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Abstract— In a video based face identification task, a se-
quence of frames can be utilized to identify the subject in
the video. The information extracted from frames can provide
samples of the subject in different head poses and facial ex-
pressions and under various lighting conditions which enriches
the training process. However, some of these frames may not
be useful for identification due to noise from various sources
(such as occlusion, low resolution, and face tracking errors). It
is important to reduce the effect of noisy samples by designing a
representation structure that is capable of alleviating the noise
in each sequence, complemented by developing a recognition
procedure that rejects the wrong decisions affected by noise.

In this paper we propose a sequence representation called
Ensemble of Abstract Sequence Representatives (EASR) that
is aimed at reducing the effect of noisy frames in a sequence.
EASRs are used to guide the sampling process in a learning
scheme called specialization – generalization which is used to
train an ensemble of binary Gaussian Process (GP) models.
Identification is done using: (i) the similarity between the
EASRs of the gallery and probe images, and (ii) the label
provided by the ensemble of GP classifier models. Evaluation of
our approach on three publicly available benchmark datasets
demonstrates significantly better performance compared to the
state-of-the-art.

I. INTRODUCTION

A classic face identification problem involves identifying
a subject from a single image and with only a few training
samples available. For such configuration, these sample im-
ages must be carefully recorded in a controlled environment.
However, in real-world applications, such good quality sam-
ples are not easily attainable. Fortunately, with the extensive
availability of digital imaging devices, sufficient data is
available to allow the recognition process to be based on
image-set to image-set matching. In this sense, image-set
based face identification in general and video based face
identification in particular is potentially more promising
than using single images. This type of face identification
tends to be more robust since the recognizer gets to see
more possible variations in appearance of the subject (e.g.,
different illumination, pose, facial expressions, etc.).

However, in video based face identification, we face a new
challenge caused by uncertainty about the level of relevance
of each frame which is due to the presence of noise in the
frames of each video. Noisy frames in a sequence, similar
to any other type of outlier, affect the accuracy of image-
set based recognition in general, and methods that rely on
individual samples in particular [23]. In this work we focus
on dealing with the noise caused by low resolution, occlusion
of the face, or failure of the face tracking algorithm to
properly detect the face area in video.

We propose a vector set structure called Ensemble of Ab-
stract Sequence Representatives (EASR) for representing a
sequence. Each EASR is built by sampling and superposition
to reduce noise, followed by a filtering mechanism to deal
with outliers. Similar to the majority of image-set based
approaches (e.g., [22], [24], [13], [10], [29]) that use a single
structure to model each image-set, each EASR tries to model
variations of the subject in an image-set and similarity of
EASRs can be used for identification purposes. However, our
method does not solely rely on EASRs for identification.

On top of the EASR representation method, we use an
ensemble of binary GP models in a one-versus-rest setting
for capturing the underlying non-linear structure of the data.
To reduce the amount of noise presented to the GP models
during the training, we use a sampling process called special-
ization – generalization. In the specialization step, the EASR
similarity measure is used to find the nearest sequences of
other subjects (the most challenging cases in the training
set) and limit the sampling process to these sequences. In
the generalization step, we attempt to reduce the effect of
possibly noisy training samples by retraining the models on
failed samples of the rest of the sequences in the training set.
Finally, a fast identification process combines predictions of
both methods to identify the subject in the probe sequence.

The main contribution of this paper is two-fold: First, we
propose a representation structure for image-sets that min-
imizes the effect of noisy frames. This structure especially
targets those frames that are not useful for the identification
task, due to occlusion, low resolution, or failure of the face
tracker algorithm. Second, we propose a learning scheme
for tainting an ensemble of binary GP models for identifi-
cation task in image-sets. This learning scheme selectively
samples the training data to build the models efficiently
and with minimum introduction of noise. Assessment of
the proposed method on three publicly available benchmark
datasets demonstrates better results compared to the previous
methods [28], [7], [27], [3], [25], [22], [24], [13], [10],
[4], [29] including state-of-the-art, especially on the more
challenging YouTube Celebrities dataset.

The rest of this paper is organized as follows: First, we
review the related work in the area of image-set based face
identification. Then, we describe the components of our
proposed approach. Next, the datasets and experimental setup
used for evaluation of the work is explained. Later, the exper-
imental results are discussed. Finally, the paper is concluded
with a summary of the contributions and highlights on the
future work.



