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1 Introduction

Finding equations that “unify” a number of growth equations is a popular
pastime. By introducing additional parameters it is easy to devise equations
that include two or more well-known models as special cases. For example,
with 0 ≤ θ ≤ 1, y = f(t) and y = g(t) could be combined as

y = f(t)θg(t)1−θ ,

among many other possibilities.

Although this sort of generalization is no great achievement, including a
number of particular models in one over-all equation can simplify the study
of their properties. The presence and nature of asymptotes and inflection
points, for example, can then be studied once and for all in the general equa-
tion, without having to consider separately a large number of special cases. I
analyze here an expression that contains most of the univariate growth mod-
els used in forestry, with two “essential” parameters (i.e. excluding possible
linear transformations in y and t.) I shall focus on sigmoidal curves, with
one inflection point and a finite upper asymptote. Although I must disagree
with the assertion of Shvets and Zeide (1996) that nonasymptotic curves are
not acceptable for growth modelling; for example, there is strong evidence
that growth in volume per hectare in even-aged stands is not asymptotic,
and the gross accumulated volume may not show any inflection points.

Note that the hunt for growth equations is essentially the same as that for
probability distributions with an explicit formula for the cumulative (Burr,
1942). In fact, the general model here is closely related to Burr’s distribu-
tions with range (0,∞).

∗Working Paper. Royal Veterinary and Agricultural University, Department of Eco-
nomics and Natural Resources, Unit of Forestry. June 1997.
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2 The Box-Cox transformation

Most growth equations contain powers, logarithms, and/or exponentials.
These functions can conveniently be treated together using the Box-Cox
transformation (Box & Cox, 1964):

u =

{

xc−1
c if c 6= 0

lnx if c = 0

for x ≥ 0 and −∞ < c < ∞. It will be slightly more convenient to use the
negative of this, and to write it as

B(x, c) = lim
p→c

1− xp

p
. (1)

As an example, consider the Richards equation y = a(1 − k
c e
−bt)c. We can

write it as

B(
y

a
,
1

c
) = ke−bt ,

which with c→∞ (i. e. 1c = 0) includes also the Gompertz y = a exp(−ke−bt).

The inverse of the transformation is clearly

B−1(x, c) = lim
p→c

(1− px)1/p , (2)

defined for cx ≤ 1, or x ≤ 1/c if c > 0 and x ≥ 1/c if c < 0. Note that
B−1(x, 0) = e−x.

It will be useful to note here also the derivative:

dB(x, c)

dx
= −xc−1 . (3)

3 The general model

For simplicity, in what follows I shall ignore positive scale factors in y and
t in a growth equation y = f(t). That is, that equation will be taken as
representative of y = αf(βt) for any positive α and β. If it exists, the
asymptote will be 1 (corresponding to α in the scaled version), so that y
will lie in the interval 0 ≤ y ≤ 1.

Apart from linear transformations in y and t, most forestry univariate growth
models express a power or logarithmic function of y in terms of power or
exponential functions of t. Using the Box-Cox transformation, consider

B(B(y, a), b) = t , (4)
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for 0 ≤ y ≤ 1 and t ≥ 0, or

y = B−1(B−1(t, b), a) , (5)

or, more explicitly,

y = lim
p→a,q→b

[1− p(1− qt)1/q]1/p , (6)

where a and b are parameters, and there may be some linear transformation
implicit in t. As a shorthand, write G(a, b) for this relationship between y
and t. Write also G−(a, b) for the same relationship, but with 1 − y in the
place of y, that is, with the y-axis reversed.

It is easily verified that these two relationships include all but one of the
models listed by Zeide (1993). Of those, the three most general are the
Richards,

G(
1

c
, 0) : y = (1− e−t)c

or

G(−
1

c
, 0) : y = (1 + e−t)−c ,

Levakovic I1,

G(−
1

c
,−d) : y = (

td

1 + td
)c ,

and Weibull,

G−(0,
1

c
) : y = 1− e−tc ,

where the parameters c and d are positive. The others are special instances
of these (with Zeide’s terminology and notation): Hossfeld IV and Yoshida
I G(−1,−c), Gompertz G(0, 0), Logistic G(−1, 0), Monomolecular G(1, 0),
Bertalanffy G(1/3, 0), Levakovic III G(−1/c,−2), and Korf G(0,−c). As
will be seen, some apparently new extensions in the range of the parameters
are possible.

The exception is Sloboda’s model y = a exp[−b exp(−ctd)]. There are other
models that are not covered in this scheme, such as y = (tanh t)c and y =
exp(−atbe−t). This last one, used by Stage (1963) and currently being
investigated by Per Holten-Andersen (pers. comm.), is quite flexible but not
so convenient for some uses because it cannot be solved analytically for t.
It would be interesting to see if a similar range of curve shapes could be
represented by (5).

