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ABSTRACT

In this study, El Niño–Southern Oscillation (ENSO) retrospective forecasts were performed for the 120
yr from 1881 to 2000 using three realistic models that assimilate the historic dataset of sea surface tem-
perature (SST). By examining these retrospective forecasts and corresponding observations, as well as the
oceanic analyses from which forecasts were initialized, several important issues related to ENSO predict-
ability have been explored, including its interdecadal variability and the dominant factors that control the
interdecadal variability.

The prediction skill of the three models showed a very consistent interdecadal variation, with high skill
in the late nineteenth century and in the middle–late twentieth century, and low skill during the period from
1900 to 1960. The interdecadal variation in ENSO predictability is in good agreement with that in the signal
of interannual variability and in the degree of asymmetry of ENSO system. A good relationship was also
identified between the degree of asymmetry and the signal of interannual variability, and the former is
highly related to the latter. Generally, the high predictability is attained when ENSO signal strength and the
degree of asymmetry are enhanced, and vice versa. The atmospheric noise generally degrades overall
prediction skill, especially for the skill of mean square error, but is able to favor some individual prediction
cases. The possible reasons why these factors control ENSO predictability were also discussed.

1. Introduction

It has been of great interest to identify the sources
and processes that limit the predictability of ENSO.
Typically there are two hypotheses to explain the loss
of predictability with forecast lead time. The first ar-
gues that the loss of predictability is due to the chaotic
behavior of the nonlinear dynamics of the coupled sys-
tem (e.g., Jin et al. 1994; Chen et al. 2004), whereas the
second attributes it to the stochastic nature of the
coupled system characterized by weather noise and
other high-frequency variations, such as westerly wind
bursts (WWB) and the Madden–Julian oscillation
(MJO; e.g., Penland and Sardeshmukh 1995; Kleeman
and Moore 1997; Vecchi and Harrison 2003; Moore et

al. 2006; Gebbie et al. 2007). It is still not clear to date
which regime plays the dominant role in controlling the
variation of ENSO predictability.

A widely used strategy in studying ENSO predict-
ability is to perform retrospective forecast experiments
using dynamical models, by which variations in predict-
ability and possible mechanisms responsible for the
variations are investigated (e.g., Kirtman and Schopf
1998; Latif et al. 1998; Tang et al. 2005). Until recently,
such retrospective forecasts only cover time periods of
20–40 yr because of the lack of long-term observations
(such as wind stress). If ocean data assimilation is used
for model initialization, this becomes even more serious
a problem because of the still shorter ocean data
record. Therefore, the period available for evaluating
predictability contains relatively few ENSO cycles, ba-
sically precluding statistically robust conclusions. Chen
et al. (2004) used the Lamont-Doherty Earth Observa-
tory (LDEO) ENSO prediction model (referred to as
the Z–C model hereafter) to perform a retrospective
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forecast experiment of 148 yr from 1856 to 2003. They
found that ENSO predictability clearly has interdecadal
variations. To date, this was the only work that studied
ENSO predictability by extending realistic forecasts to
a period of over 100 yr.

The prediction skill is usually model dependent.
Thus, a challenging issue in ENSO predictability stud-
ies is to derive robust and general conclusions from
long-term retrospective forecasts using multiple mod-
els. With two realistic ENSO prediction models and
newly developed sea surface temperature (SST) assim-
ilation approaches (Deng et al. 2008, hereafter DEN;
Zhou et al. 2008, manuscript submitted to Ocean Mod-
ell., hereafter ZHO), we recently completed two long-
term retrospective forecasts from 1881 to 2000. In this
paper, we will examine ENSO predictability by these
predictions. For comparison, the Z–C model is used to
generate another long-term retrospective forecast. The
emphasis will be placed on the following two central
questions: 1) are the variations in predictability shown
in Chen et al. (2004) only the properties of the Z–C
model or not, and 2) what causes the variations in
ENSO predictability, namely, what limits ENSO pre-
dictability? These issues have not yet been well ad-
dressed.

This paper is structured as follows: Section 2 briefly
describes the models, data, and initialization schemes.
Section 3 examines the variation of prediction skill in
three ENSO models for the period from 1881 to 2000.
In section 4, the possible mechanisms responsible for
variations in ENSO predictability are discussed. A sum-
mary and discussion are given in section 5.

2. Models, data, initialization schemes, and metrics
of prediction skill

a. Models

Three coupled models are used in this study, includ-
ing the Z–C model and two hybrid coupled models—
one is an oceanic general circulation model (OGCM)
coupled to a linear statistical atmospheric model
(HCM1), and the other is an intermediate complexity
oceanic dynamical model coupled to a nonlinear statis-
tical atmospheric model (HCM2). They are briefly de-
scribed below.

1) Z–C MODEL

As the first dynamical coupled model used for ENSO
prediction, the Z–C model has been a benchmark in
ENSO community for over two decades. It is composed
of a Gill-type steady-state linear atmospheric model
and a reduced-gravity oceanic model. The atmospheric
circulation is forced by a heating anomaly that depends

on the SST anomaly and moisture convergence,
whereas the oceanic circulation is driven by surface
wind. The SST is determined by the fully nonlinear
thermodynamics in a surface mixed layer and by the
linear dynamics through thermocline fluctuation.

The model version used in this study is LEDO5,
identical to that in Chen et al. (2004). The model do-
main covers the tropical Pacific Ocean from 124°E–
80°W and 28.75°S–28.7°N. The time step is 10 days.