II. RELATED WORK

In the literature, the task of image-set based face identifica-
tion is addressed in two steps: (i) representation of the image-
sets, and (ii) finding a suitable similarity measure between
them. Representation of the image-sets is either parametric
or non-parametric. Parametric methods attempt to repre-
sent each image-set with a data-driven distribution function
(e.g. Gaussian mixture model), and measure the similarity
between them by calculating the between-set distribution
distance (e.g. Kullback-Leibler divergence) [1]. Parametric
methods, however, suffer from the assumption that all image-
sets representing the same identity are drawn from the same
distribution – which is most likely not the case. Therefore,
the majority of current works use a non-parametric approach.

Representation method in non-parametric approaches can
be either linear or non-linear. Most notable linear methods in-
clude: Mutual Subspace Method MSM [28] which constructs
a linear subspace for each image-set and calculates the sim-
ilarity from the Euclidean angle between the two subspaces;
and Discriminant Canonical Correlations DCC [13] which
finds an optimal discriminant function that transforms image-
sets to another space in which the within-class canonical
correlations are maximized while between-class canonical
correlations are minimized.

Non-linear methods include: Kernel Grassmannian Dis-
tance KGD [25] which is a kernel generalization of the
Grassmannian distance in order to capture the non-linear
structures in the image-sets; Manifold Discriminant Analysis
MDA [22] that forms the subspaces for each set with
locally linear models (manifolds) and attempts to learn an
embedding space, where each manifold is compact but man-
ifolds of different classes are as separated as possible; and
Manifold-Manifold Distance MMD [24] which formulates
the recognition task as computation of distance between two
locally linear subspaces of data, i.e., manifolds.

Measurement of similarity in non-parametric represen-
tations can be based on calculating the distance between
representatives of the two image-sets, as in MMD [24];
and Affine/Convex Hull based image-set Distance AHISD
and CHISD [3] where each image-set is represented by an
affine/convex hull derived by spanning the subspace using
the images in the set and similarity is the distance between
closest exemplars. Similarity can also be measured based on
the representation structure as a whole, as in MSM [28]; and
Covariance Discriminant Learning method CDL [23] that
represents the image-set by its covariance matrix second-
order statistic, and formulated as a function which converts
covariance matrix from Riemannian manifold to Euclidean
space where similarity measurement is straightforward.

Sparse Approximated Nearest Point SANP [10] propose a
similarity method that utilizes both the structural information
of the image-sets, as well as their representatives. The kernel
extension of this method KSANP allows for modelling
the complex non-linear structures that are embedded in the
data. As an improvement over the SANP method in terms
of complexity reduction, Regularized Nearest Points RNP

[29] models each image-set as a regularized affine hull and
measures the similarity between two sets by calculating the
distance between the nearest points between the two hulls.

Some recent methods have a holistic approach regarding
the representation of each video sequence. For instance,
Mean Sequence Sparse Representation-based Classification
MSSRC [18] method performs a joint optimization to de-
termine a linear relationship between all available training
images.Joint Sparse Representation JSR [5] represents all the
frames in a probe video sequence as an ensemble to suppress
the effect of noise for a more stable recovery. Image-
Set based Collaborative Representation and Classification
ISCRC [30] models the probe video sequence as a convex
or regularized hull and calculates the distance to the gallery
considering the correlation between these two.

Gaussian Process (GP) models have been previously used
for probabilistic object categorization. In [11], Kapoor et al.
use GP confidence estimates at unlabelled data points in
an active learning paradigm for interactive labelling. This
active learning approach is of interest for datasets in which
abundant unlabelled data is available, given that manual
labelling is often expensive and/or time consuming in large
datasets. To the best of our knowledge, GP has not been used
for the task of video based face recognition before.

In the next section we describe our method which in part
uses GP regression models for face identification in videos.

III. PROPOSED METHOD

Our proposed method consists of two main modules:
EASR module and GP module. EASR module is based
on a vector-based representation of the image-sets called
Ensemble of Abstract Sequence Representatives (EASR),
that offers better resistance to noisy data; along with a
method for similarity measurement between EASRs. The GP
module incorporates a learning scheme called specialization
– generalization for effective training of an ensemble of
binary GP classifiers (enabling further noise reduction).
The identification process combines both modules using a
hierarchical structure to maximize identification rate. The
rest of this section describes each module in more details.

A. Ensemble of Abstract Sequence Representatives

In image-set based face identification, each image may not
fully characterize the individual’s face. This may be due to (i)
poor quality of the image (e.g. low resolution, illumination,
etc.), (ii) partial existence of the face in the image’s field of
view (e.g. occlusion, pose, etc.), and (iii) failure of the face
detector algorithm to accurately spot the face. Such issues
would cast uncertainty on the degree that a face identification
method should rely on each individual image in an image-set
(for images in both gallery and probe sets).

