
MINIMUM χ2 DISTANCE PROBABILITY DISTRIBUTIONS GIVEN

EXPONENTIAL DISTRIBUTION AND MOMENTS

PRANESH KUMAR

Abstract. Given an exponential distribution g(x) and the information in terms of moments of the
random variable X, the probability distribution f(x) is estimated such that the χ2− distance between
f(x) and g(x) is minimum. The expressions for the density function f(x), minimum χ2− measure and
moments are derived. When the available information is in the form of observed frequency distribution as
the exponential and on mean and/or variance of random variable, results on the minimum χ2− distance
distributions are discussed in detail. An application to the data from ”Relation of serum retinol to acute
phase proteins and malarial morbidity in Papua New Guinea” shows the usefulness of the results in
practice.

1. Introduction

In repeated surveys or experiments, information on an observed probability distribution generally
through sampling and sometimes on the mean and/or variance of some random variables is quite often
available. Thus, the objective is to estimate the best probability distribution utilizing the available
information. There are several estimation procedures like the maximum likelihood, the least squares
which result in the best expected probability distribution. By maximizing the entropy subject to these
constraints, we find the most random or most unbiased probability distribution [4-9]. However there
are different opinions about which particular method to use [2]. Guiasu [3] has analyzed the weighted
deviations subject to the given mean value of the random variable and determined the best prediction
probability distribution by considering measures of deviations such as the Pearson’s chi-square [11],
Neyman’s reduced chi-square [2], the Kullback-Leibler divergence [10], the Kolmogorov’ index [1]. Kumar
and Taneja [13] has considered the minimum chi-square divergence principle and the information available
on moments of the random variables to determine the best probability distribution. The objective of this
paper is to estimate the best probability distribution using the minimum chi-square divergence principle
given observed probability distribution as an exponential distribution and the information on moments
of the random variable. Section 2 briefly summarizes the minimum chi-square divergence principle and
probability distributions. We derive in sections 3 through 6 the minimum chi-square distance probability
distributions given exponential distribution as the observed probability distribution and information on
the arithmetic mean, geometric mean, second moment and variance. An application to the data from
”Relation of serum retinol to acute phase proteins and malarial morbidity in Papua New Guinea” is given
in section 7. Section 8 provides the concluding remarks.

2. Minimum χ2−Divergence Principle and Probability Distributions
Let the random variable X be a continuous variable with probability density function f(x) defined

over the open interval (−∞,+∞) or the closed interval [θ, φ]. Then, the minimum cross-entropy principle
of Kullback(1959) states:
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When a prior probability density function of X, g(x), which estimates the underlying probability den-
sity function f(x) is given in addition to some constraints, then among all the density functions f(x)
which satisfy the given constraints, we should select that probability density function which minimizes the
Kullback - Leibler divergence

(2.1) K(f, g) =

Z
f(x) ln

f(x)

g(x)
dx.

Now, we state the minimum χ2−divergence principle as:

When a prior probability density function of X, g(x), which estimates the underlying probability den-
sity function f(x) is given in addition to some constraints, then among all the density functions f(x)
which satisfy the given constraints, we should select that probability density function which minimizes the
χ2−divergence

(2.2) χ2(f, g) =

Z
f2(x)

g(x)
dx− 1.

The minimum cross-entropy principle and the minimum χ2−divergence principle applies to both the
discrete and continuous random variables. Kumar and Taneja (2004) defined theminimum χ2−divergence
probability distribution for continuous random variable as:

Definition 2.1. f(x) is the probability density of the minimum χ2−divergence continuous probability
distribution of random variable X if it minimizes the χ2−divergence

χ2(f, g) =

Z
f2(x)

g(x)
dx− 1,

given:
(i) a prior probability density function: g(x) ≥ 0,

R
g(x)dx=1,

(ii) probability density function constraints: f(x) ≥ 0,
R
f(x)dx=1,and

(iii) partial information in terms of averages:
R
xtf(x)dx = mt,f , t = 1, 2, 3, .., r.

