A selection of problems published in Crux Mathematicorum, American Mathematical Monthly, and Mathematics Magazine Iliya Bluskov

1. (CM) The sequence $a_{2}, a_{3}, a_{4}, \ldots$ of real numbers is such that, for each $n, a_{n}>1$ and the equation $\left\lfloor a_{n} x\right\rfloor=x$ has exactly n different solutions. Find $\lim _{n \rightarrow \infty} a_{n}$.
2. (CM) Find a finite set S of (at least two) points in the plane such that the perpendicular bisector of the segment joining any two points in S passes through exactly two points of S.
3. (CM) Find all real numbers α for which the equality $\lfloor\sqrt{n+\alpha}+\sqrt{n}\rfloor=\lfloor\sqrt{4 n+1}\rfloor$ holds for every positive integer n.
4. (CM) Consider two concentric circles with radii R_{1} and $R\left(R_{1}>R\right)$ and a triangle $A B C$ inscribed in the inner circle. Points A_{1}, B_{1}, C_{1} on the outer circle are determined by extending $B C, C A, A B$ respectively. Prove that

$$
\frac{F_{1}}{R_{1}^{2}} \geq \frac{F}{R^{2}}
$$

where F_{1} and F_{2} are the areas of triangles $A_{1} B_{1} C_{1}$ and $A B C$ respectively, with equality when $A B C$ is equilateral.
5. (CM) The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is defined by $a_{0}=\frac{4}{3}$ and

$$
a_{n+1}=\frac{3\left(5-7 a_{n}\right)}{2\left(10 a_{n}+17\right)}
$$

for $n \geq 0$. Find a formula for a_{n} in terms of n.
6. (CM) Let $n \geq 2$ and $b_{0} \in[2,2 n-1]$ be integers, and consider the recurrence

$$
b_{i+1}=\left\{\begin{array}{lll}
2 b_{i}-1 & \text { if } & b_{i} \leq n \\
2 b_{i}-2 n & \text { if } & b_{i}>n
\end{array}\right.
$$

Let $p=p\left(b_{0}, n\right)$ be the smallest positive integer such that $b_{p}=b_{0}$.
(a) Find $p\left(2,2^{k}\right)$ and $p\left(2,2^{k}+1\right)$ for all $k \geq 1$.
(b) Prove that $p\left(b_{0}, n\right)$ divides $p(2, n)$.
7. (CM) The equation $x^{3}+a x^{2}+\left(a^{2}-6\right) x+\left(8-a^{2}\right)=0$ has only positive roots. Find all possible values of a.
8. (CM) Pairs of numbers from the set $\{7,8, \ldots, n\}$ are adjoined to each of the 20 different (unordered) triples of numbers from the set $\{1,2, \ldots, 6\}$, to obtain twenty 5 -element sets $A_{1}, A_{2}, \ldots, A_{20}$. Suppose that $\left|A_{i} \cap A_{j}\right| \leq 2$ for all $i \neq j$. What is the smallest n possible ?
9. (CM) (with S. Kapralov) Find all sequences $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ of positive integers such that

$$
\begin{aligned}
a_{1}+a_{2}+\ldots+a_{n} & =26 \\
a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2} & =62 \\
a_{1}^{3}+a_{2}^{3}+\ldots+a_{n}^{3} & =164
\end{aligned}
$$

10. (CM) Let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive real numbers which satisfies the condition

$$
3 b_{n+2} \geq b_{n+1}+2 b_{n}
$$

for every $n \geq 1$. Prove that either the sequence converges or $\lim _{n \rightarrow \infty} b_{n}=\infty$.
11. (CM) Let $B_{1}, B_{2}, \ldots, B_{b}$ be k-element subsets of $\{1,2, \ldots, n\}$ such that $\left|B_{i} \cap B_{j}\right| \leq$ 1 for all $i \neq j$. Show that

$$
b \leq\left\lfloor\frac{n}{k}\left\lfloor\frac{n-1}{k-1}\right\rfloor\right\rfloor .
$$