2) HCM1

The ocean model is the latest version of Océan Par-
allélisé 9.0 (OPA9.0), an OGCM often used for oceanic
modeling and prediction (e.g., Tang et al. 2004; Moore
et al. 2006). Compared with the old version, the new
development in OPA9.0 includes the partial cell bot-
tom topography, advective bottom boundary layer pa-
rameterization, and double diffusion. Detailed formu-
lation of the ocean model is described in Madec et al.
(1998). The domain of the model used here is config-
ured for the tropical Pacific Ocean from 30°N to 30°S
and from 122°E to 70°W, with 1.0° horizontal resolu-
tion in the zonal direction and 0.5° within 5° of the
equator, smoothly increasing to 2.0° at 30°N and 30°S in
the meridional direction. There are 31 vertical levels
with 17 concentrated in the top 217 m of the ocean. The
time step of integration is 1.5 h and all boundaries are
closed, with no-slip conditions.

The statistical atmospheric model is a linear model
that predicts the contemporaneous surface wind stress
anomalies from SST anomalies (SSTA). It was con-
structed using observed SST and National Centers for
Environmental Prediction–National Center for Atmo-
spheric Research (NCEP–NCAR) reanalysis wind
stress data from 1948 to 2002 (see below for data de-
scription) by the singular vector decomposition (SVD)
method. The cross-validation scheme was used in the
construction of the atmospheric model to ensure that
the data used for validation was never used in training
the model. In details, three atmosphere models, de-
noted as AM1, AM2, and AM3, were respectively con-
structed using the data of 1948–75, 1976–2002, and
1948–2002. The AM1 was used for the hindcast for
1976–2000, AM2 for 1948–75, and AM3 for 1881–1947.
The first three SVD modes accounted for over 90% of
total covariance and were used for constructing each
statistical atmospheric model as in some similar work
(e.g., Harrison et al. 2002; Galanti et al. 2003; Tang et
al. 2004; Moore et al. 2006). Each atmospheric model
was constructed for all calendar months.

During the initialization of the hybrid coupled
model, the OGCM was forced by the sum of the asso-
ciated wind anomalies computed from the atmospheric
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model and the observed monthly mean climatological
wind stress. Full details of the model are given in DEN
and Tang et al. (2004).

3) HCM2

HCM2 is composed of a nonlinear dynamical ocean
model and a nonlinear empirical atmospheric model.
The ocean model consists of a tropical Pacific model
with six active layers allowing for an exchange of mass,
momentum, and heat at each layer interface by a pa-
rameterization of entrainment. With a resolution of
1.5° � 1.5°, the model extends from 30°N to 30°S and
from 123°E to 69°W. The time step for integration
is 2 h.

The ocean model was first used to make a control
run, with forcing by the Florida State University (FSU)-
observed wind stress (Goldenberg and O’Brien 1981)
from 1961 to 1990. The SST from the control run was
then used as the predictor in the statistical models to
reconstruct the atmospheric wind stress. After remov-
ing the climatological seasonal cycle, an empirical or-
thogonal function (EOF) analysis was performed sepa-
rately on each anomaly dataset of SST and zonal and
meridional wind stress to further extract the predictors
and predictands. Only the first three EOF modes were
used in the statistical model construction, as suggested
by Latif et al. (1990) and Goswami and Shukla (1991).
For the model SST, the first three EOF modes ac-
counted for over 70% of the total variance, whereas the
first three wind stress EOFs explained only 35% of the
total variance, because of the presence of high-fre-
quency oscillations and noise in the wind stress even
though a three-point temporal running mean has been
used before performing the EOF analysis. Finally, neu-
ral network (NN) models were applied to link these
predictors and predictands to yield nonlinear atmo-
spheric models. Similar to HCM1, the cross-validated
scheme was used to construct the atmospheric model.
HCM2 is identical to the hybrid coupled model used in
Tang et al. (2001) and Tang and Hsieh (2003), and was
used to issue real-time ENSO prediction in Experimen-
tal Long-Lead Forecast Bulletin (available online at
http://grads.iges.org/ellfb/home.html). Further details
of the ocean model and the construction of the nonlin-
ear atmospheric model can be found in Tang et al.
(2001) and Tang and Hsieh (2003).

b. Data and the reconstruction of wind stress

The data used in this study include the monthly glob-
al Extended Reconstructed SST (ERSST) dataset from
1854 to 2001 (online at http://www1.ncdc.noaa.gov/pub/
data/ersst), reconstructed by Smith and Reynolds

(2004) with 2° latitude � 2° longitude resolution. Be-
cause of the relatively poor quality of the dataset prior
to 1878, we focus on the period from 1881 to 2001 in this
study. The data domain is configured for the tropical
Pacific Ocean. This dataset is used for HCM1 and
HCM2. For the Z–C model, the Kaplan extended SST
dataset from 1856 to 2003 is used, with a spatial cover-
age of 5° latitude � 5° longitude (Chen et al. 2004).

The monthly NCEP–NCAR surface wind of the
tropical Pacific Ocean from 1948 to 2001 was used to
construct statistical atmospheric models and recon-
struct the wind stress of the tropical Pacific Ocean from
1881 to 1947. The NCEP–NCAR reanalysis dataset is
interpolated onto a 2.5° � 2.5° global grid. The monthly
wind stress is obtained using a bulk aerodynamic for-
mula (DEN).

To perform long-term hindcasts with HCMs, the past
wind stress data are required to initialize forecasts. Em-
pirical atmospheric models using SST to predict wind
have been widely used in ENSO studies (e.g., Syu and
Neelin 2000; Tang et al. 2001; Tang and Hsieh 2003). It
has been found that such statistically estimated wind
can produce better prediction skill than the observed
wind when used to initialize forecasts (Syu and Neelin
2000; Tang and Hsieh 2002). Using SST as a predictor
and SVD techniques, we reconstructed a long-term
wind stress dataset from 1881 to 1947. Forced by the
reconstructed wind stress, the ocean models of both
HCM1 and HCM2 generated a very good ENSO simu-
lation for the period from 1881 to 2000, with the cor-
relation coefficient over 0.7 between the modeled and
observed Niño-3.4 SSTA indices (averaged SSTA over
the region of 5°N–5°S, 170°–120°W; see DEN; ZHO). It
should be mentioned that wind stress is not required to
initialize the Z–C model (Chen et al. 2004). The forecast
of the Z–C model is initialized by directly nudging SST
into the coupled model.