Now, given a prior probabilty distribution g(x) as the exponential, we prove the following lemma. In
what follows henceforth, integral

R
is over 0 to ∞ .

Lemma 2.1. Let given be a prior exponential probability distribution of X with the density function

(2.3) g(x) =
e−x/a

a
, a > 0, x > 0,

and the constraints

(2.4) f(x) ≥ 0,
Z

f(x)dx = 1,

Z
xtf(x)dx = mt,f , t = 1, 2, 3, ..., r.

Then, the minimum χ2−divergence probability distribution of X has the probability density function

(2.5) f(x) =
e−x/a

2a

Ã
α0 +

rX
t=1

x t αt

!
,

and the (r + 1) constants, α0 and αt, t = 1, 2, 3, ..., r, are determined from

(2.6)

Z
e−x/a

2a

Ã
rX

t=1

x t αk

!
dx = 1− α0

2
,

and

(2.7)

Z
xte−x/a

2a

Ã
rX

t=1

x t αt

!
dx = mt,f −

t!atα0
2

.
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Further, the minimum χ2−divergence:

(2.8) χ2min(f, g) =

Z
e−x/a

4a

Ã
α0 +

rX
t=1

x t αt

!2
dx− 1.

Proof. We apply the familiar method of finding extrema of a function by introducing Lagrangian
multipliers, one for each constraint. Thus we minimize the Lagrangian function

L =

µZ
f2(x)

g(x)
dx− 1

¶
− α0

µZ
f(x) dx− 1

¶
−

rX
t=1

αt

µZ
xt f(x) dx−mt,f

¶

(2.9) =

µZ
a e x/a f2(x) dx− 1

¶
− α0

µZ
f(x) dx− 1

¶
−

rX
t=1

αt

µZ
xt f(x) dx−mt,f

¶
.

Minimizing L with respect to f(x), i.e., differentiating the integrand with respect to f(x) and setting the
derivative equal to zero, we get the following equation

(2.10)
∂L

∂f(x)
= 2ae x/a f(x)− α0 −

rX
t=1

αtx
t = 0.

Solving (2.10), we get the desired expression for f(x) given by (2.5) which minimizes χ2(f, g) since

(2.11)
∂2L

∂f2(x)
= 2ae x/a > 0.

The (r+1) constants, α0 and αt, t = 1, ..., r, are determined from the n+ r+1 equations (2.6) and (2.7).
The minimum χ2 divergence measure given by (2.8) follows on substituting f(x) and g(x) in (2.2).

3. Probability Distributions Given Arithmetic Mean

We apply lemma 2.1 to the exponential distributions when the information on arithmetic mean is
given.

Theorem 3.1. Let given be a prior exponential probability distribution of X with the density function

(3.1) g(x) =
1

a
e−x/a, a > 0, x > 0,

and the constraints

(3.2) f(x) ≥ 0,
Z

f(x)dx = 1,

Z
xf(x)dx = b > 0 , .

Then, the minimum χ2−divergence probability distribution of X has the density function

(3.3) f(x) =
2a− b

a
(
e−x/a

a
) +

b− a

a
(
xe−x/a

a2
),

for b ∈ [a, 2a].
The minimum χ2−divergence measure is

(3.4) χ2min(f, g) =
(b− a)2

a2
,

and

(3.5) 0 ≤ χ2min(f, g) ≤ 1.
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This may be noted from (3.3) that the density function f(x) is the weighted mixture of theGamma(1, a)
and Gamma(2, a) density functions with respective weights being 2a−b

a and b−a
a , i.e.,

(3.6) X˜

∙
2a− b

a
{X˜Gamma(1, a)}

¸
+

∙
b− a

a
{X˜Gamma(2, a)}

¸
,

where X˜Gamma(p, q), p, q > 0, is a gamma variable with density function

f(x) =
xp−1e−x/q

qpΓ(p)
, p, q > 0, x > 0,

Γ(p) =

Z ∞
0

xp−1e−xdx.