We propose a vector-based representation for each image-
set called Ensemble of Abstract Sequence Representatives
(EASR) that addresses the uncertainties mentioned above
as follows: it relaxes the noise in the raw data points by
transferring them into a higher level representation structure
using stratified sampling and superposition. Furthermore, the



Fig. 1. A sample sequence from the YouTube Celebrities dataset [12] (top),
its EASR based on intensity features (middle), and a matched EASR from
another clip (bottom)

construction process of EASRs is supplemented with an
outlier filtering scheme to counter face tracking errors. More
interestingly, this representation structure can help construct
GPs that are specialized in discriminating the correct class
versus the most similar ones to it. This will be further
discussed in section III-C.

In the rest of this section, we first explain the represen-
tation structure of EASR, and then discuss the similarity
measurement between each EASR that is necessary for either
performing the identification task, or ranking the classes.

1) Representation: A video sequence (top of Fig. 1) can
be represented as a set of normalized n dimensional feature
vectors (each referred to as α) extracted from every frame.
However, because such primary representation is prone to
noise, it is beneficial to transform these vectors into a noise-
relaxed secondary representation structure. Using stratified
sampling, we draw (with replacement) a set of α vectors
from each stratum (i.e., video sequence), which are then
grouped into several non-overlapping subsets of size m (i.e.,
m vectors per subset). Then, for each subset, a new feature
vector (represented by β) is constructed using (1).

β =
γ

‖γ‖
, γ =

m∑
i=1

αi (1)

We refer to these new n dimensional unit feature vectors
as Abstract Sequence Representatives (ASRs). Superposition
leads to constructing more robust samples by minimizing
the effect of undesired variations in single noisy images and
therefore actively improving the recognition rate.

For each sequence we construct a set of ASRs of size M ,
and refer to it as Ensemble of Abstract Sequence Represen-
tatives (EASR). Top of Fig. 1 shows the first 27 frames of
a raw sequence labelled J1. In the middle of Fig. 1 a subset
of ASRs forming the J1’s EASR is presented. The idea of
utilizing ensembles is close to the concept of exploiting the
knowledge of the crowd in decision trees and random forests

[2] that are known for their robust performance in noisy data.
The pair-wise similarity between two ASRs βp and βq

(i.e., ψpq) is calculated as the inner product of the two ASRs,
as in (2),

ψpq = 〈βp, βq〉 = |βp||βq| cos(θpq) = cos(θpq) (2)

where θpq is the angle between the two unit vectors βp and
βq . All the sequence-wise similarity values ψpq derived by
(2) are collected in matrix Ψ that is an M ×M matrix.

It is a good practice to monitor the quality of ASRs that
are generated by random sub-sampling. For each ASR βp,
we calculate its mean pair-wise similarity Ψ̄p by averaging
over row p of Ψ. We then calculate average (Ψ̄) and standard
deviation (σΨ̄) of these Ψ̄ps for p ∈ [1..M ]. Finally, we filter
out the possible outliers, i.e., any ASR βo with an average
pair-wise similarity (Ψ̄o) that is two standard deviations (σΨ̄)
less than the average within-ensemble similarity (Ψ̄).

Reject(βo|Ψ̄o < Ψ̄− 2σΨ̄) (3)

We identified two sources for generating outlier ASRs: (i)
superposition of frames that present the subject in highly
different conditions; and (ii) presence of noisy frames (e.g.,
where the face tracking failed) in the ASR. Three sample
ASRs that were rejected in the process of constructing the
EASR for the J1 sequence are shown in Fig. 1. The two
rejected ASRs on the left are generated due to source (i),
while source (ii) is behind rejection of the third ASR (face
tracker failure on a number of frames).

2) Similarity Measurement: In order to find the similarity
between two sequences i and j (denoted as Sij), first, we
find the similarity ψijxy between all possible ASR pairs of
the form (βix, β

j
y) where βix is the xth ASR from the EASR

of sequence i and βjy is the yth ASR from sequence j’s
ensemble, following (2). This yields the Ψij matrix, where
Ψij = [ψijxy], for x, y ∈ [1..M ]. The nearest ASR pair of the
two sequences i and j (i.e., the βix and βjy with the maximum
ψijxy among all pairs) determines the similarity measure Sij .

Sij = Max {Ψij} (4)

Following our illustrated example, the bottom of Fig.
1 shows the EASR for a sequence labelled as J5, which
represents the same subject as in sequence J1 but from
another clip of hers. The similarity between these two EASRs
is measured by similarity of their closest pair of ASRs as
highlighted in Fig. 1, calculated via (4).

