Effects of ectomycorrhizal inoculants on survival and growth of interior Douglas-fir seedlings on reforestation sites and partially rehabilitated landings

François P. Teste, Margaret G. Schmidt, Shannon M. Berch, Chuck Bulmer, and Keith N. Egger

Abstract: We studied the effects of commercially available (*Laccaria laccata* (Scop.:Fr.) Berk. & Br. and *Rhizopogon parksii* Smith (Oregon source)) and native (*R. parksii* (British Columbia source)) ectomycorrhizal (EM) inoculants on the survival and growth of commercially grown interior Douglas-fir (*Pseudotsuga menziesii* var. *glauca* (Beissn.) Franco) seedlings outplanted on reforestation sites (burned piles and clearcuts) and partially rehabilitated (shallow- and deep-tilled to a depth of 15 and 50 cm, respectively) landings. We also examined the physical and chemical properties of the soil and the EM status and foliar element levels of noninoculated Douglas-fir seedlings to provide information on the growing conditions found on these types of sites. Inoculation treatments did not significantly increase survival and growth of Douglas-fir seedlings 2 years after outplanting. However, because the average percent EM colonization of inoculated seedlings at time of outplanting was low (36%), the beneficial effects of these inoculants may not have been attained. It is possible that nursery conditions partially account for the low EM colonization of inoculated seedlings. We therefore suggest that nurseries try to modify growing conditions to favor good EM formation before outplanting interior Douglas-fir. Benefits of inoculations on landings may have been restricted by the poor soil conditions, potentially toxic levels of Fe and Al, and competition from well-adapted native EM fungi.

Résumé : Nous avons étudié les effets de deux champignons ectomycorhiziens (CEM) disponibles commercialement (*Laccaria laccata* (Scop.:Fr.) Berk. & Br. and *Rhizopogon parksii* Smith (souche provenant de l'Oregon)) et d'une souche indigène (Colombie-Britanique)de *R. parksii* sur la survive et la croissance de semis de Douglas bleu (*Pseudot-suga menziesii* var. glauca (Beissn.) Franco) transplantés sur des sites forestiers dégradés (piles brûlées et coupes à blanc) et des jetées partiellement réhabilitées par un labourage à des profondeurs de 15 et 50 cm. De plus, pour décrire les conditions de croissance sur ces sites, nous avons examiné les propriétés physiques et chimiques du sol, le statut ectomycorhizien et le contenu en éléments des aiguilles des semis de Douglas bleu non inoculés. Après 2 ans, les inoculants n'avaient pas augmenté significativement la survie et la croissance des semis de Douglas bleu. Cependant, avant la transplantation, les semis avaient un faible taux de colonisation (36 %) par les ectomycorhizes et, par conséquent, leurs effets bénéfiques ne se sont probablement pas entièrement fait sentir. Il est possible que les conditions de culture de semis en pépinière soient partiellement responsables pour ce faible taux de colonisation. Nous suggérons donc que les pépinières intéressées à augmenter le taux de colonisation des CEM modifient les conditions de culture des semis de Douglas bleu. Finalement, les effets bénéfiques des inoculants sur les jetées ont probablement été limités par la pauvreté du sol, les concentrations potentiellement toxiques en Fe et en Al dans les aiguilles et la compétition avec d'autres CEM indigènes mieux adaptés.

Introduction

Successful establishment of conifer tree seedlings on reforestation sites often depends on ectomycorrhizal (EM) de-

velopment to capture scarce site resources (Danielson 1985; Perry et al. 1987). EM fungi can aid seedlings in overcoming moisture and nutrient stress and can decrease transplant shock (Marx 1991), especially on degraded sites such as

Received 16 July 2003. Accepted 29 April 2004. Published on the NRC Research Press Web site at http://cjfr.nrc.ca on 29 October 2004.

F.P. Teste.¹ Department of Forest Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
M.G. Schmidt. Department of Geography, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
S.M. Berch. British Columbia Ministry of Forests, Victoria, BC V8W 3E7, Canada.
C. Bulmer. British Columbia Ministry of Forests, Vernon, BC V1B 2C7, Canada.
K.N. Egger. Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada.

¹Corresponding author (e-mail: fteste@interchange.ubc.ca).

landings (Perry et al. 1987). Landings are relatively small, flat sites that have been compacted by heavy equipment and may have only B and C soil horizons remaining (Plotnikoff et al. 2002). They are characterized by higher bulk density and lower macropore space, lower organic matter and nutrient contents, and poorer water infiltration than that of harvested areas outside of landings (Carr 1987). Compaction on landings reduces soil aeration, which decreases root respiration and microorganism activity (Carr 1987; Page-Dumroese et al. 1998) and typically has detrimental effects on conifer seedlings and EM development.

Commercial nursery managers are often told that inoculating seedlings with appropriate EM inoculants can substantially increase performance of conifers on reforestation sites. However, Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) seedling responses to fungal inoculants are variable. In the Pacific Northwest, inoculation of seedlings with Pisolithus tinctorius (Pers.) Coker et Couch, the choice fungal inoculant for reclamation projects (Marx et al. 1992), has not always resulted in increased survival and growth. Inoculation trials using Laccaria laccata (Scop.:Fr.) Berk. & Br. increased early survival and growth of Douglas-fir seedlings on certain plantation sites (Perry et al. 1987; Hunt 1992), while no beneficial responses were observed on other sites (Bledsoe 1992; G.A. Hunt, unpublished data). Positive growth results in the Pacific Northwest using Douglas-fir have been observed in seedlings inoculated with Rhizopogon parksii Smith and Rhizopogon vinicolor (Castellano 1996). Rhizopogon spp. are common and often dominate on Douglas-fir seedlings grown in disturbed forest soils (Molina and Trappe 1994). They show strong host specificity with Douglas-fir (Molina and Trappe 1982) and possess rhizomorphs that can provide Douglas-fir seedlings with increased drought resistance (Parke et al. 1983). Very little research has looked at the potential benefits of inoculating Douglas-fir seedlings with commercially available EM fungi for improving field performance on degraded sites such as landings.

The EM inoculum potential (EIP) is defined as the ability of forest soil to maintain viable populations of EM fungi (Perry et al. 1987; Amaranthus et al. 1990). The EIP is often low on degraded sites such as burned piles, skid roads, and landings (Perry et al. 1987), and preinoculated seedlings are expected to perform better compared with uninoculated seedlings (Danielson 1985; Kropp and Langlois 1990). Sometimes, however, no growth response or delayed growth response is observed after outplanting inoculated seedlings (Castellano 1996; Rao et al. 1996; Smith and Read 1997). Little research has addressed the impact of the EIP of soil on the outcome of inoculation trials using Douglas-fir (Danielson 1988; Bledsoe 1992; Cram et al. 1999).

The objectives of this study were to

- (i) determine whether inoculating commercially grown Douglas-fir seedlings with various commercially available and native EM inoculants (*L. laccata* and *R. parksii*) increases seedling survival and growth 2 years after outplanting on reforestation sites and partially rehabilitated landings in the southern interior of British Columbia;
- *(ii)* assess the effect of soil treatments (tillage at two depths, burning, and clearcut) on survival and growth of

Douglas-fir seedlings and on soil physical and chemical properties;

- (*iii*) determine and compare the EIP of landing and clearcut soils; and
- (*iv*) assess the foliage element status of uninoculated Douglas-fir seedlings growing on landings and in clearcuts.

Materials and methods

EM inoculant treatments

In June 1999, 10-week-old interior Douglas-fir seedlings were inoculated with commercially available and native EM fungi and grown in styroblocks at Nursery Extension Services, Surrey, British Columbia. Styroblocks of seedlings were inoculated with one of three EM inoculants: L. laccata by mycelial slurry; R. parksii from Oregon (OR) by spore suspension; and R. parksii from British Columbia (BC) by spore suspension. Laccaria laccata was identified and isolated from a mushroom collected under white spruce just north of the Jasper National Park, Alberta, boundary in 1986 (M. Kean, Mikro-Tek, personal communication, 2004) and grown in liquid culture. Following supplier's instructions (Mikro-Tek, Timmins, Ontario), the concentrate mycelial inoculum was macerated in a blender and diluted so that a minimum of five propagules were applied to each seedling. Rhizopogon parksii (OR) sporocarps were collected by Mycorrhizal Applications Ltd. near Detroit Lake, Oregon, in a 120-year-old Douglas-fir stand and put into spore suspension. Spores in suspension were diluted in water and a minimum of 100 000 spores applied to each seedling. Sporocarps of R. parksii (BC) were collected in the fall of 1998 (B. Chapman, B.C. Ministry of Forests, personal communication) near Williams Lake, British Columbia, air-dried, then blended in water to achieve spore concentrations comparable to the commercial inoculum. Uninoculated seedlings served as controls, but were not prevented from forming ectomycorrhizae.

Study site description and experimental layout

The study was carried out at Miriam Creek (50°24'N, 118°57'W), which is approximately 40 km east of Vernon in the southern interior of British Columbia. The study area is in the Interior Cedar–Hemlock (ICH) biogeoclimatic zone and part of the moist warm (mw) subzone, where winters are cool and wet and summers are warm and dry (Meidinger and Pojar 1991). The mean annual temperature in the study area is 6.5 °C and annual precipitation is 420 mm, with 34% falling as snow (Environment Canada 1982). Three replicate sites covered a range (790–1050 m) of elevations and were in different clearcuts, approximately 1500 m apart. The dominant soil type is a sandy loam textured Brunisolic Grey Luvisol on glacial till with Mor humus form.

Study sites were harvested in 1998 by ground skidding, landing rehabilitation was carried out in the fall of 1999 using an excavator, and Douglas-fir seedlings were outplanted in the spring of 2000. At each of the three study sites, four plots were established, representing

- (*i*) shallow-tilled (15 cm) landing, carried out with a site-preparation rake;
- (*ii*) a deep-tilled (50 cm) landing, carried out with a site-preparation bucket;
- (iii) burned debris pile; and

(iv) adjacent clearcut with undisturbed soil. Burned piles were selected from existing areas where logging debris was disposed of by burning. Clearcut plots were randomly located on sites with similar slope position near the landings.