c. Data assimilation and the initialization of the
forecast

A very important task in ENSO predictions is to op-
timize the oceanic initial conditions. It has been found
that the assimilation of subsurface in situ observations
and satellite altimetry can significantly improve model
skills (e.g., Tang and Hsieh 2003; Tang et al. 2004;
Zheng et al. 2007). However, the oceanic subsurface
observations and satellite altimetry are too short for
this study; the only way is to assimilate SST to initialize
forecasts. Usually SST is a prognostic variable in ocean
models, and the general procedure of SST assimilation
is to optimally insert it into the models (e.g., Rosati et
al. 1997; Syu and Neelin 2000; Tang and Hsieh 2003).
However, this strategy could lead to serious imbalances
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between the thermal and dynamical fields during the
assimilation cycle (Tang and Kleeman 2002). There-
fore, a key issue for SST assimilation is to alleviate the
imbalances.

Three different assimilation algorithms were respec-
tively applied to individual ocean models. For the Z–C
model, we directly applied the nudging scheme used in
Chen et al. (2004). With the aid of an interactive bias
correction, the initialization scheme produced very
good ENSO prediction skills (Chen et al. 2004). For
HCM1, the ensemble Kalman filter (EnKF) was used
to assimilate the SST anomaly into the OGCM, in
which the background error covariance (BEC) matrix
was constructed by ensemble members of different
model levels to transfer the corrections in SST into the
subsurface temperatures (DEN). The SST assimilation
with the EnKF scheme leads to considerable improve-
ment in modeling subsurface temperatures and ENSO
forecasts. For HCM2, a specific approach to construct
BEC was developed to transfer the information of SST
into subsurface temperatures during the SST assimila-
tion cycle. With the optimal interpolation (OI), the de-
signed BEC produced ENSO prediction skills compa-
rable with those in the Z–C model (ZHO). The details
of the SST assimilation schemes and their performances
in HCM1 and HCM2 were presented, respectively, in
DEN and ZHO. We will use these assimilation schemes
to initialize forecasts in this study. For convenience, we
refer hereafter to the model SST from these assimila-
tion schemes as analyzed SST or SST analysis. These
analyzed SST fields will be used to study the possible
factors that control the variation of predictability in the
following sections.

d. Metrics of prediction skill

Typical metrics used to evaluate prediction skill in-
cludes the anomaly correlation coefficient R, mean
square error (MSE), and some of their derivatives, as
defined below. The seasonal cycle has always been re-
moved from forecasts and observations prior to mea-
suring prediction skills, unless otherwise indicated.

(i) The anomaly correlation skill R and MSE are tra-
ditionally defined as

R�t� �

�
i�1

N

�Ti
p�t� � �p��Ti
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�Ti
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�Ti
o�t� � �o�2
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MSE�t� �
1

N � 1 �
i�1

N
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where T is the index of Niño-3.4 SSTA, p denotes
forecasts, o denotes observations, t is the lead time
of the forecast, 	p is the mean of the forecasts, 	o

is the mean of observations, and N is the number
of samples used.

(ii) Mean square error of individual predictions
(MSEIP) is used to measure the error of an indi-
vidual forecast for all leads L (L � 12 months),
defined as

MSEIP �
1

L � 1 �
t�1

t�L

�Tp�t� � To�t��2. �3�

(iii) Correlation of individual forecasts (CIP) is an in-
dividual forecast correlated with its observed
counterpart during the forecast period of L
months (L � 12), that is,

CIP �
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t�1

L
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o � �o�
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i�1

L

�Ti
p � �p�2��
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L
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o � �o�2
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3. Variation of ENSO predictability

Next we examine ENSO predictability by the three
coupled models. A total of 480 forecasts, initialized
from April 1881 to January 2001, were run starting at
3-month intervals (1 January, 1 April, 1 July, 1 Octo-
ber), and continued for 12 months for HCM1 and
HCM2 and for 24 months for the Z–C model. The SST
assimilation was performed to initialize the forecasts as
introduced in section 2c.

Figure 1 shows prediction skills R (correlation) and
MSE of the three models for the period from 1881 to
2000, where the predicted Niño-3.4 SSTA is compared
against the observed value. Two kinds of forecasts from
the Z–C model are presented: direct forecasts from the
Z–C model (bold dashed line) and the corrected fore-
casts by simply adding a constant to forecasts at all
leads1 (bold line), which were used in Chen et al.
(2004). Comparing these skills reveals that the cor-
rected forecast of Z–C is the best, and the forecast of
HCM2 is comparable with, and even better than, the
direct forecast of Z–C. The HCM1 is inferior to Z–C
and HCM2, but still shows a much better skill than

1 The added constant is the difference between forecast and
observation at the initial time. The reason for doing this is that the
SST dataset used for initialization is detrended and thus different
from that used for verification.
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persistence (not shown). Shown in Fig. 2 is the pre-
dicted Niño-3.4 SSTA index at 6-month lead from 1881
to 2000. As can be seen, the three models are able to
predict most of the ENSO events, although they some-
times either produced false alarms or underpredicted
the intensity, in particular for HCM1. It should be
noted that the corrected forecast of the Z–C model was
used in Fig. 2, and will always be used in following
discussions unless otherwise indicated.

To examine the possible interdecadal variation of
ENSO predictability, we calculated the prediction skills
of six subperiods of 20 yr each, including R and MSE
skill as shown in Figs. 3 and 4. It is evident in Fig. 3 that
the correlation skills are significantly different among
these periods for all three models. Comparing Figs.
3a–c reveals a considerable consistency of variations in
correlation skill among the three models. For example,
high prediction skills always appear in the late nine-
teenth century and the middle–late twentieth century,
that is, 1881–1900, 1961–80, and 1981–2000, whereas the
periods of 1901–20, 1921–40, and 1941–60 have rela-
tively low prediction skills. A similar consistency is also
visible in the MSE skill as shown in Fig. 4, although it is
not as obvious as in Fig. 3.