Finally, predicting the identity of a probe video sequence
is posed as finding the most similar EASR l in the gallery to
the probe EASR p, where l ∈ [1..L] with L being the total
number of subjects in gallery. We form the matrix Sp = [Slp]
for l ∈ [1..L], and report the identity of the subject with the
highest similarity: identity = ArgMax {Sp}.

Although we designed EASRs to be resilient to noise, their
inherent linear structure does not allow for capturing large
and complex variations in data. Thus, we add a second non-
linear component (i.e., binary Gaussian process models) to
address this issue. In the next section, we provide a brief



review on GP regression and describe how it is employed to
perform the task of video based face identification.

B. Gaussian Process Models

A Gaussian process is a generalization of the Gaussian
probability distribution and is a Bayesian alternative to the
kernel methods such as Support Vector Machines. Since
models learned by GP are non-parametric [19], any hard
assumptions on the structure of the model are safely avoided
(e.g. assuming all data points are drawn from the same
distribution, i.e., parametric models described in section II).
In this section, we briefly discuss GPs for regression and
classification following the notation used by Murphy [16].

Given a set of labelled samples X = {x1, x2, ..., xN},
where each xi represents a feature vector, and observed class
labels y = {y1, y2, ..., yN}, we are interested in classifying
a set of unlabelled samples X∗. Gaussian process regression
solution assumes a latent function f(x) exists such that y =
f(x) + ε, where ε ∼ (0, σ2

y) links the observed label y to
hidden label f(x) via a Gaussian noise model.

GP assumes that p(f |X) = p(f(x1), ..., f(xN )) is
jointly Gaussian, with mean m(x) = E[f(x)] and covari-
ance k(xi, xj) = E[(f(xi) − m(xi))(f(xj) − m(xj))

T ].
In more abstract terms, f ∼ N (µ,K), where, µ =
(m(x1), ...,m(xN )), and Kij = k(xi, xj) that is a positive
definite kernel function, defined based on our prior beliefs
over the kinds of functions we expect to observe in data
(e.g. level of smoothness 1). In this work, we use a radial
basis function (RBF) kernel that is in form of k(xi, xj) =
σ2
f exp(− 1

2l2 (xi− xj)2). Parameters σf and l are optimized
based on cross-validation over the training data.

Now, in case of observing a new set of data samples X∗
GP needs to predict f∗. For the sake of simplicity and without
loss of generality, let us assume µ and µ∗ are 0. By definition,
the joint distribution is updated to:(

y
f∗

)
∼ N

(
0,

(
Ky K∗
KT
∗ K∗∗

) )
(5)

where Ky = k(X,X) + σ2
yIN is N ×N , K = k(X,X∗) is

N ×N∗, and K = k(X∗, X∗) is N∗ ×N∗.
The goal is to compute posterior p(f∗|X∗, X, y) which has

the following form:

p(f∗|X∗, X, y) = N (f∗|µ∗,Σ∗) (6)
µ∗ = µ(X∗) +KT

∗ K
−1
y y

Σ∗ = K∗∗ −KT
∗ K

−1
y K∗

derived by applying the rules for conditioning Gaussian
distributions. We use Cholesky decomposition (suggested by
[19]) to compute K−1

y = L−TL−1 instead of direct inversion
of the matrix to avoid numerical stability issues.

To summarize, for each new unlabelled sample x∗, GP
regressor described above gives a mean µ∗ that is the
expected output of the function predicted by GP at this point,

1Kernel function k(xi, xj) controls the relativeness of points xi and xj ,
i.e., if the kernel considers xi and xj as similar, then output of the function
at those points is expected to be similar as well.

Fig. 2. The specialization step for k = 4 (best viewed in color)

accompanied by a variance σ2
∗ which demonstrates the GP’s

confidence on its prediction.
In the current work, we use the GP regressor to construct a

GP binary classifier2 (i.e., yi ∈ {−1,+1}). For each subject
i, this classifier is capable of identifying the subject i versus
the rest of the subjects. Let us assume subject i has mi

samples in total for training. We label these samples as (+1).
In order to collect the (−1) labelled samples, we sub-sample
equal number of data points from the training set belonging
to the rest of subjects such that the total number of samples
for training is closest possible to 2mi (i.e., balanced).

For each subject i in a gallery with L subjects, we
construct one GP model GPi. This model is trained to predict
whether a sequence belongs to the subject i or not. To predict
the identity of a probe video sequence p with mp frames,
the frames are presented to all L models. Each GPi predicts
the µ∗ that is a vector of mp length, where the jth item
shows the expected value of GPi’s underlying function (f∗)
with the jth frame as input. Classification of each frame
is based on the sign of µ∗, if it is negative, it means GPi

rejects the possibility that this frame belongs to the subject
i and vice versa. In order to aggregate the outputs of all mp

frames, we calculate the average of all f j∗ , j ∈ [1..L] and
record it as the overall output of GPi (i.e., sum-fusion). After
calculating the aggregated output for every model, identity
of the subject with the highest aggregated output is reported
as the predicted identity by the GP ensemble.