12. (CM) (with G. MacGillivray) Find a closed form expression for the n by n determinant

$$
\left|\begin{array}{rrrrlrrr}
n & -1 & -1 & -1 & \ldots & -1 & -1 & -1 \\
-1 & 3 & -1 & 0 & \ldots & 0 & 0 & 0 \\
-1 & -1 & 3 & -1 & \ldots & 0 & 0 & 0 \\
-1 & 0 & -1 & 3 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-1 & 0 & 0 & 0 & \ldots & 3 & -1 & 0 \\
-1 & 0 & 0 & 0 & \ldots & -1 & 3 & -1 \\
-1 & 0 & 0 & 0 & \ldots & 0 & -1 & 3
\end{array}\right| .
$$

13. (CM) Find 364 five-element subsets $A_{1}, A_{2}, \ldots, A_{364}$ of a 17 -element set such that $\left|A_{i} \cap A_{j}\right| \leq 3$ for all $1 \leq i<j \leq 364$.
14. (CM) Prove that for every positive integer n

$$
\left\lceil\frac{n^{2}+3 n+1}{n^{2}+2 n}\left\lceil\frac{n^{2}+3 n}{n^{2}+2 n-1} \cdots\left\lceil\frac{n^{2}+2 n+2}{n^{2}+n+1}\right\rceil \ldots\right\rceil=n+1 .\right.
$$

15. (CM) Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a permutation of the integers from 1 to n with the property that $a_{k}+a_{k+1}+\ldots+a_{k+s}$ is not divisible by $(n+1)$ for any choice of k and $s, k \geq 1,0 \leq s \leq n-k-1$. Find such a permutation
(a) for $n=12$;
(b) for $n=22$.
16. (AMM) Find

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left\lceil\frac{3 n^{2}+2 n}{3 n^{2}}\left\lceil\frac{3 n^{2}+2 n-1}{3 n^{2}-1} \ldots\left\lceil\frac{3 n^{2}+1}{3 n^{2}-2 n+1}\right\rceil \cdots\right\rceil\right\rceil .
$$

17. (MM) Let $k_{1}, k_{2}, \ldots, k_{n}$ be integers such that $k_{i}>2, i=1,2, \ldots, n$, and let

$$
N=\sum_{i=1}^{n}\binom{k_{i}}{2} .
$$

Prove that

$$
\sum_{1 \leq i<j \leq n}\binom{k_{i}}{2}\binom{k_{j}}{2}+3 \sum_{i=1}^{n}\binom{k_{i}+1}{4}=\binom{N}{2} .
$$

18. (AMM) Let N be a positive even integer. A placement of queens on an $N \times N$ chessboard is a set of N squares on the board such that none of these squares lies on either long diagonal, and no two of these squares lie in a single row, column, or diagonal (that is, the queens are non-attacking). A cover of an $N \times N$ board is a set of $N-2$ disjoint placements. (Thus on a 4×4 board, the placements $\{(1,3),(2,1),(3,4),(4,2)\}$ and $\{(1,2),(2,4),(3,1),(4,3)\}$ form a cover.)
(a) Show that there exists a cover of the $N \times N$ board if $N+1$ is prime.
(b) Give an example of an even N for which $N+1$ is not prime and for which there is no cover.
(c) Give an example of an even N, and a cover, for which $N+1$ is not prime.
19. (MM) Prove that

$$
\sum_{m=0}^{n} \sum_{r=0}^{n-m} \frac{(-2)^{r}}{m!r!}\binom{2 n-m-r}{n}=\sum_{r=0}^{n} \frac{(-1)^{r}}{r!}\binom{2 n-r}{n}
$$

20. (CM) Let $B=\left[b_{i j}\right]$ be an $n \times k$ matrix with entries in the set of residues modulo v, such that the k entries in each row of B are pairwise distinct. Form the $n \times[k(k-1)]$ matrix of differences $D=\left[d_{i p}\right]$, where $d_{i p}=b_{i j}-b_{i s}(\bmod v)$, $j \neq s, 1 \leq j, s \leq k$ and $1 \leq i \leq n$. Let $O_{q}, q=1,2, \ldots, v-1$ be the number of occurrences of the residue q in the matrix D. Show that the sum

$$
\sum_{q=1}^{v-1} O_{q}
$$

does not depend on v.