Properties of the Minimum χ2−Divergence Probability Distribution f(x):

i) tth Moment of X (t = 1, 2, 3, ...):

(3.7) mt,f =
£
(2a− b) + (b− a)2t

¤ Γ(a+ t)

Γ(a+ 1)
.

Mean (µf ) and Variance (σ
2
f ):

µf = b,

σ2f = (a+ 1)(3b− 2a)− b2,

ii) Probability Distribution Function:

(3.8) F (x) = 1− e−
x
a

∙
(b− a)x

a2
+ 1

¸
.

iii) Survival Function:

(3.9) S(x) = e−
x
a

∙
(b− a)x

a2
+ 1

¸
.

iv) Hazard Function:

(3.10) h(x) =
a(2a− b) + (b− a)x

a[a2 + (b− a)x]
.

v) Mills Ratio:

(3.11) m(x) =
a[a2 + (b− a)x]

a(2a− b) + (b− a)x
.

vi) Memoryless Property : For m,n > 0,

(3.12) P (X > m+ n|X > m) =
(m+ n)(b− a) + a2

m(b− a) + a2
e−n/a 6= P (X > n).

Thus, the minimum χ2−divergence probability distribution of X does not have the memoryless
property except the case when b = a. In this case

(3.13) P (X > m+ n|X > m) = e−n/a = P (X > n),

and hence the memoryless property.
Following are some interesting corollaries:
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Corollary 3.1. For b = a, the density function f(x) = g(x), that is, the minimum χ2−divergence
probability distribution of X has an exponential distribution with mean parameter a.

Corollary 3.2. For b = 2a, the probability distribution which minimizes the χ2−divergence is

(3.14) f(x) =
xe−x/a

a2
.

that is, X has a gamma distribution with parameters (2, a).

Corollary 3.3. For b ∈ [a, 2a], the probability distribution which minimizes the χ2−divergence between
f(x) and g(x) is not the exponential. This distribution is as given in (3. 3).

For example, if b = a+2a
2 = 3a

2 , then the probability distribution has the density function

(3.15) f(x) =
(a+ x)e−x/a

2a2
.

The mean (µf ) and variance (σ
2
f )

µf = 1.5a3,

σ2f = 0.25 a4
¡
16− 9a2

¢
,

The minimum χ2−divergence
χ2min(f, g) = 0.25 .

The minimum χ2−divergence probability distributions when a prior distribution as exponential with
mean a = 0.5, 0.75, 1 and new mean values as b = a, 1.5a, 2a, are shown in table 1 and figures 1.a - 1.c.

[INSERT TABLE 1]

[INSERT FIGURES 1.a - 1.c]

4. Probability Distributions Given E(X2)

Suppose that a prior exponential density function g(x) and the information on E(X2)=c>0, is avail-
able. Then from lemma 2.1, we have:

Theorem 4.1. Let given be a prior exponential probability distribution of X with the density function

(4.1) g(x) =
1

a
e−x/a, a >, x > 0,

and the constraints

(4.2) f(x) ≥ 0,
Z

f(x)dx = 1,

Z
x2f(x)dx = c > 0 .

Then, the minimum χ2−divergence probability distribution of X has the density function

(4.3) f(x) =
12a2 − c

10a2
(
e−x/a

a
) +

c− 2a2
10a2

(
x2e−x/a

2a3
),

for c ∈ [2a2, 12a2].
The minimum χ2−divergence measure is

(4.4) χ2min(f, g) =
(c− 2a2)2
20a4

,

and

(4.5) 0 ≤ χ2min(f, g) ≤ 5.
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Thus, we note from (4.3) that the density function f(x) is the weighted mixture of the Gamma(1, a)

and Gamma(2, a) density functions with respective weights being 12a2−c
10a2 and c−2a2

10a2 , i.e.,

(4.6) X˜

∙
12a2 − c

10a2
{X˜Gamma(1, a)}

¸
+

∙
c− 2a2
10a2

{X˜Gamma(3, a)}
¸
,

Properties of the Minimum χ2−Divergence Probability Distribution f(x):

i) tth Moment of X (t = 1, 2, 3, ...):

(4.7) mt,f =
at+2

10

£
(12a2 − c)Γ(1 + t) + (c− 2a2)Γ(3 + t)

¤
.