It is worth exploring the interdecadal variation of
persistence skill for the period of 1881–2000. We re-

peated the above analysis but used persistent prediction
instead of model prediction, as shown in Fig. 5. Here
the persistent prediction was obtained by persisting the
observed Niño-3.4 SSTA at the initial time through the
whole period of prediction. Figures 5a,c show R and
MSE skill of persistence prediction using ERSST
dataset. As can be seen, the persistence skills have dif-
ferences among different periods after 3–6-month
leads. However, they are very different from the inter-
decadal variation of ENSO predictability shown in Figs.
3 and 4. For example, the period of the middle–late
twentieth century that has high predictability produces
very low persistence skill, whereas the period of 1941–
60 that has the worst predictability corresponds with a
high persistence period. We also used the Kaplan SST
dataset to produce persistent prediction of the Niño-3.4
SSTA index, and obtained similar results as shown in
Figs. 5b,d. Thus, the interdecadal variation in ENSO
predictability in the three models is not very related to
the interdecadal variation in persistent skill. This is
probably because the SSTA persistence is dominated
by the SSTA signal at the frequencies over the 4-yr
period, whereas the interdecadal variation in actual
predictability is strongly related to the strength of
SSTA signal at the frequencies of 2–4-yr periods (Deng
and Tang 2008).

FIG. 1. Anomaly correlations R and (b) MSE between the observed and the predicted values of the
Niño-3.4 index, as a function of lead time, for the past 120 yr from 1881–2000 for Z-C model, HCM1 and
HCM2.
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The consistent temporal variations of prediction
skills among the three models are further displayed in
Fig. 6, which shows the averaged R and MSE over 1–12-
month lead measured by a running window of 20 yr
from 1881 to 2000 (i.e., 1881–1900, 1882–1901, 1883–
1902, . . . , 1980–99, 1981–2000).2 As can be seen, the
skill variations of the three models are in very good
agreement, in particular for the correlation skill. Gen-
erally, good skills appear in the period around 1881–
1900 and 1961–2000, whereas poor skills occur during
the period from 1910 to 1960. Such a variation feature
is also manifested in Fig. 7, where different metrics are
used to measure prediction skills.

In summary, there is a striking interdecadal variation
of ENSO predictability in the past 120 yr from 1881 to
2000 in the three prediction models. Generally, there is
a high predictability in the late nineteenth century and
in the middle–late twentieth century, and a low predict-
ability from 1901 to 1960. The interdecadal variation of
ENSO predictability seems little dependent with mod-
els and metrics used in this study. All of the metrics and
models used result in consistent conclusions.

One interesting question is whether or not the inter-
decadal variation in predictability reported above is
mainly due to the differences of data and methods used
in different decades. For example, one can speculate
that the high prediction scores for the period from 1961
to 2000 are most probably due to better data quality
because of the improvement of observation systems
and the fact that models and wind reconstruction were
trained using the data from part of this period. To ex-
plore this, we examined the simulation skill of the Niño-

2 The overall skill measured during a 20-yr window is plotted at
the middle point of the window in Fig. 6. For example, the skill at
1890 was calculated using the samples from 1881 to 1900. The
20-yr window is shifted by 1 yr each time starting from 1881 until
2000.

FIG. 2. The observed Niño-3.4 SSTA index and the predicted value of 6-month lead from (a) Z–C, (b) HCM1, and (c) HCM2.
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3.4 SSTA index forced by the reconstructed wind stress
with the SST assimilation. The simulation skill indicates
the quality of initial conditions of predictions and the
model performance, both of which are inherent to the
data quality and wind reconstruction. The impact of the
differences of the data and methods used in different
decades on the model prediction skill, if any existed,
shall be most probably through initial conditions, such
as initial SST. We verified the simulation skill using the
Kaplan SST dataset for HCM1 and HCM2, and the
ERSST dataset for the Z–C model, to ensure that the
simulation skill was obtained in a frame of a cross-

validation scheme. Shown in Fig. 8 is the simulation
skill computed in each running window of 20 yr from
1881 to 2000 for the three models. As can be seen, the
interdecadal difference of the simulation skill is not
large in each model. The magnitude of variation is
around 0.1 from the maximum to minimum during
1881–2000 for both R and MSE. A comparison between
Fig. 8 with Figs. 6 and 7 reveals that the interdecadal
variation in predictability does not agree with that in
the simulation skill. In contrast, their relationship
seems out of phase in some decades. Thus, interdecadal
variation in predictability is not due to model perfor-

FIG. 4. Same as Fig. 3, but for MSE.

FIG. 3. Anomaly correlation R between the observed and the predicted Niño-3.4 SSTA indices, as a function of lead time, for six
consecutive 20-yr periods since 1881 for (a) the Z–C model, (b) HCM1, and (c) HCM2.
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mance associated with data quality and the wind stress
reconstruction. This is further suggested by the fact that
the high prediction skill also occurred during the period
from 1881 to 1900. In next section, we will explore the
possible reasons and sources of the interdecadal varia-
tion in predictability in detail.