In the spring of 2000, inoculated and control Douglas-fir seedlings were outplanted in rows on each soil-treatment plot. Control seedlings were planted on all soil-treatment plots. Seedlings inoculated with *L. laccata* and *R. parksii* (OR) were planted on the landing and clearcut plots; seedlings inoculated with *R. parksii* (BC) were planted on the landing and burned pile plots. Each row was made up, on average, of eight seedlings inoculated with the same inoculant. On average, 21, 11, and 9 rows were laid out systematically and dispersed across each landing (shallow- and deep-tilled), clearcut, and burned pile plot, respectively.

Initial measurement of seedling growth and percent EM colonization and final measurement of seedling survival and growth

At time of lifting (i.e., before outplanting), 20 Douglas-fir seedlings per inoculation treatment were subsampled to measure height, root-collar diameter, biomass, and percent EM colonization. Determination of percent EM colonization was based on a modified gridline intercept method (Giovannetti and Mosse 1980) applied after roots were cleared and stained (Phillips and Hayman 1970). Because nursery seedlings often form ectomycorrhizae with little or no mantle, it is necessary to clear and stain roots to detect Hartig net development and to obtain an accurate assessment of percent colonization. The modification to the gridline intersect method was simply to assess each fine feeder root that intersected a gridline and determine whether it had a Hartig net or a mantle. We counted presence or absence of ectomycorrhizae in 200 fine feeder roots. Survival and height were assessed for all seedlings in the fall of 2001 at the end of two growing seasons (16 months) in the field. In September 2001, 15 uninoculated Douglas-fir seedlings were randomly selected and destructively sampled from each clearcut and landing plot to determine EIP and for morphotyping.

Soil sampling and analysis

Soil samples were collected between 28 May and 1 June 2001 by the excavation method (Blake and Hartge 1986), from the top of the mineral layer to a depth of 20 cm at six locations within each plot (following a grid pattern). These were used to determine coarse fragment content, bulk density (Db) of the fine fraction, gravimetric moisture content (θ_m), pH, and nutrient concentrations. For clearcut plots, the forest floor was sampled and placed in separate bags. Mineral soil samples were air dried and sieved through a 2-mm sieve. Soil analyses were carried out by the Analytical Laboratory in Victoria, British Columbia (B.C. Ministry of Forests, Research Branch), using the methods described in the following paragraph.

We determined soil pH in H_2O , total C (Tiessen and Moir 1993), total N (McGill and Figueiredo 1993), mineralizable N (Keeney 1982), available P (Kalra and Maynard 1991), and exchangeable K, Ca, Mg, Fe, and Mn (Kalra and Maynard

1991; Hendershot et al. 1993). Nutrient content per hectare was also determined.

Greenhouse bioassay

Bulk mineral soil was collected from each landing and adjacent clearcut in October 2000 to a depth of 20 cm at random locations and sieved through a screen with a 1-cm mesh. This soil was stored for 18 weeks at 5 °C or colder at the Kalamalka Research Station in Vernon.

Interior Douglas-fir seedlings (seedlot 31851) were grown in styroblocks by Riverside Nursery in Vernon for one growing season. Randomly selected seedlings from the Riverside nursery were cleared and stained before the start of the greenhouse bioassay to determine initial percent colonization. We found that seedlings from the Riverside Nursery had 0% colonization.

In March 2001, 21 seedlings were randomly selected and assigned to soil treatments. A single seedling was planted in each black plastic 3.2-L pot (with six leaching holes per pot), and the pots were randomly placed on greenhouse benches. Perlite (Micronise Ultratech) mixed with collected soil (1:1) was used as the potting medium. Rerandomization of pot location on greenhouse benches was performed once a month.

Seedlings were grown at Simon Fraser University, Burnaby, British Columbia. High-pressure sodium lamps were used with a photoperiod of 15 h per day until the native photoperiod surpassed this value in mid-June. Day and night temperatures were set at 20 °C (\pm 5 °C). Seedlings were watered when volumetric soil moisture reached about <0.1 m³·m⁻³, determined using a theta probe (Delta-T Theta Probe Meter, type HH1). No fertilizer was added. After 20 weeks, seedlings were destructively sampled, and root systems were stored at 3.5 °C.

Ectomycorrhizae morphotyping

Fifteen uninoculated seedlings were randomly selected per treatment × block combination from the field (90 seedlings) for morphotyping. Entire root systems were carefully washed under cold running water. All lateral and egressed roots were examined in a large dish of water using a dissecting microscope. Each unique EM type or suspected ectomycorrhiza was further characterized. To determine percent EM colonization and abundance by morphotype, a subsample was examined. Roots were cut into approximately 2-cm segments and layed over a grid of 21 cells (5 cm² per cell). The 2-cm root segments were randomly placed in small bunches into the cells, and then one bunch was randomly selected. Subsequent bunches were randomly chosen until 300 tips had been selected.

Active EM root tips were counted. An active EM tip was turgid, generally smooth, and possessed emanating hyphae, mycelial cords, or rhizomorphs (Harvey et al. 1976). No counts of inactive EM or dead root tips were made. For a given seedling, percent EM colonization was calculated as the ratio between active ectomycorrhizal root tips and live nonectomycorrhizal root tips times 100. EM roots were categorized as EM, EM but undifferentiated, or non-EM. Morphological descriptions were made with reference mostly to Goodman et al. (1996), Goodman and Trofymow (1998), Roth (1990), and occasionally to Agerer (1985–1998) and Ingleby et al. (1990). Some morphotypes were not identifiable and were classified as unknown (e.g., unknown (flaky yellow)).

20	7	-
20	1	1

Inoculation treatment	Height (cm)	Diameter (mm)	Shoot dry biomass (g)	Ectomycorrhizal colonization (%)
Control	21.0a	4.04a	1.66a	1a
	(0.7)	(0.16)	(0.10)	(0)
Laccaria laccata	20.1a	3.87a	1.62a	38b
	(0.6)	(0.13)	(0.08)	(3)
Rhizopogon parksii (BC)	21.1a	4.21a	1.82a	33b
	(0.6)	(0.16)	(0.07)	(2)
Rhizopogon parksii (OR)	21.5a	3.89a	1.70a	38b
	(0.7)	(0.09)	(0.09)	(2)
р	0.46	0.27	0.37	< 0.01

Table 1. Inoculated Douglas-fir seedling growth and percent ectomycorrhizal colonization at time of lifting from the nursery (1999).

Note: Values are means, with standard errors in parentheses. Means in the same column followed by the same letter are not significantly different (p < 0.05).

Extraction, amplification, restriction endonuclease digestion, and gel electrophoresis of EM DNA

A subsample of three root tips was randomly collected for each distinct morphotype, placed in 1-mL microvials, and stored at -80 °C until DNA analysis was carried out. All molecular work was carried out in the research laboratory of Keith Egger at the University of Northern British Columbia. We used the procedures outlined in Mah et al. (2001), except that Platinum *Taq* DNA Polymerase (Invitrogen, Burlington, Ontario) was used.

Restriction endonuclease RFLP profiles using AluI, HinfI, and RsaI (Invitrogen) were analyzed with Gene Profiler version 4.05 software (Scanalytics Corp.). Log piecewise linear curve fitting was used to calibrate fragment sizes against a DNA standard (1-kb DNA ladder; Introgen). A database of RFLP patterns generated in the present study was compared with a reference (Egger & Massicotte (E&M)) database containing morphotypes identified in previously published (Mah et al. 2001) and unpublished studies. Matches were first identified by generating a pairwise distance matrix based upon the "PHYLIP Query" (sum of polymorphic bands) distance measure in Gene Profiler. The resulting distance matrix was subjected to neighbor-joining analysis using the "Neighbor" program from the phylogenetic inference software PHYIP (Felsenstein 1996), to identify close matches, and then the patterns were visually compared to determine a final match.

EIP

EM status (colonization, abundance, richness, diversity, and evenness) of the destructively sampled seedlings from the field was assessed and used as an indicator of the EIP of the clearcut and landing soils. Following morphotyping, percent EM colonization was determined based on 300 randomly subsampled root tips. In addition, for the greenhouse bioassay only, 10 seedlings per treatment × block combination (60 seedlings) were subsampled to determine percent EM colonization, by clearing and staining. The number of morphotypes and their relative abundance were also determined. When a morphotype was seen during the initial root system examination but not found in the random 300 root tip count, a value of zero was assigned (i.e., indicating it was present but with negligible colonization). Richness (i.e., number of morphotypes per seedling), diversity (Shannon diversity index (H')), and evenness (Shannon evenness index) were calculated for each treatment (Magurran 1988). A diversity index sensitive to rare morphotypes was needed, so we chose the Shannon diversity index (Peet 1974).

Foliar analysis

Needles were removed from each destructively sampled seedling from the field, dried overnight at 70 °C, and then weighed. Foliar analysis was carried out by the Analytical Laboratory in Victoria, British Columbia (B.C. Ministry of Forests, Research Branch). Total N, P, K, Ca, Mg, S, Fe, Mn, B, Zn, Cu, and Al were measured for each sample (Kalra and Maynard 1991).

Data analysis

Survival and growth data were analyzed as a randomized block split-plot design (Sit 1995). Three-factor analysis of variance (ANOVA) was used, with block as a random factor and soil and inoculation treatment as fixed factors. Rows of seed-lings within the block \times soil \times inoculation combination were treated as experimental units. The soil, EM status, and foliar data were analyzed as a one-way randomized block design (Sit 1995). Two-factor ANOVA was used, with block as a random factor and soil as a fixed factor. Groups of soil samples or seedlings within the block \times soil treatment combination were treated as the experimental units. The initial growth and EM colonization (i.e., at time of lifting) data were analyzed as a complete randomized design (Sit 1995). One-factor ANOVA was used with inoculation treatment as a fixed factor.

The Tukey HSD multiple comparison test was used to differentiate significant differences (p < 0.05) for variables among soil and inoculation treatments. Pearson correlations were carried out (using Bonferroni probabilities) on percent EM colonization and seedling growth variables and on percent EM colonization and foliar element concentrations. Analyses were performed using Systat version 10.2 (SAS Institute Inc. 2002).

Results

Initial measurement of seedling growth and percent EM colonization and final measurement of seedling survival and growth

Before outplanting, inoculated and control seedlings did not differ in height, diameter, or shoot biomass (Table 1).