C. Specialization – Generalization Learning Scheme

GP binary classifiers are sensitive to the quality of training
samples, thus a simple random sampling process without
any provision for avoiding noisy samples reduces the iden-
tification power of the resulting model. In this section, we
describe our learning scheme which relies on EASRs for
finding the most relevant sequences for training each binary
GP model (i.e., specialization step, schematically shown in
Fig. 2), complemented by a generalization step which tries to
alleviate the effect of potentially noisy frames in the training
samples.

Starting with n subjects and m sequences for each subject
in the training data, we have a SQn×m which contains
sequences for each subject.

2Note that this satisfies the assumption of µ = 0 as mentioned in the
previous section, and therefore (6) holds true.



Fig. 3. Sample noisy frames detected in the generalization step when
training a GP model for the sequence J1 in Fig. 1

Specialization step (Fig. 2):
1) Calculate EASRs for all training sequences.
2) Calculate the pair-wise similarity Sij between each two

subjects i and j, following (4).
3) For each subject i find the top k nearest subjects with

highest Sij and store js in NSi.
4) Train GPi with all frames from SQi, [1..m] as (+1) in-

stances and randomly sample equal number of frames
from SQj,[1..m], j ∈ NSi as (−1) instances.

Generalization step:
5) Use GPi to label each sequence in SQj,[1..m], j /∈ NSi,

for each frame f if GPi(f) > 0 (i.e., mislabelled) add
it to GenLi list to be retrained to GPi.

6) Update GPi with all frames f in GenLi as (−1)
instances.

In the specialization step, for each GP model, frames of
the training sequences for the target identity are used as (+1)
instances. The (−1) instances are randomly sub-sampled
from the sequences belonging to the k nearest subjects to
the target identity, as determined by the EASR similarity
(Fig. 2). The goal of specialization step is to force GP to
learn distinctive features that separate each subject from its
nearest neighbours.

The generalization step provides more (−1) instances to
the GP model in areas of the problem space that the model
is unable to correctly identify such instances, thus improving
the generalizability of the GP model. The generalization step
also minimizes the effect of noisy frames in the (+1) in-
stances. For example, consider the first 3 frames of sequence
J1 shown at the top of Fig. 1. These frames do not provide
any useful information for identifying the subject in that
video. In the initial training of the GP model for sequence J1,
these frames are provided as (+1) instances, which misleads
the model to classify any similar noisy frame as (+1). In the
generalization step, such noisy frames belonging to the rest
of training sequences are detected (Fig. 3 shows a selection
of these detected frames when training the model for J1).
These frames are then used as new (−1) instances to update
the GP model. This process helps to cancel out the effect of
noisy frames in the (+1) instances.

Now that the GP models have been constructed consulting
the EASR suggestions, the next stage is to make predictions
based on the models.

D. Identification Process: a Hierarchical Approach

In this section, we discuss our proposed hierarchical
approach for aggregating the predictions of the two modules,
namely EASR module and GP module, to come up with
the most accurate prediction of identity for a probe video
sequence. Fig. 4-left illustrates the flowchart of the proposed
approach.

Fig. 4. Flowchart for the identification process (left); Exploring the effect
of minimum cut-off for EASR confidence (τ ) on accuracy (right)

Clearly, if predictions of both modules agree on the same
identity, that prediction is reported. Otherwise, the hierarchi-
cal approach is used as follows: First, we give priority to
the EASR module since it is more noise tolerant. We trust
EASR-based prediction when it identifies the probe video
sequence p by a clear winner; that is, when difference in
similarity of p and the winner Spw versus p and the closest
next candidate Spc as derived by (4) is above a pre-defined
threshold τ . If the constraint for the cut-off is not satisfied,
it indicates that the EASR module is not confident in its
prediction, therefore the label generated by the GP module
is reported as the final predicted identity.

Fig. 4-right shows the overall accuracy of our method for
different values of τ in two different experiments (described
later). The left side of Fig. 4 shows that accuracy drops when
we rely too much on the EASR module (low τ values). On
the other hand, relying too much on the GP module has the
same effect. The value of τ for each dataset, is selected based
on cross-validation over the training set (the selected points
are highlighted in the graphs in Fig. 4-right). As similarity
of two EASRs falls between zero and one, max(τ) = 1.
However, in our experiments, τ is much smaller (always less
than 0.05).