4. Sources to control ENSO predictability

It is of interest to explore possible sources and
mechanisms responsible for the interdecadal variation

in ENSO predictability found in the preceding section.
In this section, we thus turn to analyze the model forc-
ing and initial conditions that determine prediction
skills. It has been well recognized that the signal com-
ponents present in initial fields play a critical role in
determining ENSO prediction skills (e.g., Peng and Ku-
mar 2005; Tang et al. 2005, 2008; Moore et al. 2006).
Also, as mentioned in the introduction, nonlinearity
and stochastic noise are thought to be two main sources
to limit ENSO predictability. Therefore, we will exam-
ine the possible variations in the strength of the signal,

FIG. 5. Persistence skill (R and MSE) of Niño-3.4 SSTA index, as a function of lead time, for six consecutive 20-yr
periods since 1881. The persistence skill was obtained using the (a), (b) ERSST dataset and (c), (d) Kaplan SST.
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nonlinearity, and noise using SST analysis from which
forecasts were initialized. The emphasis will be placed
on identifying possible relationships between these
variables and ENSO predictability. To avoid complex-

ity, we confine our investigation to the SST field, be-
cause the SST constitutes the most important signal in
the ENSO system, and is used to initialize forecasts for
the three models. Because the analyzed SST agrees

FIG. 7. The 20-yr running mean of (a) CIP and (b) MSEIP. Z–C (bold–solid line), HCM1 (thin solid line),
HCM2 (bold dashed line).

FIG. 6. (a) The average of anomaly correlation R between the observed and the predicted Niño-3.4 SSTA indices
over lead times of 1–12 months for three models: Z–C (bold solid line), HCM1 (thin–solid line), HCM2 (bold–
dashed line). The correlation R was computed at each running window of 20-yr period from 1881 until 2000 (see
context). (b) Same as (a), but for MSE.
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with the observed counterpart very well, the following
analyses explore the impact of anomalous features of
the realistic ENSO system on ENSO predictability. In
fact, the results from the analyzed SST are very similar
to those from the observed SST.

a. Variance and signal strength

It has been shown in the literature that the signal
strength present in initial conditions often dominate
model prediction skills (e.g., Kleeman and Moore 1997;
Tang et al. 2005, 2008). Several methods were applied
to extract the ENSO signal in this study. The first
method was to use the variance of the analyzed Niño-
3.4 SSTA index, computed for each running window of
20 yr from 1881 to 2000. The second method was to
perform EOF for each running window of 20 yr, and the
variance explained by the first mode was used to rep-
resent the intensity of the ENSO signal. The third
method was to perform spectrum analysis for the ana-
lyzed Niño-3.4 SSTA index for each 20-yr running win-
dow, using the total spectrum power at the frequencies
of 2–5 yr to represent the strength of ENSO signal.
Figure 9 shows variations in prediction skills and in
signals, demonstrating a significant relationship be-
tween the predictability and the signals in the three
models. As can be seen, all of the methods of extracting

ENSO signals produced similar results. Like the inter-
decadal variability in prediction skills, ENSO signals
also display an interdecadal variation. In the late nine-
teenth century, the signals were strong, and all models
showed a large correlation R and a low MSE. Since
then the signal strength weakened and the skill continu-
ously declined with time, both reaching a minimum
around the 1940s–50s, beyond which both rebounded
and increased with time until the 1960s. All models
have a relatively good prediction skill from the 1960s,
especially in the late twentieth century. Correspond-
ingly, ENSO signals are also the strongest in these pe-
riods. Such a good relationship between ENSO signals
and prediction skills holds not only for correlation R
but also for MSE skill. This relationship also holds for
all three models used here.

It is of interest to explore the underlying physical
interpretation of the relationship between signal and
prediction skill. As found in Kleeman (2002) and Tang
et al. (2005), the extra information that is provided by a
forecast, called prediction utility, is highly associated
with the signals present in the initial conditions. Be-
cause signals are large, more information will be pro-
duced compared with the climatological forecast, lead-
ing to a forecast that is likely to be reliable. Kleeman
and Moore (1997) argued that the periods during which
the slowly decaying eigenmodes are present with strong

FIG. 8. (a) The anomaly correlation R between the observed and simulated Niño-3.4 SSTA indices forced by
reconstructed wind stress for three models: Z–C (bold solid line), HCM1 (thin solid line), and HCM2 (bold dashed
line). The correlation R was computed at each running window of 20-yr period from 1881 until 2000. (b) Same as
(a), but for MSE.
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signals are periods that should be intrinsically more
predictable because such modes are able to “resist” dis-
sipation by more chaotic or stochastic components of
the system.

Figure 10 is a scatterplot of prediction skills against
variances of the analyzed Niño-3.4 SSTA index, both
computed in each running window of 20 yr from 1881 to
2000, for the three models. A good linear relationship

FIG. 9. The averaged prediction skill R and MSE over 1–12-month leads of Niño-3.4 SSTA index and the signals
estimated by several methods (see context), for Z–C, HCM1, and HCM2. The normalization was applied prior to
plotting.
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can be found between the correlation skill and the vari-
ance for all models, especially for Z–C and HCM2.
Also there is a good inverse relationship between MSE
and the variance for Z–C and HCM2. The correlation

coefficients between the variances and prediction skills
are shown in the upper corner of each panel. Compared
with other two models, HCM1 shows the weakest rela-
tionship between the signals and prediction skills,

FIG. 10. Scatterplot of averaged prediction skill R and MSE over 1–12-month leads against the variance of
analyzed Niño-3.4 index, both calculated in each running window of 20 yr from 1881 to 2000.
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which is, however, still statistically significant at the
confidence level of 95%. The relatively weak relation-
ship in HCM1 is probably due to the fact that this
model has a damped oscillation (DEN), leading to the
signals present in initial conditions being quickly dissi-
pated.3

b. Skewness and the degree of nonlinearity

One basic characteristics of ENSO is the asymmetry
between El Niño and La Niña (e.g., Wu and Hsieh
2003; Horling et al. 1997; An and Jin 2004; An 2004). It
is most probably related to the nonlinear process of
ENSO because the linear system could not induce the
asymmetric feature. There is evidence in the observa-
tion and modeling that the asymmetry of ENSO is
closely linked to the nonlinear process. For example,
Jin et al. (2003) and An and Jin 2004 point out that the
nonlinear dynamical heating could play important roles
in the asymmetry between amplitudes of El Niño and
La Niña events. In recent work, Perez et al. (2005) and
Gebbie et al. (2007) argued that the asymmetry of at-
mospheric forcing causes the asymmetry of ENSO,
through nonlinear feedback of the atmosphere and
ocean.