Fig. 1. Early survival and growth of Douglas-fir seedlings at Miriam Creek after two growing seasons. Significant (A) soil treatment effects (height increment, p = 0.001; survival, p = 0.10) are designated by different letters and (B) inoculation treatment effects (height increment p = 0.47; survival p = 0.67). Significance levels are as follows: *, p < 0.1; **, p < 0.05; ***, p < 0.01.

Percent EM colonization of control seedlings was very low (1%), and significantly lower (p < 0.01) than that of inoculated seedlings (36%) (Table 1). There were no significant differences in percent EM colonization among seedlings treated with different inoculants (Table 1).

After two growing seasons, there were no significant differences in survival or height increment between any of the inoculation treatments within the different soil treatments (Fig. 1). Nevertheless, *Rhizopogon parksii* (OR) tended to show the greatest height increases (not significant) on all soil treatments. Seedlings growing on clearcuts and burned piles had significantly greater height increments than did seedlings growing on shallow- or deep-tilled landings (Fig. 1). Both shallow- and deep-tilled landings produced very little height increment. Differences between the two tilled soil rehabilitation treatments were not significant, but deep-tilled landings, on average, showed larger height increments.

Soil physical and chemical properties

Soil from shallow-tilled landings had significantly higher bulk density and lower moisture content (in June 2000) than soils from burned piles and clearcuts (Table 2). Soil from burned piles was slightly alkaline and had a significantly higher pH than soil from landings (shallow- and deep-tilled) and clearcuts.

Total C content was significantly greater on clearcuts than on all other treatments (Table 3). Shallow- and deep-tilled landings were devoid of forest floor, but still averaged 40 000 and 34 000 kg·ha⁻¹ of total C, respectively, in the 0- to 20-cm layer. Shallow- and deep-tilled landings and burned plots had significantly lower mineralizable N contents than clearcuts. Clearcuts had approximately 12 times greater mineralizable N than other treatments. Exchangeable K concentrations were significantly lower on shallow-tilled landings than on burned piles. A trend for lower available P, although not significant (p = 0.20), was found on landings. Exchangeable Ca, Mg, and Fe concentrations and contents in the mineral soil were similar for all soil treatments (Table 3). Exchangeable Mn contents were significantly lower on burned piles than on shallow-tilled landings. Clearcuts had significantly greater concentrations and contents (except on the shallow-tilled landings) of exchangeable Al compared with landings and burned piles (Table 3).

Ectomycorrhizae morphotype and RFLP type

Fourteen clearly different morphotypes were observed and described (Table 4). Six could not be matched to descriptions in the literature. One of these had few morphological characteristics to observe and was labeled "undifferentiated". Overall, 11 different RFLP types were found (Table 5). Most morphotypes produced distinct RFLP patterns and could be identified by comparison to Gene Profiler version 4.05 (Scanalytics Corp.) databases of PCR-RFLP patterns generated in the laboratory of K.N. Egger and H.B. Massicotte (E&M databases) (Table 5). The Amphinema byssoides-like (Ab) morphotype matched an RFLP pattern produced by an Amphinema-Hebeloma morphotype on interior hybrid white spruce in the E&M databases. The CDE5-like (C5) morphotype matched an unidentified morphotype "I" in the E&M databases and is very close in its RFLP pattern to the CDE No. 5 morphotype in Goodman et al. (1996). The Cenococcum geophilum (Cg) morphotypes substantially matched the *Cenococcum* genotype 1 pattern in Mah et al. (2001) and partially matched the Cenococcum-like genotype in Hagerman et al. (1999). The E-strain (Wilcoxina sp.) (E-s) morphotypes partially or completely matched E-strain morphotypes in the E&M databases and were close to the pattern described in Hagerman et al. (1999). The Rhizopogon-like (Rz) morphotype produced three different patterns, two of which corresponded to Suillus-Rhizopogon morphotypes in the E&M databases. One Rz morphotype closely matched an unknown "45D4" isolate in E&M databases. This RFLP pattern is infrequently found and is always

Table 2. Bulk density, forest-floor depth, moisture content (1 June 2001), and pH of soils from landings tilled to a depth of 15 cm (L15cm), landings tilled to a depth of 50 cm (L50cm), clearcuts, and burned piles at Miriam Creek.

Soil treatment	Bulk density (g·cm ⁻³)	Forest-floor depth (cm)	Moisture content (θ_m^a)	pН
L15cm	1.59a	0.00a	0.12a	6.07a
	(0.15)	(0)	(0.02)	(0.31)
L50cm	1.26ab	0.00a	0.14a	6.00a
	(0.15)	(0)	(0.02)	(0.35)
Clearcut	0.82bc	5.36b	0.28b	5.27a
	(0.13)	(0.8)	(0.003)	(0.06)
Burn	0.74c	0.00a	0.28b	7.72b
	(0.16)	(0)	(0.06)	(0.24)
р	0.003***	0.009***	0.0001***	0.004***

Note: ***, p < 0.01. Values are means, with standard errors in parentheses. Means in the same column followed by the same letter are not significantly different (p < 0.05 was used for Tukey's HSD multiple comparison test). " θ_{m} , kilograms H₂0 per kilogram soil.

associated with aging *Suillus–Rhizopogon* morphotypes. It shares a high proportion of fragments with some *Mycelium radicis atrovirens* (MRA) genotypes, but this genotype has not yet been sequenced to confirm a relationship. *Thelephora americana*-like (Ta) also produced three RFLP patterns. Several Ta samples produced RFLP patterns that matched the *Thelephora* genotype 1 pattern in Mah et al. (2001), including the morphotype referred to as "undifferentiated (Undif)". This pattern is close to the pattern described for *Thelephora*-like in Hagerman et al. (1999). A slight variation was found in one Ta type, which matched a *Thelephora* genotype, *Lactarius*-like (Lac), Unknown (flaky yellow) (Fy), and Unknown (caramel jigsaw) (Cj) did not substantially match any patterns in the E&M databases.

EIP

In the greenhouse bioassay, seedlings grown in landing soil had significantly higher EM colonization (14% higher, determined by the clearing and staining method) than seedlings grown in the clearcut soil (Fig. 2). The total number of morphotypes found was greater on seedlings grown on clearcut soil than on landing soil (Fig. 3). Rhizopogon-like was the most abundant morphotype to form on seedlings growing in the landing soil (42%). For comparison, five naturally regenerated seedlings were collected from landings, and EM status was determined. Naturally regenerated seedlings growing on the landings had, on average, 37% of their fine root tips colonized by EM fungi (data not shown). Naturally regenerated seedlings were mostly colonized by Rhizopogon-like and Thelephora americana-like. These results are very similar to what we found with outplanted seedlings (see Figs. 2 and 3).

Morphotype richness and diversity were marginally higher on roots of seedlings grown in clearcut soil (p = 0.13 and 0.12, respectively) than in landing soil (Fig. 4). Root systems had significantly higher morphotype evenness in clearcut soil than on landing soil.

Foliar element status

Compared with seedlings grown in clearcuts, landing-grown seedlings had significantly greater concentrations of foliar P, Fe, and Al; significantly greater contents of foliar Fe and Al; lower (not significantly) concentrations of foliar N (p = 0.37), K (p = 0.25), and Cu (p = 0.38); and significantly lower contents of foliar P, K, Ca, and Cu (Table 6). Pearson correlations did not suggest any strong association between percent EM colonization, growth variables, and foliar nutrient concentrations (Table 7). Nevertheless, EM colonization did have a significant moderate positive relationship with N, P, K, S, Fe, Mn, Zn, and Cu in foliage for seedlings grown on landings (Table 7).

Discussion

Influence of EM inoculants on seedling survival and growth

EM inoculation did not significantly improve early survival and growth of Douglas-fir seedlings. Other studies have found a variable growth response for Douglas-fir inoculation with EM fungi (Castellano 1996). Inoculation with *Rhizopogon* spp. has consistently increased Douglas-fir seedling field performance in the Pacific Northwest (Molina et al. 1999). However, most previous studies involved coastal Douglas-fir (*Pseudotsuga menziesii* var. *menziesii* (Mirb.) Franco), whereas we focused on interior Douglas-fir.

On our sites, R. parksii (OR) tended to promote slightly greater seedling height increment on all soil treatments, but differences were not significant when compared with controls. Variable results were obtained in other studies when Douglas-fir was inoculated with L. laccata. Morgan (1984) and Sinclair et al. (1982) reported increases in survival and height, while G.A. Hunt (unpublished data) found no positive growth effect. Bledsoe et al. (1982) found that L. laccata did not compete well with native EM fungi after outplanting, and inoculated Douglas-fir seedlings did not perform significantly better than controls. The authors emphasized the importance of matching fungal inoculum source with planting site conditions. In our study, however, native R. parksii (BC) should have been well matched with the study sites, but seedlings inoculated with it did not perform any better than controls or other inoculants. Adverse soil physical and nutrient conditions on the landings may have stressed seedlings and fungi, so that EM inoculants did not affect seedling growth on these sites. It seems evident that compacted (Wert and Thomas 1981; Page-Dumroese et al. 1998),