Mean (µf ) and Variance (σ
2
f ):

µf = 0.5a3c , (3.2.8)

σ2f = 0.05a4
¡
44c− 48a2 − 5c2a2

¢
,

ii) Probability Distribution Function:

(4.8) F (x) = 1−
e−

x
a [ 20a4 + x (x+ 2a)

¡
c− 2a2

¢
]

20a4
.

iii) Survival Function:

(4.9) S(x) =
e−

x
a [ 20a4 + x (x+ 2a)

¡
c− 2a2

¢
]

20a4
.

iv) Hazard Function:

(4.10) h(x) =
2a2(12a2 − c) + x2(c− 2a2)
a[ 20a4 + x (x+ 2a) (c− 2a2)] .

v) Mills Ratio:

(4.11) m(x) =
a[ 20a4 + x (x+ 2a)

¡
c− 2a2

¢
2a2(12a2 − c) + x2(c− 2a2) .

vi) Memoryless Property : For m,n > 0,

(4.12) P (X > m+ n|X > m) =
20a4 + (m+ n) (m+ n+ 2a)

¡
c− 2a2

¢
20a4 +m (m+ 2a) (c− 2a2) e−

n
a 6= P (X > n).

Thus, the minimum χ2−divergence probability distribution of X does not have the memoryless
property except the case when c = 2a2. In this case,

(4.13) P (X > m+ n|X > m) = e−n/a = P (X > n),

and hence the memoryless property.

Following are some interesting corollaries:

Corollary 4.1. For c = 2a2, the density function f(x) = g(x), that is, X has an exponential distribution
with mean parameter a.

Corollary 4.2. For c = 12a2, the probability distribution which minimizes the χ2−divergence is

(4.14) f(x) =
x2e−x/a

2a3
,

that is, X has a gamma distribution with parameters (3, a).



MINIMUM CHI-SQUARE DISTRIBUTIONS 7

Corollary 4.3. For c ∈ [2a2, 12a2], the probability distribution which minimizes the χ2−divergence be-
tween f(x) and g(x) is not the exponential. This distribution is as given in (4.3).

For an example, if c = 2a2+12a2

2 = 7a2, then the probability distribution has the density function

(4.15) f(x) =
(2a2 + x2)e−x/a

4a3
.

Mean (µf ) and Variance (σ
2
f ):

µf = 3.5a5,

σ2f = 0.25a6
¡
52− 49a4

¢
,

The minimum χ2−divergence
χ2min(f, g) =

5

4
.

The minimum χ2−divergence probability distributions when a prior distribution g(x) is exponential
with mean a = 0.5, 0.75, 1 and given the new information about E(X2),i.e., c = 2a2, 7a2, 12a2 are, re-
spectively, shown in table 2 and figures 2.a - 2.c.

[INSERT TABLE 2]

[INSERT FIGURES 2.a - 2.c]

5. Probability Distributions Given Geometric Mean

When a prior exponential probability density function g(x) and the geometric mean of X ,i.e.,R
lnxf(x)dx = mf , are given, we get from lemma 2.1:

Theorem 5.1. Let given be a prior exponential probability distribution of X with the density function

(5.1) g(x) =
1

a
e−x/a, a > 0, x > 0,

and the constraints

(5.2) f(x) ≥ 0,
Z

f(x)dx = 1,

Z
lnxf(x)dx = mf > 0 .

Then, the minimum χ2−divergence probability distribution of X has the density function

(5.3) f(x) =
e−x/a

£
(σ2g +m2

g −mf mg) + (mf −mg) lnx
¤

aσ2g
,

for

(5.4) mf ∈ [mg,
σ2g +m2

g

mg
],

where mg and σ
2
g are, respectively, the mean and variance of lnX using g(x).