In this section, we will investigate the possible impact
of the cold–warm asymmetry on ENSO predictability.
Statistically, the degree of asymmetry can be well char-
acterized by the skewness, which has been widely ap-
plied to explore the nonlinear and asymmetric features
of climate fields (e.g., Monahan and Dai 2004; An
2004). Thus, the skewness is used here to measure the
degree of the nonlinearity of the ENSO system charac-
terized by the asymmetry. It should be noticed that a
non-Gaussian linear process could have nonzero skew-
ness; thus, the following discussions are limited to the
Gaussian process. ENSO could be thought of as an
approximate Gaussian process, and the Gaussian as-
sumption has been used and validated in many ENSO
models (e.g., Penland and Sardeshmukh 1995; Kleeman
2002; Tang et al. 2008).

The skewness was calculated using the analyzed
Niño-3.4 SSTA index in each window of 20 yr running
from 1881 to 2000. The absolute skewness was used
here to characterize the degree of asymmetry. For com-
parison, the absolute skewness and the prediction skill
were both normalized as displayed in Fig. 11. As can be
seen, the skewness obviously has an interdecadal varia-
tion that is in good agreement with the prediction skill.

The periods that show good prediction skills, such as
the late nineteenth century and the middle–late twen-
tieth century, also have large absolute skewness. This
holds for all three models, and for both correlation and
MSE skills. The good relationship between the skew-
ness and prediction skill is further shown in Fig. 12 for
the three models. The value shown in the upper corner
of each panel in Fig. 12 is the correlation coefficient
between the skewness and the prediction skill, all of
which are statistically significant at the confidence level
of 99% with a two-tailed student’s t test.

The above finding suggests that the nonlinearity of
the ENSO system leads to good predictability. This is
mainly due to the nonlinearity characterized by skew-
ness, which is highly related to the signal of ENSO
variability. Shown in Fig. 13 is a comparison between
the skewness and ENSO signal during the period from
1881 to 2000 for the three models, where the skewness
was obtained as in Fig. 11 and ENSO signals were ob-
tained as in Fig. 9. For comparison, normalization was
applied to each variable here. As can be seen, the skew-
ness is in very good agreement with the ENSO signal.
The correlation coefficients between the skewness and
signal in the three models are statistically significant at
the 99% confidence level, with the averaged values of
0.76, 0.50, and 0.68 for Z–C, HCM1, and HCM2, re-
spectively. This suggests that the interdecadal variation
of skewness is most likely due to the interdecadal varia-
tion of ENSO strength. It is not surprising because
strong ENSO events usually generate large asymmetric
anomalies of SST, leading to large skewness. By ana-
lyzing observed SST data of 148 yr from 1856 to 2003,
An (2004) also found that the variation in skewness of
the tropical Pacific SST is highly related to the variation
of SST amplitude. Thus, the positive relationship be-
tween the degree of nonlinearity and the predictability
reflects the impact of the ENSO signal present in initial
conditions on the prediction skill as discussed above.
On the other hand, enhanced nonlinearity may be able
to intensify the ENSO amplitude, meaning a large sig-
nal that is easy to predict as discussed above. Using the
three-component Lorenz model and the Z–C model,
Ye and Hsieh (2008, manuscript submitted to Nonlin-
ear Processes Geophys.) also found that better predict-
ability is attained when the nonlinearity of the models
are adequately enhanced.

Nonlinear effects on the ENSO period have been
widely discussed (e.g., Chang et al. 1996; Tang 2002;
Eccles and Tziperman 2004). It should be noted that all
models used here are intermediate or hybrid coupled
models, and thus lack other realistic nonlinearities
that have to be characterized by fully coupled general

3 In a standard coupling run, the model Niño-3.4 SSTA index is
damped to around 60% of the initial amplitude after 3–4 months,
and then oscillates stably.
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FIG. 11. The averaged prediction skill R and MSE over lead times of 1–12 months and the skewness of the model
Niño-3.4 SSTA index, both computed in each running window of 20 yr from 1881 to 2000, for Z–C, HCM1, and
HCM2. The normalization was applied prior to plotting for removing the unit.
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circulation models. In other words, the above nonlin-
earity analysis mainly addresses the asymmetric feature
of ENSO variability, which is highly related to the
strength of ENSO signals.

c. Noise

The noise usually means a high-frequency compo-
nent with the lack of autocorrelation. While the “high

FIG. 12. Scatterplot of averaged prediction skill (left) R and (right) MSE over lead times of 1–12 months against
the skewness, both computed in each running window of 20 yr from 1881 to 2000. The skewness was calculated
using the analyzed Niño-3.4 SSTA index.
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FIG. 13. Skewness, the power spectrum of ENSO frequencies at 2–5-yr periods, and the variance
explained by EOF1, calculated using the analyzed Niño-3.4 SSTA index and the tropical Pacific SSTA
analysis in each running window of 20 yr from 1881 to 2000.
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frequency” has a varied definition in different applica-
tions, it is often specified by a cutoff of periods of less
than 3–12 months in the study of climate predictability
(e.g., Kleeman and Moore 1997). Its strength can be
measured by the variance of the high-frequency com-
ponent. The noise is a primary source that limits atmo-
spheric predictability. One might expect that the period
that has a strong noise level should have a low atmo-
spheric predictability, and vice versa. However, the
noise may have a potential positive contribution to
ENSO predictability because ENSO could be thought
of as a linear, damped, stochastically forced system, as
argued in many studies (e.g., Kleeman and Moore 1997;
Penland and Sardeshmukh 1995; Chang et al. 1996;
Moore and Kleeman 1999; Flügel et al. 2004; Tang et al.
2005). Some recent papers also mentioned the possible
impact of MJO–WWB on ENSO (e.g., Zavala-Garay et
al. 2005; Hendon et al 2007; Tang and Yu 2008). In this
subsection, we will examine the relationship between
the noise and ENSO predictability. It should be noted
that the three models used here do not have internal
noise; thus the observed noise impacts forecasts only
through the initialization of predictions (called the ini-
tial impact hereafter). This “initial impact” could be
further enhanced or weakened by internal dynamics of
individual models. The noise-free nature of these mod-
els can allow us to identify the initial impact, but pre-
vents a comprehensive study on the noise and ENSO
predictability.