					Exchangeable					
Total C	Total N	C:N ratio	Mineralizable N	Available P	K	Ca	Mg	Fe	Mn	Al
14.7a	0.49a	28.8a	1.3a	22a	0.13a	5.1a	1.1a	0.002a	0.107a	0.057a
(6.2)	(0.17)	(0.4)	(0.1)	(8)	(0.01)	(0.4)	(0.1)	(0.001)	(0.018)	(0.017)
17.4a	0.54a	29.9a	1.9a	23a	0.17a	5.2a	1.1a	0.005a	0.076a	0.061a
(10.2)	(0.24)	(1.7)	(1.0)	(12)	(0.02)	(0.4)	(0.2)	(0.002)	(0.011)	(0.015)
27.9a	1.08a	27.0a	21.7b	75a	44.90b	49.0b	45.2b	0.028b	1.078b	0.529b
(1.6)	(0.35)	(5.0)	(1.6)	(37)	(2.63)	(5.7)	(2.6)	(0.007)	(0.102)	(0.138)
27.9a	0.68a	38.3a	3.6ab	68a	0.36a	6.6a	1.2a	0a	0.011a	0a
(10.7)	(0.14)	(4.7)	(1.6)	(18)	(0.04)	(1.5)	(0.2)	(0)	(0.004)	(0)
0.47	0.21	0.31	0.03^{**}	0.20	<0.0001***	0.0001^{***}	<0.0001***	0.009***	0.0011^{***}	<0.0001***
40 000a	1420a		4a	63a	158a	6340a	890a	2.5a	170a	42ab
$(14\ 000)$	(350)		(1)	(27)	(4)	(450)	(280)	(1.6)	(64)	(20)
34 000a	1150a		4a	50a	151a	4950a	690a	6.7a	91ab	35a
$(16\ 000)$	(360)		(1)	(23)	(27)	(310)	(260)	(3.9)	(8)	(20)
98 000b	2270a		50b	125a	205a	4550a	310a	7.5a	101ab	104b
$(23\ 000)$	(540)		(12)	(49)	(8)	(610)	(150)	(1.2)	(18)	(25)
35 000a	930a		5a	107a	209a	3640a	380a	0.0a	9b	0a
$(11\ 000)$	(140)		(2)	(45)	(33)	(160)	(20)	(0.0)	(3)	(0)
0.02^{**}	0.07*		0.006^{***}	0.26	0.32	0.07*	0.15	0.08*	0.04^{**}	0.008^{***}
s are for miner $**, p < 0.01$. M	al soils (0–20 feans in the sa	cm depth); to me column fol	tal element contents are lowed by the same letter	e for mineral soil r are not significar	s (0–20 cm depth thy different ($p < 0$) plus the forest 0.05 was used fo	floor. Values are r Tukey's HSD m	means, with si- ultiple comparis	tandard errors in son test).	parentheses. *,
• • • • •	Total C 14.7a (6.2) 17.4a (10.2) 27.9a (7.6) 27.9a (7.6) 27.9a (10.7) 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.27.9a (10.00) 0.32000a (11000) $98\ 000b$ $(11\ 000)$ $35\ 000a$ $(11\ 000)$ $(12\ 000)$	Total CTotal N $14.7a$ $0.49a$ $14.7a$ $0.49a$ (6.2) (0.17) $17.4a$ $0.54a$ (10.2) $0.24)$ $27.9a$ $1.08a$ (7.6) $0.35)$ $27.9a$ $0.68a$ (7.6) $0.35)$ $27.9a$ $0.68a$ (10.7) $0.14)$ 0.47 0.21 9.47 0.21 0.47 0.21 $0.79a$ $0.68a$ (10.7) $0.14)$ 0.47 0.21 $9.00a$ $1120a$ $(14,000)$ (350) $34,000a$ $1150a$ $(16,000)$ (360) $98,000b$ $2270a$ $(23,000)$ (540) $35,000a$ $930a$ $(11,000)$ (140) 0.02^{**} 0.07^{*} $s are for mineral soils (0-20)^{***}$	Total CTotal NC:N ratio $14.7a$ $0.49a$ $28.8a$ (6.2) (0.17) (0.4) $17.4a$ $0.54a$ $29.9a$ (10.2) (0.24) (1.7) $27.9a$ $1.08a$ $27.0a$ (7.6) (0.35) (5.0) $27.9a$ $0.68a$ $38.3a$ (10.7) (0.14) (4.7) 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.47 0.21 0.31 0.140 0.360 $ 0.00a$ $1420a$ $ 0.02**$ $0.07*$ $ 0.02**$ $0.07*$ $ 0.07*$ $ 0.07*$ 0.01 . Means in the same column follow	Total CTotal NC:N ratioMineralizable N14.7a $0.49a$ $28.8a$ $1.3a$ (6.2) (0.17) (0.4) (0.1) $17.4a$ $0.54a$ $29.9a$ $1.9a$ (10.2) (0.24) (1.7) (1.0) $27.9a$ $1.08a$ $27.0a$ $21.7b$ (7.6) (0.35) (5.0) (7.6) (7.6) (0.35) (5.0) (7.6) (10.7) (0.14) (1.7) (1.0) (10.7) (0.14) (4.7) (1.6) 0.47 0.211 0.311 $0.03**$ 0.47 0.211 0.311 $0.03**$ 0.47 0.211 0.311 $0.03**$ $40 000a$ $1420a$ $-4a$ $(14 000)$ (360) -1 $34 000a$ $1150a$ $-4a$ $(16 000)$ (360) -1 $98 000b$ $2270a$ -1 $23 000)$ (540) -1 $(11 000)$ (140) -1 $(11 000)$ (140) -1 $(11 000)$ (140) -1 $(11 000)$ (140) -1 $(11 000)$ (140) -1 $(23 000)$ $(220 \text{ cm depth); total element contents are*^{***}, p < 0.01. Means in the same column followed by the same letter$	Total C Total N C:N ratio Mineralizable N Available P 14.7a 0.49a 28.8a 1.3a 22a (6.2) (0.17) (0.4) (0.1) (8) 17.4a 0.54a 29.9a 1.9a 23a (10.2) (0.24) (1.7) (1.0) (12) 27.9a 1.08a 27.0a 21.7b 75a (7.6) (0.35) (5.0) (7.6) (37) 27.9a 0.68a 38.3a 3.6ab 68a (10.7) (0.14) (4.7) (1.6) (18) 0.47 0.21 0.31 0.03** 0.20 0.47 0.21 0.31 0.03** 0.20 10.01 (10.00) (350) - (1) (27) 34 000a 1420a - 4a 50a (1) 34 000a 1150a - (1) 0.75 (27) 32 000a 930a - (1) (Total C Total N C:N ratio Mineralizable N Available P Exchangeable 14.7a 0.49a 28.8a 1.3a 22a 0.13a (6.2) (0.17) (0.4) (0.1) (8) (0.01) 17.4a 0.54a 29.9a 1.9a 23a 0.17a (10.2) (0.24) (1.7) (1.0) (12) (0.01) 27.9a 1.08a 27.0a 1.9a 23a 0.17a (10.7) (0.14) (4.7) (1.0) (12) (0.02) 27.9a 0.68a 38.3a 3.6ab 68a 0.36a (10.7) (0.14) (4.7) (1.6) (18) (0.04) 0.47 0.21 0.350 (1.6) (37) (2.63) 0.47 0.21 0.350 (1.6) (37) (2.63) 34 000a 1420a - (1.6) (18) (0.01) 34 000a 150a 14a 50a (13) (27) <td>Total C Total N C:N ratio Mineralizable N Available P Exchangeable 14.7a 0.49a 28.8a 1.3a 5.1a Ca 17.4a 0.54a 29.9a 1.3a 5.1a (0.4) 17.4a 0.54a 29.9a 1.9a 5.1a (0.4) 17.4a 0.54a 29.9a 1.9a 23a 0.17a 5.2a 17.4a 0.54a 29.9a 1.9a 23a 0.17a 5.2a 10.2 (0.24) (1.7) (1.0) (12) (0.4) (0.4) 27.9a 0.35b (5.0) (7.6) (37) 2.633 (5.7) 27.9a 0.68a 38.3a 3.6ab 68a 0.363 (5.7) 27.9a 0.14) (4.7) (1.6) (18) (0.04) (1.5) 0.47 0.21 0.31 0.03*** 0.363 (5.7) (2.7) 0.47 0.21 0.31 0.03*** 0.20 (1.6)</td> <td>Exchangeable Total C Total N C:N ratio Mineralizable N Available P K Ca Mg 14.7a 0.49a 28.8a 1.3a 22a 0.13a 5.1a 1.1a (6.2) (0.17) (0.4) (0.1) (0.4) (0.1) 17.4a 0.49a 28.8a 1.3a 23a 0.17a 5.2a 1.1a (10.2) (0.35) (5.0) (7.6) (37) (2.63) (5.7) (2.6) 27.9a 0.88a 38.3a 3.6ab 68a 0.36a 6.6a 1.2a (10.7) (0.14) (4.7) (1.6) (18) (0.001) (9.2) (2.6) 27.9a 0.88a 38.3a 3.6ab 68a 0.36a 6.6a 1.2a (10.7) (0.14) (4.7) (1.6) (18) (0.001) (9.2) (0.26) 27.9a 0.350 - 0.31a 0.37a 0.263 (5.7) (2.6) <!--</td--><td>Exchangeable Total C Total N C:N ratio Mineralizable N Available P K Ca Mg Fe 14.7a 0.49a 28.8a 1.3a 22a 0.13a 5.1a 1.1a 0.002a (6.2) 0.17) 0.4,0 0.1 0.10 0.11 0.10 0.001 17.4a 0.244 1.0 0.1 0.01 0.11 0.002 0.002 7(50 0.24) (1.7) (1.0) 1.23 2.3a 0.011 0.024 0.002 77.60 0.24 1.17 (1.0) 1.2 0.021 0.14 0.1 0.002 77.61 0.24 1.17 (1.0) 1.2 0.023 0.023 0.002 77.63 0.024 1.17 1.00 1.2 0.023 0.000 77.61 0.23 5.0 7.50 0.000 0.000 0.000 77.61 0.24 0.23 0.350 0.240 0</td><td>Exchangeable Total K Tatio Mineralizable N Available P K Ca Mg Fe Mn 14.7a 0.49a 28.8a 1.3a 22a 0.13a 5.1a 1.1a 0.002a 0.107a (5.2) (0.17) (0.49) 28.8a 1.3a 22a 0.13a 5.1a 1.1a 0.002a 0.107a (5.2) (0.17) (0.4) (0.1) (0.4) (0.1) 0.018) 0.017a (7.6) (0.35) (5.0) (7.1) (1.0) (0.2) 0.0139 (0.01) (10.7) (0.14) (4.7) (1.0) (1.2) (0.02) (0.01) (0.01) 27.9a 0.68a 38.3a 3.6ab 68a 0.563 (0.01) (0.02) (0.01) 27.9a 0.68a 38.3a 3.6ab 68a 0.563 (0.00) (0.01) (0.01) 27.9a 0.68a 38.3a 3.6ab 68a 0.563 (0.01) (0.02) (0.01) 27.9a 0.6103</td></td>	Total C Total N C:N ratio Mineralizable N Available P Exchangeable 14.7a 0.49a 28.8a 1.3a 5.1a Ca 17.4a 0.54a 29.9a 1.3a 5.1a (0.4) 17.4a 0.54a 29.9a 1.9a 5.1a (0.4) 17.4a 0.54a 29.9a 1.9a 23a 0.17a 5.2a 17.4a 0.54a 29.9a 1.9a 23a 0.17a 5.2a 10.2 (0.24) (1.7) (1.0) (12) (0.4) (0.4) 27.9a 0.35b (5.0) (7.6) (37) 2.633 (5.7) 27.9a 0.68a 38.3a 3.6ab 68a 0.363 (5.7) 27.9a 0.14) (4.7) (1.6) (18) (0.04) (1.5) 0.47 0.21 0.31 0.03*** 0.363 (5.7) (2.7) 0.47 0.21 0.31 0.03*** 0.20 (1.6)	Exchangeable Total C Total N C:N ratio Mineralizable N Available P K Ca Mg 14.7a 0.49a 28.8a 1.3a 22a 0.13a 5.1a 1.1a (6.2) (0.17) (0.4) (0.1) (0.4) (0.1) 17.4a 0.49a 28.8a 1.3a 23a 0.17a 5.2a 1.1a (10.2) (0.35) (5.0) (7.6) (37) (2.63) (5.7) (2.6) 27.9a 0.88a 38.3a 3.6ab 68a 0.36a 6.6a 1.2a (10.7) (0.14) (4.7) (1.6) (18) (0.001) (9.2) (2.6) 27.9a 0.88a 38.3a 3.6ab 68a 0.36a 6.6a 1.2a (10.7) (0.14) (4.7) (1.6) (18) (0.001) (9.2) (0.26) 27.9a 0.350 - 0.31a 0.37a 0.263 (5.7) (2.6) </td <td>Exchangeable Total C Total N C:N ratio Mineralizable N Available P K Ca Mg Fe 14.7a 0.49a 28.8a 1.3a 22a 0.13a 5.1a 1.1a 0.002a (6.2) 0.17) 0.4,0 0.1 0.10 0.11 0.10 0.001 17.4a 0.244 1.0 0.1 0.01 0.11 0.002 0.002 7(50 0.24) (1.7) (1.0) 1.23 2.3a 0.011 0.024 0.002 77.60 0.24 1.17 (1.0) 1.2 0.021 0.14 0.1 0.002 77.61 0.24 1.17 (1.0) 1.2 0.023 0.023 0.002 77.63 0.024 1.17 1.00 1.2 0.023 0.000 77.61 0.23 5.0 7.50 0.000 0.000 0.000 77.61 0.24 0.23 0.350 0.240 0</td> <td>Exchangeable Total K Tatio Mineralizable N Available P K Ca Mg Fe Mn 14.7a 0.49a 28.8a 1.3a 22a 0.13a 5.1a 1.1a 0.002a 0.107a (5.2) (0.17) (0.49) 28.8a 1.3a 22a 0.13a 5.1a 1.1a 0.002a 0.107a (5.2) (0.17) (0.4) (0.1) (0.4) (0.1) 0.018) 0.017a (7.6) (0.35) (5.0) (7.1) (1.0) (0.2) 0.0139 (0.01) (10.7) (0.14) (4.7) (1.0) (1.2) (0.02) (0.01) (0.01) 27.9a 0.68a 38.3a 3.6ab 68a 0.563 (0.01) (0.02) (0.01) 27.9a 0.68a 38.3a 3.6ab 68a 0.563 (0.00) (0.01) (0.01) 27.9a 0.68a 38.3a 3.6ab 68a 0.563 (0.01) (0.02) (0.01) 27.9a 0.6103</td>	Exchangeable Total C Total N C:N ratio Mineralizable N Available P K Ca Mg Fe 14.7a 0.49a 28.8a 1.3a 22a 0.13a 5.1a 1.1a 0.002a (6.2) 0.17) 0.4,0 0.1 0.10 0.11 0.10 0.001 17.4a 0.244 1.0 0.1 0.01 0.11 0.002 0.002 7(50 0.24) (1.7) (1.0) 1.23 2.3a 0.011 0.024 0.002 77.60 0.24 1.17 (1.0) 1.2 0.021 0.14 0.1 0.002 77.61 0.24 1.17 (1.0) 1.2 0.023 0.023 0.002 77.63 0.024 1.17 1.00 1.2 0.023 0.000 77.61 0.23 5.0 7.50 0.000 0.000 0.000 77.61 0.24 0.23 0.350 0.240 0	Exchangeable Total K Tatio Mineralizable N Available P K Ca Mg Fe Mn 14.7a 0.49a 28.8a 1.3a 22a 0.13a 5.1a 1.1a 0.002a 0.107a (5.2) (0.17) (0.49) 28.8a 1.3a 22a 0.13a 5.1a 1.1a 0.002a 0.107a (5.2) (0.17) (0.4) (0.1) (0.4) (0.1) 0.018) 0.017a (7.6) (0.35) (5.0) (7.1) (1.0) (0.2) 0.0139 (0.01) (10.7) (0.14) (4.7) (1.0) (1.2) (0.02) (0.01) (0.01) 27.9a 0.68a 38.3a 3.6ab 68a 0.563 (0.01) (0.02) (0.01) 27.9a 0.68a 38.3a 3.6ab 68a 0.563 (0.00) (0.01) (0.01) 27.9a 0.68a 38.3a 3.6ab 68a 0.563 (0.01) (0.02) (0.01) 27.9a 0.6103