1This is equivalent to one of Burr’s probability distributions (Burr, 1942).
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4 Differential forms

Growth equations can be thought as the result of integrating differential
equations expressing the growth rate. There is considerable confusion about
this in the literature, however, apparently due to a failure in realizing that
“the” differential equation for a given growth equation is not unique. Given
y = f(t), a differential equation in terms of t can be obtained as dy/dt =
f ′(t). But we can also substitute t = f−1(y) to obtain dy/dt = f ′[f−1(y)], a
differential equation depending only of y (the same equation can be obtained
by differentiating t = f−1(y) with respect to y.) In fact, there is an infinity
of differential equations containing both y and t that will produce the same
result on integration2.

Here the most convenient form for studying the model properties is probably
the one without t. From (4),

dB(B(y, a), b)

dt
= 1 . (7)

Differentiating we can also write

B′(B(y, a), b)
dB(y, a)

dt
= 1

dB(y, a)

dt
= −B(y, a)1−b , (8)

or
dy

dt
= y1−aB(y, a)1−b , (9)

or
dy

dt
=

{

y1−a(1−ya

a )1−b if a 6= 0
y(− ln y)1−b if a = 0

Instead of (4) – (6), equations (7), (8) or (9) could be taken as the general
model definition. Then the growth curve equations may be obtained by
integration with appropriate initial conditions. With (t0, y0) we obtain from
(7)

B(B(y, a), b) = B(B(y0, a), b) + t− t0 . (10)

In particular, for y0 = 0,

B(B(0, a), b) =











B(1/a, b) if a > 0
1/b if a ≤ 0 and b < 0
−∞ if a ≤ 0 and b ≥ 0

(11)

2More striking is the equivalence between the growth equations obtained from Schnute’s
second-order differential equation and those from Richards’ first-order differential equation
(Yuancai, Marques and Macedo, to appear in Forest Ecology and Management.)
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For a curve through the origin this value must be added to t in (6). It
follows that for a ≤ 0 and b ≥ 0 the curve cannot go through the origin (as
is well-known for the Gompertz, in which a = b = 0.) Similarly, it is seen
that G−(a, b) cannot go through the origin if b ≤ 0.

5 Sigmoids

In order to have an asymptote at y = 1 the derivative in (9) must be zero at
that point. For having an inflection point the derivative must be zero also
at y = 0. Some analysis of the various possibilities shows that this is the
case if and only if a < 1, b < 1, and ab < 1. As noted before, if we want
curves through the origin we must also exclude the range a ≤ 0, b ≥ 0.

Within the sigmoidal parameter range, the y-position of the inflection point
corresponds to the maximum of (9). Differentiating and equating to zero,

yinfl = (
1− a

1− ab
)

1

a . (12)

The inflection point for G−(a, b) is located at 1 minus that, and, from sym-
metry, the same conditions on the parameters ensure a sigmoidal shape.

This range of parameter values includes the Levakovic I, which is defined
with a < 0 and b < 0 (Zeide, 1993). It, and the formula (12) for the inflection
point, agree with those known for the Richards (b = 0), and for the Weibull
(a = 0). The possibilities 0 < a < 1, 0 < b < 1, and G−(a, b) with a 6= 0, do
not seem to have been previously explored.

Contour curves for the height of the inflection point can be easily drawn by
solving (12) for b:

b = [1− (1− a)/yainfl]/a .

These are shown in Figure 1.

In addition to the inflection height, another easily interpretable property
for characterizing the various curves would be their “steepness”. For curves
through the origin it might be defined as the slope at y = 1/2, for example,
after scaling for y = 1/2 at t = 1. It can be conveniently obtained from

t = B(B(y, a), b)−B(B(0, a), b)

as the reciprocal of ( dt
dy )/t =

d ln t
dy evaluated at y = 1/2. We find

steepness = (1/2)1−aB(1/2, a)1−b[B(B(1/2, a), b)−B(B(0, a), b)]

(see Figure 2.)
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Figure 1: Height of the inflection point of G(a, b). The corresponding inflection
height for G−(a, b) is 1 minus this.

Figure 2: “Steepness” of curves from the family G(a, b).
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Figure 3: Steepness for G−(a, b). The range b ≤ 0 where the curves do not go
through the origin is omitted.

For G−(a, b) we have

steepness = (1/2)1−aB(1/2, a)1−b[B(B(1, a), b)−B(B(1/2, a), b)]

(Figure 3.)

References

Box, G. E. P., & Cox, D. R. (1964). An Analysis of Transformations. Journal

of the Royal Statistical Society, B, 26, 211–252.

Burr, I. W. (1942). Cumulative Frequency Functions. Annals of Mathemat-

ical Statistics, 13, 215–232.

Shvets, V., & Zeide, B. (1996). Investigating Parameters of Growth Equa-
tions. Canadian Journal of Forest Research, 26 (11), 1980–1990.

Stage, A. R. (1963). A Mathematical Approach to Polymorphic Site Index
Curves for Grand fir. Forest Science, 9, 167–180.

Zeide, B. (1993). Analysis of Growth Equations. Forest Science, 39 (3),
594–616.

7