We first explore the initial impact by examining the
noise strength of the initial SST. Figure 14 shows the
variance of 3-month high-pass-filtered components of
the analyzed Niño-3.4 SSTA index. Unlike signal and
skewness, the interdecadal variation of noise is quite
different between the Z–C model and the other two
models. As mentioned above, these models are noise
free, and thus the initial noise characterized in Fig. 14 is
mainly due to the different response of these models to
the observed noise.

As can be seen in Fig. 15, the relationship of initial
noise to predictability is model dependent and skill
measure dependent. The noise generally has a positive
relationship to MSE skill, that is, large noise leading to
poor skill (large MSE) and vice versa. However, the
correlation coefficient between R and the noise is small
and is not statistically significant in all three models, as
shown in the upper corner of each panel of Fig. 15.

The above initial impact only addresses how the ini-
tial noise impacts the predictability. Obviously, the
noise involves not only the initialization state but also
the developing stage of ENSO. To further explore pos-
sible impact of noise on the predictability, we repeat-

edly run retrospective ENSO predictions for 1881–2000
using the three models, but added atmospheric noise to
the individual noise-free atmosphere model (referred
to as noisy atmosphere) during the whole period of
each prediction. The extraction of the noise component
from the time series is fraught with difficulties. Many
different approaches have been devised in the literature
(e.g., Priestley 1981). In this study, we restrict our at-
tention to the wind stress component, as in Kleeman
and Moore (1997). A noise dataset is thus obtained by
applying a 3-month high-pass filter to the NCEP daily
wind dataset from 1948 to 2000. The stochastic compo-
nent that is randomly taken each day from the noise
dataset is added into individual atmospheric models to
be coupled with the ocean model. Shown in Fig. 16 is
the running skill from these retrospective predictions.
As can be shown, the noisy atmosphere degrades MSE
skill but affects correlation skill little, compared with
the skill by the noise-free atmosphere. An interesting
finding is that the noisy atmosphere does not change
the feature of interdecadal variation in predictability,
suggesting that the interdecadal variation in ENSO pre-
dictability is most probably due to the variation of
ENSO signals, as discussed above.

Figure 16 was obtained by a 20-yr running window,
thereby representing an overall impact of noise on pre-
dictability during a 20-yr period. This does not mean
that stochastic noise always degrades prediction skill.

FIG. 14. The variance of noise of analyzed Niño-3.4 SSTA index
of each model, calculated in each running window of 20 yr from
1881 to 2000. The noise data were obtained by a 3-month high-
pass filter.
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We calculated the MSEIP for all of the prediction cases.
Figure 17 shows the difference between MSEIP with a
noisy atmosphere and MSEIP with a noise-free atmo-
sphere, thereby a negative value indicates that the noisy

atmosphere actually produces a better prediction. As
can be seen, the noisy atmosphere is indeed able to lead
to better predictions for the three models. In detail, the
noisy atmosphere results in 39%, 30%, and 35% of the

FIG. 15. Same as Fig. 10, but the skill against the variance of noise, which was obtained through 3-month
high-pass filter.

4828 J O U R N A L O F C L I M A T E VOLUME 21



total predictions having smaller MSEIP than the noise-
free atmosphere for the Z–C model, HCM1, and
HCM2, respectively. Thus, the impact of noise on pre-
diction skill could have two sides. On one hand, inclu-

sion of noise might favor ENSO simulation and fore-
cast, because the stochastic forcing can act to trigger
and/or amplify ENSO oscillation as demonstrated by
much theoretical and observational work (e.g., Moore

FIG. 16. Solid line is the same as Fig. 6 and dashed line is the skill of prediction where the atmospheric noise
(white) was randomly superimposed into the wind stress during the prediction period.
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and Kleeman 1999; Flügel et al. 2004; Tang et al. 2005).
On the other hand, however, the noise can dissipate
the signals present in the initial condition, leading to
the loss of predictability. Thus, the overall impact of
noise might be determined by the both sides, and is
probably model dependent. Also different types of sto-
chastic noise have different impacts on dynamical
systems like ENSO. Theory suggests that while addi-
tive stochastic forcing has a predetermined distribution,
multiplicative forcing can alter dynamical charac-
teristics and properties of the system (Perez et al. 2005).
Perez et al. (2005) found, using an intermediate coupled
model of ENSO, that multiplicative forcing pro-

duces larger positive anomalies (El Niño) whereas ad-
ditive forcing produces larger negative anomalies (La
Niña).

We also performed another experiment, that is, con-
sidering the noise to be red. In this experiment, the
atmospheric noise added into the atmospheric model
consists of the noise of the current time step and that of
the previous step. The results show that the prediction
skill, both correlation and MSE, dramatically decrease
as the noise is assumed to be red (not shown). This also
indicates that the results shown in Figs. 16 and 17 might
be sensitive to the definition of the noise and the
method used to extract it.

FIG. 17. MSEIP difference between two predictions, one with noisy atmosphere and the other with
noise-free atmosphere, for (top) Z–C, (middle) HCM1, and (bottom) HCM2, as a function of initial time
from 1881 to 2000. A negative value indicates that the MSEIP with noisy atmosphere is smaller than that
with noise-free atmosphere, and vice versa.
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5. Discussion and summary

An important task of ENSO predictability studies is
to derive robust conclusions based on multiple models
and long-term retrospective forecasts that cover suffi-
cient ENSO cycles. In this paper, long-term retrospec-
tive forecasts of the past 120 yr were performed with
three realistic ENSO models. With the assimilation of
the historic SST dataset, all models display useful pre-
diction skills.