2080

Table 3. Nutrient concentrations and contents of soils from landings tilled to a depth of 15 cm (L15cm), landings tilled to a depth of 50 cm (L50cm), clearcuts, and burned

Morphotype	Brief morphotype description ^a
Rhizopogon-like (Rz)	Irregular to subtuberculate, silvery white mycorrhiza; hairy, brown mycelial strands; felt prosenchyma outer mantle; wide, emanating hyphae with elbow-like bends; very similar to <i>Rhizopogon vinicolor</i> and <i>Rhizopogon parksii</i>
Thelophora americana-like (Ta)	Brown or orange, thin, and sometimes wrinkled mycorrhiza; net synenchyma outer mantle; long cystidia with basal clamp
Cenococcum geophilum (Cg)	Pure black mycorrhiza; net synenchyma in a stellate pattern; large (5 µm wide), black, ema- nating hyphae at low magnification
Unknown (dark brown) (Db)	Dark brown, felty mycorrhiza; net prosynenchyma outer mantle; large (4.5 μm wide), yellow, emanating hyphae
Unknown (silver-amorphous) (Sa)	Smooth, silver mycorrhiza; interlocking irregular synenchyma outer mantle with mucilaginous matrix
Amphinema byssoides-like (Ab)	Orange-yellow, stringy mycorrhiza; yellow-branched mycelial strands; felt prosenchyma outer mantle; emanating hyphae with keyhole clamps
Unknown (flaky yellow) (Fy)	Cream-yellow, flaky mycorrhiza; net prosenchyma outer mantle with adhering debris
E-strain (Wilcoxina sp.) (E-s)	Brownish-orange mycorrhiza; mantle patchy and not distinct; large, emanating hyphae (6 µm wide)
Unknown (caramel jigsaw) (Cj)	Smooth, brown, thick mycorrhiza; interlocking irregular synenchyma outer mantle resembling a jigsaw puzzle
CDE5-like (C5)	Light brown, cottony mycorrhiza; variable outer mantle resembling an interlocking irregular synenchyma; coarsely ornamented emanating hyphae
Lactarius-like (Lac)	Smooth, brown mycorrhiza with occasional green patches on surface of outer mantle; no mycelial strands or emanating hyphae seen
Amphinema-like (Aw)	Very similar to <i>Amphinema byssoides</i> described above, except for white-colored ectomycorrhiza and mycelial strands
Unknown (spiny brown) (Sb)	Brown, spiny mycorrhiza; felt prosenchyma outer mantle; common, tortuous, light brown, emanating hyphae
Undifferentiated (Undif)	Very young mycorrhiza without any noticeable distinct characters except for Hartig net

^aTo obtain a more complete morphotype description, contact the corresponding author.

|--|

	Approximate RFLP f	ragment sizes (bp)		
Morphotype	AluI	HinfI	RsaI	RFLP type
Ab	595, 190, 115	320, 290, 240, 165, 150	780, 180	Amphinema-Hebeloma 2792 group (K.N. Egger and H.B. Massicotte, unpublished data)
Aw	nd	nd	nd	
C5	720	325, 285, 165, 155	965	Unknown 3112 group (K.N. Egger and H.B. Massicotte, unpublished data)
Cg	425, 150, 110	275, 160, 130, 100, (90)	930	Cenococcum (genotype 1 in Mah et al. 2001)
Cj	610	330, 305, 185, 135	350, 305, 260	No match
Db	nd	nd	nd	
E-s	360, 255, 185	500, 180, 160	740, 175	E-strain 1128 group (K.N. Egger and H.B. Massicotte, unpublished data)
Fy	nd	325, 285, 165, 155	965	No match
Lac	525, 285, 185, 110	365, 345, 175, 160	1035	No match
Rv	500, 280	210, 160, 130, 100	1015	Suillus-Rhizopogon group (K.N. Egger and H.B. Massicotte, unpublished data)
Sa	nd	nd	nd	
Sb	nd	nd	nd	
Та	590, 185, 120, 110	320, 260, 165, 150, (110)	800, 205	Thelephora (genotype 1 in Mah et al. 2001)
Та	590, 185, 120, 110	320, 260, 165, 150, 100	1005	<i>Thelephora</i> 2176 group (K.N. Egger and H.B. Massicotte, unpublished data)
Та	375, 245, 165	325, 285, 165, 155	925, 285	No match
Undif	590, 185, 120, 110	320, 260, 165, 150, 110	800, 205	Thelephora (genotype 1 in Mah et al. 2001)

Note: Restriction fragment sizes (bp) approximated by Gene Profiler version 4.05 (Scanalytics, Inc.). RFLP types referring to K.N. Egger and H.B. Massicotte (unpublished data) were assigned identities based on matching patterns in the Gene Profiler databases of K.N. Egger and H.B. Massicotte. Band sizes shown in parentheses are submolar. nd, not determined.