IV. EXPERIMENTS

In this section, we briefly describe the datasets and eval-
uation settings for our experiments.

A. Datasets

Three publicly available benchmark datasets were used
for evaluation: Honda/UCSD [14], CMU-MoBo [9], and the
more challenging YouTube Celebrities [12] datasets.

Honda/UCSD dataset is a collection of 59 videos recorded
from 20 subjects in order to form a common ground for
assessment of different face identification algorithms. Each
subject has at least 2 videos (except for one subject).

CMU-MoBo dataset contains video sequences of 25 sub-
jects performing four different walking activities on a tread-
mill. Following the literature, the subject with fewer than
four walking patterns is excluded from the dataset, thus only
the first 24 subjects are used.



YouTube Celebrities dataset (YTC) is a collection of real-
world videos from YouTube website featuring 47 celebrities.
The videos are noisy, low resolution, and demonstrate large
variations in illumination, pose, expression, and other uncon-
trolled conditions. For each subject there are 3 video clips,
where each clip is divided into several sequences of unequal
resolution and duration. There is a total number of 1910
sequences, all encoded in MPEG4 at 25fps rate.

B. Evaluation Settings

In this section, we describe the procedure for preparation
of the training and testing data. We followed the common
settings used in the literature to allow for fair comparison.

Face tracking: It is a common practice to first track and crop
faces from each frame and only pass the subjects’ faces to the
recognizer. Similar to the related work, Viola-Jones method
[21] is used for extracting faces in the Honda/UCSD and
CMU-MoBo3 datasets. For the YTC dataset, the Viola-Jones
algorithm fails to detect faces in a number of sequences.
Thus, following Hu et al. [10] we use the Incremental
learning for Visual Tracking (IVT) algorithm [20]. IVT
returns the face area in all frames of all 1910 sequences,
however, some may not represent a correct face (see Fig. 3).

Resolution: All the cropped faces are resized to an equal
resolution. Images in Honda/UCSD dataset are resized to
20 × 20 pixels, CMU-MoBo to 40 × 40 pixels, and YTC
dataset to 20× 20 pixels (20× 20 resolution was selected to
reduce the computational cost).

Features: To experiment with different feature types, we use
histogram equalized intensity levels for the Honda/UCSD
dataset, Local Binary Pattern (LBP) codes [17] for the CMU-
MoBo dataset, and Histogram of Oriented Gradient (HOG)
descriptors [6] for the YTC dataset.

Train/Test image-set arrangement: For the Honda/UCSD
dataset we randomly select 20 sequences (one video per
subject) for training and the rest for testing. It should be
noted that, there is an alternative evaluation setting for the
Honda/UCSD dataset, which uses a predefined set of 20
sequences (one video per subject) for training without any
random permutations. Since recent algorithms (e.g., RNP and
ISCRC) achieve 100% accuracy with this predefined setting,
we use the random setting which provides more variation in
order to have a more meaningful comparison. For the CMU-
MoBo dataset we also randomly select 24 sequences, one
video per subject for training and the rest for testing.

For the YTC dataset we perform 5-fold cross-validation,
following the evaluation protocol used by Hu et al. [10].
Sequences of each subject are sequentially partitioned (no
prior shuffling) into 5 folds, where each fold contains exactly
9 sequences (from 3 clips) with minimal overlap between
folds. In each fold, 1 clip is randomly selected as the train
data (3 sequences) and the other 2 clips are used as the test

3In this work, we have directly used the pre-processed version of CMU-
Mobo dataset provided by the authors of [3]. The pre-processing procedure
includes face tracking, resolution, and feature extraction.

data (6 sequences). It is important to mention that there is
another evaluation setting for the YTC dataset first used by
Wang et al. [24]. In this setting, for every subject in each fold,
9 sequences (3 per clip) is randomly selected; 3 sequences
(1 per clip) for training, and the rest for testing. It is easier
for different methods to identify the subject with the second
setting, because there is one sequence from each clip in the
training set, which factors out differences in appearance of
the subject in different clips. For this reason, we believe
that the first setting is closer to real world scenarios, thus
we adopted the protocol used by Hu et al. in [10]. For all
three datasets we report accuracy results for the full length
sequences as well as truncated sequences that only contain
the first 50 frames of the sequence. All evaluations are done
using 5-fold cross-validation.

Comparisons: We compare the identification rate of our
proposed method against several relevant image-set based
methods proposed in the recent years (namely, MSM, MDA,
AHISD/CHISD, SANP, RNP, MSSRC, JSR, and ISCRC in
chronological order). Except for JSR, for all other methods
we used the code provided by the authors adjusted with their
suggested parameter values. For JSR we did not have access
to the code thus report the results provided by the authors.
However, it should be noted that the evaluation settings for
JSR are different than what we are using in this paper – they
used the Wang et al. setting for the YTC dataset, and 30×30
resolution for both YTC and CMU-MoBo datasets.