The minimum χ2−divergence measure is

(5.5) χ2min(f, g) =
(mf −mg)

2

σ2g
,

and

(5.6) 0 ≤ χ2min(f, g) ≤
σ2g
m2
g

.
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Properties of the minimum χ2−divergence probability distribution are presented below.

i) tth Moment of X (t = 1, 2, 3, ...):

(5.7) mt,f =
(σ2g +m2

g −mf mg) t!at + (mf −mg) m x lnx,t,g

σ2g
,

where

(5.8) m x lnx,t,g =

Z
(xt lnx)e−x/a

a
dx.

Mean (µf ) and Variance (σ
2
f ):

µf =
(σ2g +m2

g −mf mg) a+ (mf −mg) m x lnx,1,g

σ2g
,

σ2f =
2(σ2g +m2

g −mf mg) a
2 + (mf −mg) mx lnx,2,g − σ2g µ2f

σ2g
.

ii) Probability Distribution Function: For x > 0,

F (x) =

£
(σ2g +m2

g −mf mg)
¡
1− e−

x
a

¢
+ (mf −mg)

£
ln a− 0.5772157− (lnx) e−x

a −Ei(1, xa )
¤¤

σ2g
,

where Ei(1, xa ) is the exponential integral.

iii) Survival Function: For x > 0,

S(x) =

£
σ2g − (σ2g +m2

g −mf mg)
¡
1− e−

x
a

¢
+ (mf −mg)

£
ln a− 0.5772157− (lnx) e−x

a −Ei(1, xa )
¤¤

σ2g
,

iv) Hazard Function: For x > 0,

h(x) =
e−x/a

£
(σ2g +m2

g −mf mg) + (mf −mg) lnx
¤

a
£
σ2g − (σ2g +m2

g −mf mg)
¡
1− e−

x
a

¢
+ (mf −mg)

£
lna− 0.5772157− (lnx) e−x

a −Ei(1, xa )
¤¤ .

v) Mills Ratio:

m(x) =
a
£
σ2g − (σ2g +m2

g −mf mg)
¡
1− e−

x
a

¢
+ (mf −mg)

£
ln a− 0.5772157− (lnx) e−x

a − Ei(1, xa )
¤¤

e−x/a
£
(σ2g +m2

g −mf mg) + (mf −mg) lnx
¤ .

Following are some interesting corollaries:

Corollary 5.1. For mf = mg, the density function f(x) = g(x), that is, X has an exponential distribu-
tion with mean parameter a.

Corollary 5.2. For mf =
σ2g+m

2
g

mg
, the probability distribution which minimizes the χ2−divergence is

(5.9) f(x) =
(lnx)e−x/a

a mg
.
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The mean (µf ) and variance (σ
2
f ) are

µf =
mx lnx,1,g

mg
,

σ2f =
mg mx lnx,2,g −m2

x ln x,1,g

m2
g

.

Corollary 5.3. For mf ∈ [mg,
σ2g+m

2
g

mg
], the probability distribution which minimizes the χ2−divergence

between f(x) and g(x) is not the exponential. This distribution is as given in (5.3).

For an example, if mf is in the center of the interval [mg,
σ2g+m

2
g

mg
], then the probability distribution of

X has the density function

(5.10) f(x) =
(mg + lnx)e

−x/a

2amg
.

The mean (µf ) and variance (σ
2
f )

µf =
m2
g +mx lnx,1,g

2mg
,

σ2f =
2mg(mgm2,g + mx lnx,2,g) − (m2

g +mx lnx,1,g)
2

4m2
g

.

The minimum χ2−divergence

χ2min(f, g) =

µ
σg
2mg

¶2
.

6. Probability Distributions Given Arithmetic and Geometric Means

When a prior exponential probability density function g(x) and the information on arithmetic and
geometric means of X ,i.e.,

R
xf(x)dx = b and

R
lnxf(x)dx = mf are given, we get from lemma 2.1:

Theorem 6.1. Let given be a prior exponential probability distribution of X with the density function

(6.1) g(x) =
1

a
e−x/a, a > 0, x > 0,

and the constraints

(6.2) f(x) ≥ 0,
Z

f(x)dx = 1,

Z
xf(x)dx = b,

Z
lnxf(x)dx = mf .