Fig. 2. Ectomycorrhizal colonization of Douglas-fir grown in landing and clearcut soils after two (field) and one (greenhouse) growing seasons, according to the root-tip count method. Percent colonization of the greenhouse seedlings was also determined using the clearing and staining method. Error bars indicate 1 standard error of the mean. Significance levels are as follows: *, p < 0.1; **, p < 0.05; ***, p < 0.01.

organic-matter-poor sites (Page-Dumroese et al. 1990) negatively affect growth of Douglas-fir regardless of EM status.

At time of lifting in the present study, roots of inoculated seedlings were colonized at 36%, compared with 1% for control seedlings. Similarly, Hunt (1992) found inoculated and control interior Douglas-fir seedlings colonized at 52% and 0%, respectively, at time of planting. Other conifers raised under similar nursery conditions in the Pacific Northwest typically have much better colonization at time of planting. For instance, inoculated and control Engelmann spruce (*Picea engelmannii* Parry ex Engelm.) and lodgepole pine were both colonized in the 90% range (Hunt 1992). It is not clear why interior Douglas-fir seedlings are often found with low levels of colonization at time of lifting, but it could be that the benefits of EM inoculants may not be attained at these relatively low colonization levels.

We, as did G. Xiao and S.M. Berch (unpublished data), showed that uninoculated interior Douglas-fir can readily form ectomycorrhizae within months in well-aerated soil, without fertilization and excess watering (Fig. 2). Under these conditions, we obtained higher colonization levels (40%–50%) than with uninoculated seedlings (1%) used as controls in the field. Nursery conditions for the seedlings used in our study may not have favored high colonization levels. Perhaps current nursery conditions could be modified to permit higher colonization of interior Douglas-fir at time of planting. EM colonization might be improved by maintaining soil pH between 4.0 and 6.0, keeping N and P fertil-

ization rates at a modest level, promoting timely irrigation, allowing adequate substrate aeration (Amaranthus et al. 1996), and using selected fungicides, such as fermate, captan, and benomyl, to stimulate EM development (Linderman 1987; Marx and Cordell 1987).

Influence of soil treatments on soil properties and seedling survival and growth

We found no significant differences in physical and chemical soil properties between shallow- and deep-tilled landings. Clearcuts and burned piles had lower soil bulk densities and higher moisture contents than shallow-tilled landings. Soil bulk densities and moisture contents were in the same range as those found by Plotnikoff et al. (2002) on landings in the interior of British Columbia. High bulk density and low moisture content can inhibit conifer seedling root development (Conlin and van den Driessche 1996) and EM growth (Skinner and Bowen 1974; Amaranthus et al. 1996).

Total N, available P, and K contents on landings were in the same range reported by Carr (1987). Total C content and mineralizable N concentration and content were significantly lower for both shallow- and deep-tilled landings than clearcuts. Microbial activity was probably low in mineral soils on landings because of the lack of organic matter. Microbial activity is positively correlated with total C and mineralizable N (Ballard and Carter 1985; Myrold 1987).

Seedlings grown in clearcuts and burned piles had much greater height increments than shallow- and deep-tilled landing-grown seedlings. Douglas-fir seedlings and EM fungi usually encounter growth problems in compacted soil (Skinner and Bowen 1974; Wert and Thomas 1981). Early growth of Douglas-fir may be impaired on landings because of compaction, deficiencies in N, and harsh summer climatic conditions. Douglas-fir seedlings growing on shallow- and deep-tilled landings were chlorotic and had very few live buds. In these conditions, interior Douglas-fir may not overcome transplant shock and is perhaps more sensitive than other commercial species, such as lodgepole pine, to compacted and nutrient-deficient soils on landings (Plotnikoff et al. 2002).

EIP

Fourteen distinct morphotypes made up the EM community in this study. Landings had four morphotypes (with relative abundance >5%) and average EM colonization of 55% at time of sampling. EIP was not lower on landings compared with clearcuts, since richness and diversity of morphotypes were not significantly different on seedlings growing in landing soil as compared with seedlings growing on clearcuts. Berch and Roth (1993) reported 13 morphotypes for coastal Douglas-fir on clearcuts. On more disturbed sites resembling our landings, Parke et al. (1984) and Perry et al. (1982) only found one or two morphotypes and low percent EM colonization. Positive inoculation treatment effects may be more likely when site EIP is low to nonexistent and outplanted seedlings are heavily colonized by inoculated EM fungi.

High percent colonization (≈90%) of coastal Douglas-fir seedlings outplanted in clearcut soils has been reported after one growing season (Borchers and Perry 1990; Roth and

Fig. 3. Relative abundance of common (>5%) morphotypes found on Douglas-fir roots grown in landing and clearcut soils: (*Rhizopogon*-like (Rz); *Thelephora americana*-like (Ta); *Cenococcum geophilum* (Cg); Unknown, dark brown (Db); Unknown, flaky yellow (Fy); E-strain (E-s); Unknown, caramel jigsaw (Cj); *Amphinema*-like (Aw); Unknown, spiny brown (Sb); and Undifferentiated (Undif).

Berch 1992). Two years after outplanting, we found that interior Douglas-fir seedlings had a relatively low percent colonization (30%-45% on clearcuts and 40%-55% on landings). The seedlings in the studies mentioned above were colonized at time of outplanting, while those in our study were not. In our study, a qualitative analysis revealed high fine root mortality on both landing- and clearcut-grown seedlings, indicating that a certain portion of the root systems died off to give rise to new fine roots. Under this scenario, ectomycorrhiza formation would be limited until new roots were established. Also, such a process would present a high carbon demand for the development of these new roots. Douglas-fir seedlings growing on harsh landings may be at a disadvantage compared with other conifer species such as lodgepole pine that are EM at time of outplanting (G. Xiao and S.M. Berch, unpublished data) and apparently do not go through this process. Lodgepole pine is commonly outplanted on degraded sites and does reasonably well on rehabilitated landings (Plotnikoff et al. 2002). It is possible that high percent EM colonization of lodgepole pine at time of outplanting plays a role in its success on degraded sites. Physiological traits of lodgepole pine, such as faster early growth and more plastic response to light and soil conditions, are also likely responsible (Lotan and Perry 1983).

We found *Rhizopogon*-like readily formed ectomycorrhizae and dominated Douglas-fir seedling roots grown on landing soil. Our findings corroborate those in Molina et al. (1999 and references therein). There is compelling evidence that *Rhizopogon* basidiospores remain viable after soil disturbance for several years in the lower soil fraction (Molina et al. 1999 and references therein). It is also possible that small mammals consumed *Rhizopogon*-like sporocarps (North et al. 1997; Cázares et al. 1999) and naturally inoculated the landings with fecal pellets full of spores (Fogel and Trappe 1978; Cázares and Trappe 1994).

Foliar nutrients

Iron and Al concentrations and contents in seedlings grown on landing soil were significantly higher than in clearcuts. With Douglas-fir and red spruce (*Picea rubens*), toxic effects such as increased dark respiration and reduced photosynthesis were associated with foliar Fe and Al concentrations of approximately 330 mg·kg⁻¹ (van den Driessche 1989) and 65 mg·kg⁻¹ (McLaughlin et al. 1991), respectively. In this study, the high concentrations of foliar Fe (630 mg·kg⁻¹) and Al (660 mg·kg⁻¹) on landings may have been toxic to Douglas-fir seedlings. Many of the seedlings grown on landing soil had pronounced chlorosis, which can be indicative of the toxic effects of high levels of foliar Fe and Al (Macdonald et al. 1998). We suspect that the harmful effects of high concentrations of foliar Fe and Al, such as stunted root growth (Nosko et al. 1988) and a decrease in photosynthesis,

may have been one of the factors responsible for the poor growth response of seedlings growing on landings.

The reason for high concentrations and contents of foliar Fe and Al are unclear. In this study, pH differences (not significant, p = 0.77) (Table 2) do not account for the differences in Fe and Al availability, because the availability of these elements usually declines with rising pH (Brady and Weil 2002). Moderately good EM colonization (Fig. 3) may have been partly responsible for the high foliar concentra-

:			Ч	K	Са	Mg	2	Ге	MIN	В	Zn	Cu	AI
Concentration													
Landing —		10.4	1.83	7.32	3.294	2.298	1.205	630	366	49	40.1	2.96	660
I		(3.0)	(0.10)	(1.05)	(0.449)	(0.221)	(0.174)	(172)	(3)	(5)	(13.0)	(0.52)	(134)
Clearcut —		14.3	1.31	9.19	3.296	2.134	1.196	80	313	41	49.2	3.50	90
		(0.4)	(0.07)	(0.13)	(0.056)	(0.046)	(0.076)	(6)	(62)	(1)	(2.9)	(0.07)	(6)
— d		0.37	0.036^{**}	0.25	0.99	0.57	0.97	0.09*	0.46	0.24	0.61	0.38	0.06*
Contents (mg·seedling	-1)												
Landing 2.4		29	4.1	19	8.1	5.7	3.2	1.21	0.849	0.119	0.121	0.0079	1.34
(0.7)		(16)	(1.0)	(8)	(3.0)	(2.0)	(1.4)	(0.09)	(0.228)	(0.045)	(0.072)	(0.0038)	(0.03)
Clearcut 6.1		86	7.8	56	20.5	12.5	7.5	0.45	1.789	0.240	0.305	0.0214	0.51
(0.2)		(4)	(0.5)	(3)	(1.4)	(0.5)	(0.8)	(0.05)	(0.503)	(0.008)	(0.026)	(0.0007)	(0.04)
p 0.05**		0.11	0.097*	0.07*	0.07*	0.11	0.14	0.01^{***}	0.27	0.15	0.20	0.08*	0.001^{***}

			Biomas	s ^a	Foliar e	lement coi	rcentration									
	Height	Diameter	Root	Shoot	z	Ь	K	Ca	Mg	S	Fe	Mn	В	Zn	Cu	Al
PEC	-0.20	-0.19	-0.03	-0.13	0.36	0.33	0.24	0.04	0.03	0.32	0.37	0.32	0.10	0.33	0.36	0.01
p (n = 90)	0.06	0.07	0.80	0.22	<0.01	<0.01	0.02	0.69	0.75	<0.01	<0.01	<0.01	0.37	<0.01	<0.01	06.0
PEC on landings	0.10	0.08	0.22	0.23	0.53	0.47	0.54	0.28	-0.22	0.53	0.43	0.53	0.25	0.47	0.53	-0.01
$p \ (n = 45)$	0.53	0.60	0.14	0.13	<0.01	<0.01	<0.01	0.07	0.16	<0.01	0.01	<0.01	0.11	0.004	<0.01	0.97
PEC on clearcuts	-0.15	-0.11	0.09	-0.07	0.16	0.31	0.14	-0.01	-0.04	0.12	0.27	0.12	0.06	0.31	0.08	0.04
$p \ (n = 45)$	0.32	0.47	0.55	0.64	0.30	0.1	0.37	0.94	0.81	0.44	0.08	0.44	0.69	0.05	0.62	0.81
Note: Coefficients ^a Dry biomass gain.	>0.25 with <i>p</i>	< 0.05 are in l	bold.													