To make the comparisons fair, we used the same feature
type for training all algorithms (i.e., intensity levels for
Honda/UCSD, LBP for CMU-MoBo, and HOG for YTC).
Interestingly, this enhancement led to improved accuracy
for all algorithms (including the older algorithms such as
SANP) on the YTC dataset compared to the results reported
in the original papers. Also, it must be noted that the original
evaluation of RNP was done only on 29 subjects for the YTC
dataset, and the results obtained in [29] are higher than the
results obtained on the full dataset. Additionally, MSSRC
method comes with its own face tracking algorithm which
was disabled here, since the aim of this paper is to compare
the recognition power of different algorithms, therefore, we
use the same tracking algorithm in all evaluations.

V. RESULTS AND DISCUSSION

In this section, we summarize the results of the exper-
iments described above. First, we present and discuss the
performance results in terms of identification rate for the
proposed method (EASR+GP) as well as the most successful
methods in the literature (as listed above). Then, we provide
running time comparison for EASR+GP vs. the other meth-
ods. Performance results on each of the three benchmark
datasets is derived by exactly following the protocol de-
scribed in the Evaluation Settings section. This protocol is the
same as that in the related work.We perform Welch’s t-test
[26] to check whether the improvement in performance of
the proposed method is statistically significant compared to
the best performance of the contender methods. Outcomes of



TABLE I
IDENTIFICATION RATES (%) OF DIFFERENT METHODS ON THREE DATASETS (MEAN ± STANDARD DEVIATION)

DatasetDatasetDataset Honda/UCSDHonda/UCSDHonda/UCSD CMU-MoBoCMU-MoBoCMU-MoBo YouTube CelebritiesYouTube CelebritiesYouTube Celebrities

MethodMethodMethod YearYearYear 50 All 50 All 50 All

MSM 1998 87.69± 6.12 90.26± 2.15 92.50± 2.71 97.22± 1.70 70.57± 5.33 65.82± 4.56
MDA 2009 87.69± 2.81 96.41± 1.40 84.17± 6.56 95.28± 2.88 64.26± 3.76 69.22± 4.90

AHISD 2010 88.21± 3.89 83.59± 3.89 92.50± 2.71 95.56± 2.48 69.43± 4.16 63.83± 3.24
CHISD 2010 86.15± 2.92 91.28± 2.29 92.50± 2.71 98.61± 1.39 67.73± 5.09 69.65± 4.59
SANP 2011 87.18± 6.01 96.41± 2.29 92.50± 2.71 99.17± 0.76 67.59± 5.71 73.40± 3.18
RNP 2013 88.21± 4.66 93.33± 2.29 92.50± 2.71 98.33± 1.16 69.50± 5.30 73.48± 3.65

MSSRC 2013 91.28± 1.40 93.85± 2.29 91.11± 3.49 98.33± 1.52 70.78± 3.48 72.20± 3.52

ISCRC 2014 92.31± 4.44 95.38± 1.15 94.44± 2.20†94.44± 2.20†94.44± 2.20† 99.44± 0.76†99.44± 0.76†99.44± 0.76† 66.38± 4.73 70.71± 3.14

EASR+GPEASR+GPEASR+GP 94.87± 4.0594.87± 4.0594.87± 4.05 99.49± 1.15?99.49± 1.15?99.49± 1.15? 93.61± 2.7193.61± 2.7193.61± 2.71 98.89± 1.1698.89± 1.1698.89± 1.16 73.12± 3.1173.12± 3.1173.12± 3.11 77.23± 3.81�77.23± 3.81�77.23± 3.81�

Notes:
??? indicates statistically significant improvement of accuracy compared to the second best result at α = 0.05,
��� indicates statistically significant improvement of accuracy compared to the second best result at α = 0.1, and
††† indicates no significant difference between EASR+GP and the best result in the rest of the column (statistically).

the significance tests are described along with the summary
of performance results.

Table I summarizes Mean ± Standard Deviation of the
identification rates for different methods in the literature
on Honda/UCSD, CMU-MoBo, and YouTube Celebrities
datasets for both the truncated sequences (only the first 50
frames), as well as the full length sequences.

On the CMU-MoBo dataset, the proposed method
achieved a slightly lower identification rate compared to
ISCRC (less than 1%). However, based on the statistical anal-
ysis, there is no significant difference between the results.
It should be noted that the Honda/UCSD and CMU-MoBo
datasets are commonly used as benchmarks and considered
as easier recognition tasks since most of the algorithms in the
literature have already achieved above 90% accuracy. There-
fore, there is not much room for improvement. However,
we believe that the results on the most challenging dataset,
YouTube Celebrities, can rank different algorithms in terms
of performance and efficiency.