Then, the minimum χ2−divergence probability distribution of X has the probability density function

(6.3) f(x) = g(x) (α0 + α1x+ α2 lnx ) ,

where

α0 = −
a(2a− b)(σ2g +m2

g) + a(mx lnx,2,g − 2amx lnx,1,g)mf + bmx lnx,1,gmx lnx,2,g −m2
x lnx,2,g

−2amx lnx,1,g mx lnx,2,g + 2a2m2
x lnx,1,g +m2

x lnx,2,g + a(1− 2a)(σ2g +m2
g)

,

α1 = −
(amx lnx,1,g −mx lnx,2,g)mf − bm2

x lnx,1,g + (b− a)(σ2g +m2
g) +mx lnx,1,gmx lnx,2,g

−2amx lnx,1,g mx lnx,2,g + 2a2m2
x lnx,1,g +m2

x lnx,2,g + a(1− 2a)(σ2g +m2
g)

,

α2 =
a(2a − b)mx lnx,1,g + (b− a)mx lnx,2,g + a(1− 2a)mf

−2amx lnx,1,g mx lnx,2,g + 2a2m2
x lnx,1,g +m2

x lnx,2,g + a(1− 2a)(σ2g +m2
g)

,

mg and σ
2
g respectively are the mean and variance of lnX using g(x)

and mx lnx,t,g is defined in (5.7).
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The minimum χ2−divergence measure is given by

(6.4) χ2min(f, g) =
£
(α0 + a α1)

2 + a2 α21 − 1
¤
+

Z ¡
2α0α2 + 2α1α2x+ α22 lnx

¢ lnxe−x
a

a
dx .

The tth moment (t = 1, 2, 3, ...) about origin:

(6.5) Mt(f) = [α0 + (t+ 1)aα1] t!a
t + α2mlnx,t,g.

Mean (µf ) and Variance (σ
2
f ):

µf = (α0 + 2aα1) a+ α2mlnx,1,g,

σ2f = 2(α0 + 3aα1)a
2 + α2mlnx,2,g − µ2f .

7. Probability Distributions Given Arithmetic Mean and Variance of X

When a prior exponential probability density function g(x) and the information on average (m1,f )
and variance (σ2f ) ,i.e.,

R
xf(x)dx = b and

R
x2f(x)dx = b2 + σ2f = c, are given, we use lemma 2.1 to get

the following theorem:

Theorem 7.1. Let given be a prior exponential probability distribution of X with the density function

(7.1) g(x) =
1

a
e−x/a, a > 0, x > 0,

and the constraints

(7.2) f(x) ≥ 0,
Z

f(x)dx = 1,

Z
xf(x)dx = b ,

Z
x2f(x)dx = m2

1,f + σ2f = c.

Then, the minimum χ2−divergence probability distribution of X has the density function

(7.3) f(x) =

¡
α0 + α1x + α2x

2
¢
e−x/a

a
,

where

α0 =
3a2c− c− 3a− 6a3b+ 24a4
36a4 − 1− 3a− 12a3

α1 = −
6a3 + 2ac+ b− 12a2b
36a4 − 1− 3a− 12a3

α2 =
−4a2b− 2a+ 6a3 − c+ 2ac

2a(36a4 − 1− 3a− 12a3)
The minimum χ2−divergence measure is given by

(7.4) χ2min(f, g) = (α
2
0 + aα1)

2 + a2(α21 + 4α0α2) + 6a
3α2(2α1 + α2)− 1 .

The tth moment (t = 1, 2, 3, ...) about the origin:

(7.5) Mt(f) =
£
α0 + (t+ 1)aα1 + (t+ 2)a

2α2
¤
t!at .