Table 7. Pearson correlations of percent ectomycorrhizal colonization (PEC) with height and diameter increment at time of planting, dry biomass, and foliar element concentra-

tions and contents of Fe and Al, as mycorrhizae have been shown to increase uptake of heavy metals to toxic levels (Wilkins and Hodson 1989; Gadd 1993). Even though landing and clearcut seedlings were colonized by the same fungi, efficient uptake of Fe and Al may have been greater on landings, given that fungi do not aid the host plant the same way in different soil environments (Allen 1991; Perry et al. 1987).

High levels of exchangeable Al in the mineral soil could not be the reason for high concentrations and contents of foliar Al in landing seedlings, because concentrations and contents of exchangeable Al in the mineral soil were actually significantly higher in clearcuts than in landings. Landings were devoid of organic horizons, so it is possible that Al was more available for uptake, since organic matter complexes Al in nonexchangeable forms (De la Fuente-Martínez and Herrera-Estrella 1999). Macdonald et al. (1998) suggested that seedlings rooting in mineral soil could be more at risk of toxic levels of Al than seedlings rooting in some organic horizons.

Conclusions

Commercially available EM inoculants did not increase survival or growth of interior Douglas-fir seedlings on landings, burned piles, or clearcuts. One of the reasons for a lack of growth response to inoculation may be that EM inoculants applied to interior Douglas-fir seedlings did not produce highly colonized seedlings under current nursery conditions. We suggest that research be carried out to determine the nursery conditions that can be favorable to both EM development and growth of inoculated interior Douglas-fir seedlings.

We found that landings were compacted and had low mineralizable N concentrations, regardless of soil tilling treatments. Deep tilling of landings did not significantly increase survival and height growth compared with shallow tilling. However, while deep tilling probably does not provide an immediate benefit for Douglas-fir seedlings, it may provide a benefit in the long term. The EIP of landings was not as low as expected. Four distinct morphotypes readily formed on seedlings growing in landings 2 years after outplanting. EM percent colonization, richness, and diversity were similar for landings and clearcut-grown seedlings. We suspect that, to some degree, the relatively high native EIP accounted for the lack of growth differences between inoculation treatments. Douglas-fir seedlings and their EM fungi growing on landings were probably stressed by a combination of factors, such as inadequate porosity, high soil temperatures and drought during the summer, possible deficiencies in N, and toxicities of Fe and Al. Soil compaction, low organic matter contents, and Fe and Al toxicity could be addressed by combining tilling with the addition of organic matter.

Acknowledgments

We are grateful to Dr. Dan Durrall, Dr. Melanie Jones, and Dr. Guoping Xiao for their aid at the early stages of the EM assessment. Susan Robertson and Jen Catherall were helpful during the DNA extraction, amplification, and digestion procedures. We also thank Sarah Baines, Claire Kaufman, Natalka Allan, and Chio Woon for assistance with field and greenhouse work. Ian Bercovitz provided useful suggestions on the experimental design of the greenhouse bioassay and aided with data analysis. Funding was provided by Forest Renewal British Columbia, the Natural Sciences and Engineering Research Council of Canada (NSERC), and Simon Fraser University.

References

- Agerer, R. (*Editor*). 1985–1998. Colour atlas of ectomycorrhizae. Einhorn-Verlag Eduard Dietenberger, GmbH Schwabisch Gmund, Munich.
- Allen, M.F. 1991. The ecology of mycorrhizae. Cambridge University Press, Cambridge, Mass.
- Amaranthus, M.P., Molina, R., and Perry, D.A. 1990. Soil organisms, root growth and forest regeneration. *In* Forestry on the Frontier: Proceedings of the 1989 Society of American Foresters National Convention, Spokane, Washington, 24–27 September 1989. Society of American Foresters, Washington, D.C. pp. 89–93.
- Amaranthus, M.P., Page-Dumroese, D., Harvey, A., Cázares, E., and Bednar, L.F. 1996. Soil compaction and organic matter affect conifer seedling nonmycorrhizal and ectomycorrhizal root tip abundance and diversity. USDA For. Serv. Pac. Northwest Res. Stn. Res. Pap. PNW-RP-494.
- Ballard, T.M., and Carter, R.E. 1985. Evaluating forest stand nutrient status. B.C. Min. For., Victoria, BC. Land Manage. Rep. No. 20.
- Berch, S.M., and Roth, A.L. 1993. Ectomycorrhizae and growth of Douglas-fir seedlings preinoculated with *Rhizopogon vinicolor* and outplanted on eastern Vancouver Island. Can. J. For. Res. 23: 1711–1715.
- Blake, G.R., and Hartge, K.H. 1986. Bulk density. *In* Methods of soil analysis. Part 1. Physical and mineralogical methods. 2nd ed. *Edited by* A. Klute. American Society of Agronomy and Soil Science Society of America, Madison, Wis. pp. 363–375.
- Bledsoe, C.S. 1992. Physiological ecology of ectomycorrhizae: implications for field application. *In* Mycorrhizal functioning. *Edited by* M.F. Allen. Chapman & Hall, New York. pp. 424–437.
- Bledsoe, C.S., Tennyson, K., and Lopushinsky, W. 1982. Survival and growth of outplanted Douglas-fir seedlings inoculated with mycorrhizal fungi. Can. J. For. Res. 12: 720–723.
- Borchers, S.L., and Perry, D.A. 1990. Growth and ectomycorrhiza formation of Douglas-fir seedlings grown in soils collected at different distances from pioneering hardwoods in southwest Oregon clear-cuts. Can. J. For. Res. **20**: 712–721.
- Brady, N.C., and Weil, R.R. 2002. The nature and properties of soils. 13th ed. Prentice Hall, Upper Saddle River, NJ.
- Carr, W.W. 1987. The effect of landing construction on some forest soil properties: a case study. Can. For. Serv. and B.C. Min. For. Lands. FRDA Rep. 003.
- Castellano, M.A. 1996. Outplanting performance of mycorrhizal inoculated seedlings. *In* Concepts in mycorrhizal research. Handbook of vegetation science. *Edited by* K.G. Mukerji. Kluwer, Dordrecht, Netherlands. pp. 223–301.

- Cázares, E., Luoma, D.L., Amaranthus, M.P., Chambers, C.L., and Lehmkuhl, J.F. 1999. Interaction of fungal sporocarp production with small mammal abundance and diet in Douglas-fir stands of the Southern Cascade Range. Northwest Sci. 73: 64–76.
- Cázares, E., and Trappe, J.M. 1994. Spore dispersal of ectomycorrhizal fungi on a glacier forefront by mammal mycophagy. Mycologia, 86: 507–510.
- Conlin, T.S.S., and van den Driessche, R. 1996. Soil Compaction Studies. Can. For. Serv. and B.C. Min. For. FRDA Rep. 264.
- Cram, M.M., Mexal, J.G., and Souter, R. 1999. Successful reforestation of South Carolina sandhills is not influenced by seedling inoculation with *Pisolithus tinctorius* in the nursery. South. J. Appl. For. 23: 46–52.
- Danielson, R.M. 1985. Mycorrhizae and reclamation of stressed terrestrial environments. *In* Soil reclamation processes: microbiological analyses and applications. *Edited by* R.L. Tate III and D.A. Klein. Marcel Dekker, Inc., New York. pp. 173–201.
- Danielson, R.M. 1988. Mycorrhizae in forestry: the state of the art in land reclamation. *In* Canadian Workshop on Mycorrhizae in Forestry, CRBF, Faculté de Foresterie et de Géodésie, Université Laval, Ste-Foy, Quebec, 1–4 May 1988. *Edited by* M. Lalonde and Y. Piché. CRBF, Faculté de Foresterie et de Géodésie, Université Laval, Ste-Foy, Que. pp. 39–41.
- De la Fuente-Martínez, J.M., and Herrera-Estrella, L. 1999. Advances in the understanding of aluminum toxicity and the development of aluminum-tolerant transgenic plants. Adv. Agron. **66**: 103–120.
- Environment Canada. 1982. Canadian climate normals, 1951–1980. Environment Canada, Ottawa.
- Felsenstein, J. 1996. PHYLIP (Phylogeny Inference Package). Version 3.572c [computer program; online]. Distributed by the author. University of Washington, Department of Genetics, Seattle, Wash. Available from http://evolution.genetics.washington.edu/phylip.html [cited 1996].
- Fogel, R., and Trappe, J.M. 1978. Fungus consumption (mycophagy) by small animals. Northwest Sci. **52**: 1–31.
- Gadd, G.M. 1993. Interactions of fungi with toxic metals. New Phytol. **124**: 25–60.
- Giovannetti, M., and Mosse, B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84: 489–500.
- Goodman, D.M., Durall, D.M., Trofymow, J.A., and Berch, S.M. (Editors). 1996. Concise descriptions of North American ectomycorrhizae. Mycologue Public. and Canada–B.C. FRDA, Pac. For. Cent., Victoria, B.C.
- Goodman, D.M., and Trofymow, J.A. 1998. Distribution of ectomycorrhizas in microhabitats in mature and old-growth stands of Douglas-fir on Southeastern Vancouver island. Soil Biol. Biochem. **30**: 2127–2138.
- Hagerman, S.M., Jones, M.D., Bradfield, G.E., and Sakakibara,
 S.M. 1999. Ectomycorrhizal colonization of *Picea engelmannii* × *Picea glauca* seedlings planted across cut blocks of different sizes. Can. J. For. Res. 29: 1856–1870.
- Harvey, A.E., Larsen, M.J., and Jurgensen, M.F. 1976. Distribution of ectomycorrhizae in a mature Douglas-fir/Larch forest soil in Western Montana. For. Sci. 22: 393–398.
- Hendershot, W.H., Lalande, H., and Duquette, M. 1993. Ion exchange and exchangeable cations. *In* Soil sampling and methods of analysis. *In* Soil sampling and methods of analysis. *Edited by* M.R. Carter. Lewis Publishers, Boca Raton, Fla. pp. 167–176.
- Hunt, G.A. 1992. Effects of mycorrhizal fungi on quality of nursery stock and plantation performance in the southern interior of British Columbia. For. Can. and B.C. Min. For., Victoria, B.C. FRDA Rep.185.

