirical patterns.

Alternatively, we can refine the model to make orenrealistic. We had assumed the level of
informedness of an investor is determined only isywealth. To be more consistent with reality,
we now assume the level of informedness of an toves highly correlated but not determined
by his wealth. Specifically, the correlation betwewealth and level of informedness is

represented by the following matrix
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0.55 0.575 0.60

1 0.7 0.2 0.1
2 0.15 0.7 0.15
3 0.1 0.2 0.7

This means that among investors with one unit cdlthe 70%, are uninformed, as 0.55 is the
equilibrium state, 20% are informed at the leveDd&75 and 10% are informed at the level of

0.60. The level of informedness of group two amdélinvestors can be understood similarly.

We make a further refinement about the informedoégsvestors who can detect the information
{p, 1-p} with p up to 0.6. We will assume these investors deteetimformation but do not
interpret the information precisely. To be morec#ie these investors make a judgment {het
equal to 0.575 instead of 0.6. This is very natwgialce most investors underestimate the
significant of new information. Note that the judgm of this group of investors is still more
valuable than the group of investors who estinpate be 0.575 when it is actually 0.575. With
the refined model, we can recalculate the tradictjvides following the same procedure as
before. But this time we will measure the tradictj\aties of large investors and small investors
separately. The calculation of net trading by sraatl large investors at period four is determined
by the proportional holdings of small and largeesiors at the end of period three. The results

are shown in the following table.

Period 1 Period 2 Period 3 Period 4
small investor net trading0.0145 0.0291 0.1600 -0.0076

large investor net trading0.0742  0.1455  -0.1498 -0.0026
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total net trading 0.0887 0.1746 0.0102 -0.0102

trading volume 0.0887 0.1746 0.2735 0.0102

We can find that the trading patterns of small Erde investors calculated in each period are
gualitatively similar to the empirical patterns eeded in Figure 2 and 3 of Hvidkjaer (2006).
However, we would not expect the patterns predifiteth our model to be identical to empirical
patterns collected in the literature. Our modekprégs an investment cycle initiated by a positive
information signal. The empirical patterns are corations of all kinds of cycle and non-cycle
activities. For example, when the news is negaivemilar pattern exists at opposite directions.
Different cycles have different amplitudes and tangn the future, we may conduct empirical
investigations by filtering out different cycle andn-cycle components. This could help detect

investment strategies with high level of returns.

This theory of judgment based model captured méylized patterns of trading activities during
the momentum reversal cycle. The mathematics imeblg vey simple and the intuition from the
model is very clear. However, it is still in an lgastage of development. Many refinements can

be made in the future, some of which are listefbimws.

First, relation between earning momentum and pmoenentum can be added into the model.
Empirical evidence shows strong relation betweemieg and price movement (Lee and
Swaminathan, 2000; Chordia and Shivakumar, 200é6nCKoise and Zhao, 2009). By modeling
earning process over several periods of time, wefagher clarify the trading mechanisms of
small investors. If earning trends last longer, Isinaestors, as well as other investors, will be

more confident that the momentum will continue.
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Second, informed investors can anticipate and émite the trading activities of uninformed
investors. When informed investors can anticiphé&ttading behaviors of uninformed investors,
they may base their trading decisions not onlytenftindamental information, but also on the
trading activities of uninformed investors. Inforanévestors, who usually have strong track
records and are major stakeholders of publichedistompanies, can also influence or inform
uninformed investors in certain ways to alter thajetctories of price movement to benefit

themselves. These investor activities may be cagtiy more refined models.

5. Concluding Remarks

Many competing theories have been proposed to stael financial anomalies (Brav and
Heaton, 2002). Comparing with other quantitativeotiies in behavioral finance, the theory of
judgment is simple, natural and intuitive. The neatiatical tools of the theory of judgment only
involve simple algebraic functions such as logamittunctions and occasional use of calculus.
The theory of judgment is a natural extension frima entropy theory of information and

statistical mechanics. The links between investimfgirmation processing and trading decisions

are very intuitive under the theory of judgment.
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