Mean (µf ) and Variance (σ
2
f ):

µf =
a
£
c
¡
4a2 − 2− 3a

¢
+ 2a

¡
−3 + 12a2b+ 21a3 − 2b− 3a

¢¤
2(36a4 − 1− 3a− 12a3) ,

σ2f =
2a2

£
c
¡
a2 − 1− 2a

¢
+ a

¡
−3 + 22a2b+ 18a3 − 3b− 4a

¢¤
36a4 − 1− 3a− 12a3 − µ2f .
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8. An Application

The C-reactive protein (CRP) is a substance that can be measured in the blood. Values increase
substantially within 6 hours of an infection and reach a peak within 24 to 48 hours after. In adults,
chronically high values have been linked to an increased risk of cardiovascular disease. In a study of ap-
parently healthy children aged 6 to 60 months in Papua New Guinea, CRP was measured in 90 children
[12]. The units are milligrams per liter (mg/l). Data from a random sample of 40 of these children [14]
are given in table 3. We consider finding the 95% confidence interval for the mean CRP.

INSERT TABLE 3

A preliminary examination of data suggest that the distribution is skewed and can be approximated by
the exponential distribution. First we consider data (excluding 73.20) from 39 children and obtain the
maximum likelihood estimate of the mean parameter as a = 8.41. Thus, we have

(8.1) g(x) =
e−x/8.41

8.41
, x > 0.

Now based on data in the table for all 40 children, we calculate new mean as b = 10.28692. Thus, using
this information, one would like to use the model as

(8.2) f ∗(x) =
e−x/10.28692

10.28692
, x > 0.

However, as proved in theorem 3.1, f ∗(x) is not the best estimated model in terms of the minimum chi
square distance between g(x) and f ∗(x). The minimum chi square distance distribution from (3.3) is

(8.3) f(x) = (0.092369 + 0.0031554x)e−x/8.41, x > 0.

The graphs for g(x), f ∗(x) and f(x) are shown in figure 3 and the 95% confidence interval for the mean
CRP using g(x), f ∗(x), f(x) and normal distribution are presented in table 4.

INSERT FIGURE 3

INSERT TABLE 4

It may be interpreted from results in table 4 that:

(i) In case, there is no new information available on mean parameter and it is assumed that the population
of children under study continues to have the same location parameter mean, the 95% confidence interval
for the mean CRP will be (2.4194,31.023), width of the confidence interval being 28.604.

(ii) If the mean based on new data is observed to be 10.28692, the 95% confidence interval for the
mean CRP using f ∗(x) is estimated to be (2.9594,37.947) and the width of the confidence interval is
34.938.

(iii) Using the best estimated model f(x), the 95% confidence interval for the mean CRP is (3.0802,36.748)
and the width of this confidence interval is 33.668.

(iv) The 95% confidence interval for the mean CRP using the approximation of the normal distribu-
tion is estimated as (5.153732,15.42011) and the width of the confidence interval is 10.266.

It may be remarked that the estimate of the confidence interval in (iv) should not be used because
this is incorrect being based on the normal approximation while the distribution is actually skewed. The
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best estimated confidence interval is given in (iii) which is calculated using the minimum chi square
distance distribution f(x).

9. Concluding Remarks

The minimum cross entropy principle (MDIP) of Kullback and the maximum entropy principle (MEP)
due to Jayne have been often used to characterize univariate and multivariate probability distributions.
Minimizing cross entropy is equivalent to maximizing the likelihood function and the distribution pro-
duced by an application of Gauss principle is also the distribution which minimizes the cross entropy.
Thus, given a prior information about the underlying distribution, in addition to the partial informa-
tion in terms of the expected values, MDIP provides a useful methodology for characterizing probability
distributions. We have considered the principle of minimizing chi square divergence and used it for
characterizing the probability distributions given a prior distribution as the exponential and the partial
information in terms of averages and variance. It is observed that the probability distributions which
minimize the χ2-distance also minimize the Kullback’s measure of the directed divergence. It is shown
that by applying the minimum chi square divergence principle, new probability distributions are obtained.
Hence, the probability models can be revised to find the best estimated probability models given the new
information on moments.
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