- Ingleby, K., Mason, P.A., Last, F.T., and Flemming, L.V. 1990. Identification of ectomycorrhizas. ITE Research Publication 5. HMSO, London.
- Kalra, Y.P., and Maynard, D.G. 1991. Methods manual for forest soil and plant analysis. For. Can. Inf. Rep. NOR-X-319.
- Keeney, D.R. 1982. Nitrogen: availability indices. *In* Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd ed. *Edited by* A.L. Page. Agronomy, 9(2): 711–733.
- Kropp, B.R., and Langlois, C.-G. 1990. Ectomycorrhizae in reforestation. Can. J. For. Res. 20: 438–451.
- Linderman, R.G. 1987. Perspectives on ectomycorrhiza research in the Northwest. *In* Mycorrhizae in the next decade: practical applications and research priorities. Seventh North American Conference on Mycorrhizae, 3–8 May 1987, Gainesville, Florida. *Edited by* D.M. Sylvia, L.L. Hung, and J.H. Graham. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Fla. pp. 72–74.
- Lotan, J.E., and Perry, D.A. 1983. Ecology and regeneration of lodgepole pine. USDA Agric. Handb. 606.
- Macdonald, S.E., Schmidt, M.G., and Rothwell, R.L. 1998. Impacts of mechanical site preparation on foliar nutrients of planted white spruce seedlings on mixed-wood boreal forest sites in Alberta. For. Ecol. Manage. **110**: 35–48.
- McGill, W.B., and Figueiredo, C.T. 1993. Total nitrogen. *In* Soil sampling and methods of analysis. *Edited by* M.R. Carter. Lewis Publishers, Boca Raton, Fla. pp. 201–211.
- McLaughlin, S.B., Anderson, C.P., Hanson, P.J., Tjoelker, M.G., and Roy, W.K. 1991. Increased dark respiration and calcium deficiency of red spruce in relation to acidic deposition at high-elevation southern Appalachian Mountain sites. Can. J. For. Res. 21: 1234–1244.
- Magurran, A.E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, N.J.
- Mah, K., Tackaberry, L.E., Egger, K.N., and Massicotte, H.B. 2001. The impacts of broadcast burning after clear-cutting on the diversity of ectomycorrhizal fungi associated with hybrid spruce seedlings in central British Columbia. Can. J. For. Res. 31: 224–235.
- Marx, D.H. 1991. The practical significance of ectomycorrhizae in forest establishment. *In* Proceedings of the Marcus Wallenberg Foundation Symposium on Ecophysiology of Mycorrhizae of Forest Trees, 27 September 1991, Stockholm, Sweden. *Edited by* B. Hägglund. The Marcus Wallenberg Foundation, Stockholm, Sweden. pp. 54–90.
- Marx, D.H., and Cordell, C.E. 1987. Ecology and management of ectomycorrhizal fungi in regenerating forests in the eastern United States. *In* Mycorrhizae in the next decade: practical applications and research priorities. Seventh North American Conference on Mycorrhizae, 3–8 May 1987, Gainesville, Florida. *Edited by* D.M. Sylvia, L.L. Hung, and J.H. Graham. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Fla. pp. 69–71.
- Marx, D.H., Stephen, B.M., and Cordell, C.E. 1992. Application of specific ectomycorrhizal fungi in world forestry. *In* Frontiers in industrial mycology. *Edited by* G.F. Leatham. Chapman & Hall, New York. pp. 78–98.
- Meidinger, D., and Pojar, J. (*Editors*). 1991. Ecosystems of British Columbia. B.C. Min. For., Victoria, B.C. Spec. Rep. Ser. 6.
- Molina, R., and Trappe, J.M. 1982. Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. For. Sci. **28**(3): 423–458.
- Molina, R., and Trappe, J.M. 1994. Biology of the ectomycorrhizal genus, *Rhizopogon* I. Host associations, host-specificity and pure culture syntheses. New Phytol. **126**: 653–675.

- Molina, R., Trappe, J.M., Grubisha, L.C., and Spatafora, J.W. 1999. *Rhizopogon. In* Ectomycorrhizal fungi: key genera in profile. *Edited by* W.G. Cairney and S.M. Chambers. Springer-Verlag, Berlin. pp. 129–161.
- Morgan, P. 1984. Pacific Northwest forest nursery mycorrhizae research: boon or boondoggle? *In* Proceedings of the 6th North American Conference on Mycorrhizae, 25–29 June 1984, Bend, Oregon. *Edited by* R. Molina. Forest Research Laboratory, Bend, Ore. pp. 73–74.
- Myrold, D.D. 1987. Relationship between microbial biomass nitrogen and a nitrogen availability index. Soil Sci. Soc. Am. J. **51**: 1047–1049.
- North, J., Trappe, J., and Franklin, J. 1997. Standing crop and animal consumption of fungal sporocarps in Pacific Northwest forests. Ecology, 75: 1543–1554.
- Nosko, P., Brassard, P., Kramer, J.R., and Kershaw, K.A. 1988. The effect of aluminum on seed germination and early seedling establishment, growth, and respiration of white spruce. Can. J. Bot. **66**: 2305–2310.
- Page-Dumroese, D.S., Harvey, A.E., Jurgensen, M.F., and Amaranthus, M.P. 1998. Impacts of soil compaction and tree stump removal on soil properties and outplanted seedlings in northern Idaho, USA. Can. J. Soil Sci. 78: 29–34.
- Page-Dumroese, D.S., Loewenstein, H., Graham, R.T., and Harvey, A.E. 1990. Soil source, seed source, and organic-matter content effects on Douglas-fir seedling growth. Soil Sci. Soc. Am. J. 54: 229–233.
- Parke, J.L., Linderman, R.G., and Black, C.H. 1983. The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol. 95: 83–95.
- Parke, J.L., Linderman, R.G., and Trappe, J.M. 1984. Inoculum potential of ectomycorrhizal fungi in forest soils of southwest Oregon and Northern California. For. Sci. 30: 300–304.
- Peet, R.K. 1974. The measurement of species diversity. Annu. Rev. Ecol. Syst. 5: 285–307.
- Perry, D.A., Meyer, M.M., Egeland, D., Rose, S.L., and Pilz, D. 1982. Seedling growth and mycorrhizal formation in clearcut and adjacent, undisturbed soils in Montana: a greenhouse bioassay. For. Ecol. Manage. 4: 261–273.
- Perry, D.A., Molina, R., and Amaranthus, M.P. 1987. Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs. Can. J. For. Res. 17: 929–940.
- Phillips, J.M., and Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55: 158–161.
- Plotnikoff, M.R., Bulmer, C.E., and Schmidt, M.G. 2002. Soil properties and tree growth on rehabilitated forest landings in the interior cedar hemlock biogeoclimatic zone: British Columbia. For. Ecol. Manage. **170**: 199–215.
- Rao, C.S., Sharma, G.D., and Shukla, A.K. 1996. Ectomycorrhizal efficiency of various mycobionts with *Pinus kesiya* seedlings in forest and degraded soils. Proc. Indian Natl. Sci. Acad. B62(5): 427–434.
- Roth, A.L. 1990. Mycorrhizae of outplanted conifer seedlings on eastern Vancouver Island. M.Sc. thesis, The University of British Columbia, Vancouver, B.C.
- Roth, A.L., and Berch, S.M. 1992. Ectomycorrhizae of Douglas-fir and western hemlock seedlings outplanted on eastern Vancouver Island. Can. J. For. Res. 22: 1646–1655.
- SAS Institute Inc. 2002. Systat version 10.2 [computer program]. SAS Institute Inc., Cary, N.C.
- Sinclair, W.A., Sylvia, D.M., and Larsen, A.O. 1982. Disease suppression and growth promotion in Douglas-fir seedlings by the

ectomycorrhizal fungus *Laccaria laccata*. For. Sci. **28**(2): 191–201.

- Sit, V. 1995. Analyzing ANOVA designs. B.C. Min. For. Res. Brarnch, Victoria, B.C. Biometrics Information Handb. 5.
- Skinner, M.F., and Bowen, G.D. 1974. The penetration of soil by mycelial strands of ectomycorrhizal fungi. Soil Biol. Biochem. 6: 57-61.
- Slankis, V. 1974. Soil factors influencing formation of mycorrhizae. Annu. Rev. Phytopathol. **12**: 437–457.
- Smith, S.E., and Read, D.J. 1997. Mycorrhizal symbiosis. 2nd ed. Academic Press, San Diego.
- Tiessen, H., and Moir, J.O. 1993. Total and organic carbon. *In* Soil sampling and methods of analysis. *Edited by* M.R. Carter. Lewis Publishers, Boca Raton, Fla. pp. 187–199.

- van den Driessche, R. 1989. Nutrient deficiency symptoms in container-grown Douglas-fir and white spruce seedlings. Can. For. Serv. and B.C. Min. For., Victoria, B.C. FRDA Rep. 100.
- Wert, S., and Thomas, B.R. 1981. Effects of skid roads on diameter, height, and volume growth in Douglas-fir. Soil Sci. Soc. Am. J. 45: 629–632.
- Wilkins, D.A., and Hodson, M.J. 1989. The effects of aluminium and *Paxillus involutus* Fr. on the growth of Norway spruce [*Picea abies* (L.) Karst.]. New Phytol. **113**: 225–232.
- Wurzburger, N., Bidartondo, M.I., and Bledsoe, C.S. 2001. Characterization of *Pinus* ectomycorrhizas from mixed conifer and pygmy forests using morphotyping and molecular methods. Can. J. Bot. **79**: 1211–1216.