An interesting finding from these retrospective fore-
casts is that all models show a consistent interdecadal
variation in prediction skill. The prediction skill was
high in the late nineteenth century from 1881 to 1900,
and then declined with time, reaching a minimum
around the 1940s–50s, beyond which it rebounded and
increased with time until the 1960s. All models had
relatively high prediction skill from the 1960s, espe-
cially in the late twentieth century from 1981 to 2000.
The similar results in these different models suggest
that the interdecadal variability of ENSO predictability
may exist generally.

Further analyses indicate that the interdecadal varia-
tion in predictability is highly related to the interdecad-
al variation of ENSO variability itself. In the late nine-
teenth century, ENSO variability was strong and all
models showed high correlation skill and low MSE.
Since then ENSO variability had weakened until the
1960s, during which all models showed the poorest pre-
diction skill coincidentally. The middle–late twentieth
century has the best prediction skill in all models, ac-
companying the strongest ENSO variability during this
period. Such a good relationship between the strength
of ENSO variability and its predictability is due to the
critical impact of signals present in the initial condi-
tions. When the initial signals are larger, they will be
damped or dissipated more slowly, leading to relatively
good predictions. Mathematically, because signals are
large, more information will be produced compared
with the climatological forecast, leading to a forecast
that is likely to be reliable.

The nonlinearity and stochastic noise were generally
thought to be the two most possible factors to limit
ENSO predictability. Using the skewness as a measure
of asymmetry that is able to characterize the nonlinear-
ity, we found a good relationship between the asymme-
try and prediction skill for the three models, that is,
stronger asymmetry leads to better predictions. This is
because the asymmetry is highly related to the strength
of ENSO signals. The large asymmetry often results
from strong ENSO events, leading to good predictions.
An (2004) also pointed out that the interdecadal change
in predictability was related to the interdecadal change

in ENSO asymmetry. An and Jin (2004) showed that
the nonlinear terms in the heat equation were respon-
sible for the remarkable asymmetry between the warm
and cold ENSO states. On the other hand, enhanced
nonlinearity may be able to intensify the ENSO ampli-
tude, leading to better prediction. However, because of
the lack of a full spectrum of ENSO coupled models in
this study, the nonlinearity analysis mainly addresses
the asymmetric feature of ENSO variability, which is
highly related to the strength of ENSO signals.

In contrast to the significant relationship between
ENSO signal, the asymmetry, and the predictability,
the impact of observed noise at initial time on the pre-
dictability is not very obvious, and is somehow model
and measure dependent. This is probably because dif-
ferent models have varied responses to the initial noise
resulting from high sensitivity of nonlinear models to
external high-frequency forcing. For all three models,
the noise at initial time has a positive relationship to
MSE skill, that is, large noise leads to poor skill (large
MSE). To explore possible impact of stochastic noise
involving in the developing stage of ENSO, we run ret-
rospective predictions with stochastic noise superim-
posed into the atmosphere models during the period of
prediction. The results show that the stochastic noise
degrades the overall skill, especially for MSE skill.
However, stochastic noise can lead to better skill for
some individual predictions. Thus, stochastic noise can
impact predictability in two sides as mentioned before.
On one hand, the stochastic noise could favor ENSO
simulation and forecast because it can act to trigger
and/or amplify ENSO oscillation, as evidenced in some
recent papers on MJO/WWB and ENSO (e.g., Zavala-
Garay et al. 2005; Gebbie et al. 2007; Tang and Yu
2008). On the other hand, the noise can dissipate the
signals present in the initial condition, leading to the
loss of predictability. Therefore, the stochastic forcing
is probably an uncertain source to impact ENSO pre-
dictability.

Several cautions should be borne in mind. First, all
models used in this study are either intermediate or
hybrid models, and lack some necessary physical and
dynamical processes that must be represented by more
complicated models, such as coupled general circula-
tion models (CGCMs). Thus, a whole spectrum of
ENSO predictability needs further study using more
complicated models. It is interesting to explore whether
the results and findings presented in this study also exist
in complicated GCM models. Second, the skewness dis-
cussed in this study mainly represents the nonlinear
components characterized by asymmetric features of
ENSO, which is highly related to the anomalies of
ENSO variability. There are nonlinear components
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that may be important to ENSO but were not consid-
ered in our models. In particular, the nonlinearity was
diagnosed only by oceanic analyses and observations in
this study. Some important atmospheric nonlinearities
were not taken into account such as MJO–ENSO inter-
action and the impact of WWB on ENSO. Third, we
used a running window of 20 yr to analyze interdecadal
variations in predictability and other variables. The
window length of 20 yr was motivated by Chen et al.
(2004), where the interdecadal variations in predictabil-
ity were discussed in such an interval. We also per-
formed several sensitivity experiments, with the win-
dow length of 10, 30, and 40 yr. The relationships of
predictability to skewness, signal, and noise are similar
to those presented in this paper. Finally, the stochastic
noise used in the sensitivity experiment might not be
able to completely represent realistic atmospheric sto-
chastic forcing. The complicated CGCMs that can
simulate realistic atmospheric transitions and weather-
scale variability might be required to further study the
role of stochastic forcing in ENSO predictability. Also,
we used the 3-month high-pass filter to obtain noise in
this study. One may argue that 3 months might not be
an objective choice. These concerns need to be ad-
dressed through more comprehensive analyses. Never-
theless, this study is to date the first work to discuss
ENSO predictability using multiple models and long-
term predictions. The consistent results and conclusions
found in the three models offer valuable insight to some
important issues of ENSO predictability.
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