For the YTC dataset, the EASR+GP approach achieved
significantly better results and improved state-of-the-art by ≈
4% for the full length sequences. It also achieves the highest
accuracy for the truncated sequences, as reflected in Table I.
The superior results of the proposed method can be attributed
to its capability of handling extremely noisy samples in the
YTC dataset more efficiently compared to the rest of the
methods in the literature. It is worth mentioning that a simple
ensemble of GP binary classifiers without employing the
specialization – generalization learning strategy performed
poorly on YTC, testifying to the merit of our approach.

As mentioned before, the competing methods also ben-
efited from using HOG features, especially the top two
performers, namely RNP and SANP. When HOG features
are used, the average accuracy of RNP and SANP algorithms
increase by over 8% compared to the reported accuracies in
[29] and [10] that used intensity levels as features.

The identification rate for JSR on the YTC dataset with
full length sequences is 73.7% as reported in [5]. This
accuracy is only 0.2% higher than the best contender re-

ported here (it does not affect the result of the significance
test though). However, as mentioned before, the evaluation
setting used in [5] is different and the results are reported for
30 × 30 resolution, therefore we did not include this result
in Table I.

Running time comparison: We also report the average
computation time of all methods in experiments on the YTC
dataset for the truncated sequences (with 50 frames). All
the timing results are reported based on running Matlab
codes provided by the authors of each algorithm on a
machine with an Intel Xeon E5-2603 (1.8 GHz) processor
and 40 Gigabytes of RAM. We report the average online
identification time (in seconds) for one sequence (Table II).
We also provide the total offline training time (in seconds)
for methods that required training including the EASR+GP
method. While our proposed method requires an initial of-
fline training of the models (over 70% of this time is used for
training the GP models), it is important to note that the offline
training time is a one-time only overhead. For comparison,
SANP will require an extra 160 seconds for identifying only
10 test sequences compared to our method. Also, adding a
new subject to the gallery requires far less training time,
since only one new model needs to be constructed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a representation structure
for video sequences called Ensemble of Abstract Sequence

TABLE II
AVERAGE COMPUTATION TIME (SECONDS) OF DIFFERENT METHODS ON

THE YTC DATASET WITH TRUNCATED SEQUENCES (50 FRAMES).
T1: TOTAL OFFLINE TRAINING TIME. T2: AVERAGE ONLINE TESTING

TIME FOR ONE SEQUENCE.

MSMMSMMSM MDAMDAMDA AHISDAHISDAHISD CHISDCHISDCHISD SANPSANPSANP RNPRNPRNP MSSRCMSSRCMSSRC ISCRCISCRCISCRC EASR+GPEASR+GPEASR+GP
T1T1T1 N/A 24.21 N/A N/A N/A 1.18 N/A 22.31 156.18
T2T2T2 0.64 2.63 3.35 8.46 19.01 0.92 70.78 2.04 2.79

Note: N/A indicates online-only methods



Representatives (EASR) which is tuned to reduce the effect
of noisy frames in a sequence, along with a learning scheme
called specialization – generalization which tries to alleviate
the effect of noisy frames. In this scheme, EASRs are
employed to select the most informative sequences from the
training data to support efficient learning. These sequences
are then used to provide learning instances for training an
ensemble of Gaussian Process (GP) models. Identification
is done in a hierarchical manner using both the EASR
similarities as well as the ensemble of GP binary classifiers.

Evaluation of the EASR+GP approach on Honda/UCSD,
CMU-MoBo, and YouTube Celebrities datasets demonstrated
better and promising performance of the proposed method
compared to a host of other relevant methods including the
state-of-the-art. The improvement is especially noticeable
(and statistically significant) on the most challenging dataset
(YouTube Celebrities). For this dataset we compared our
work with an essentially enhanced version of the other
algorithms, as using HOG descriptors instead of intensity
levels as features improved their performance (compared to
the identification rates provided in the original works).

We are planning to go beyond the face identification task
and test the proposed method with datasets for other types
of video based recognition tasks (e.g., object categorization).
We are also working on an extended version of the proposed
method which uses other kernels (e.g., pyramid match kernel
[8]) for the Gaussian process models which can better take
advantage of localized feature descriptors such as Scale-
Invariant Feature Transform (SIFT) [15]. Another potential
extension of this work is to use EASR as a general purpose
filtering approach to improve other methods in the literature
in terms of their resilience to noisy frames.
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