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1 Introduction

This is a progress report on the development of a general methodology for
producing stand models. The methodology must not be understood as a
package of computer programs which are fed with data to automatically
produce a growth model. Instead, it tries to be a coherent set of ideas
and techniques intended to help in the design and implementation of sound
models. An intelligent use of these techniques still requires a considerable
dose of skill and common sense.

The methodology consists essentially of a general approach to modelling,
a class of stand models, and procedures for the estimation of parameters.
General applicability is considered to decrease in this same order. The ap-
proach to modelling is believed to be essential for any kind of growth models.
The models proposed, while being fairly flexible, are by no means the so-
lution to all modelling problems. The estimation procedures are specific to
the class of models already mentioned, and even then, are only one among
several alternatives.

The first part of the paper develops these ideas, starting with an intro-
duction to some concepts from System Theory, within the context of stand
modelling. The second part illustrates some of the ideas with partial re-
sults from tests with a small data set. In order to preserve continuity in
the presentation, some technical details, extensions, comments and other

∗Pp. 315–333 in Elliott, D A. (Comp.) Mensuration for Management Planning of
Exotic Forest Plantations. New Zealand Forest Service, FRI Symposium No. 20. 1979.

†Scientist, Forest Research Institute, N. Z. Forest Service, Rotorua

1



non-essential information has been collected in the Notes at the end of the
paper.

2 Theory

2.1 The State Space Approach

The purpose of building a stand model is to predict future values of certain
outputs, such as volumes of timber, resulting from given inputs, silvicultural
treatments. Both inputs and outputs are functions of time. The outputs
at a future time t depend not only on the inputs applied between an initial
time t0 and t, but they depend also on the state of the system at time t0.
“Roughly, a state of a system at any given time is the information needed
to determine the behaviour of the system from that time on” (Zadeh, 1969).
From a slightly different point of view, the outputs depend on the complete
past history of inputs to the system. The state may then be “regarded as a
kind of information storage or memory or an accumulation of past causes”
(Kalman et al., 1969), “some compact representation of the past activity of
the system complete enough to allow us to predict, on the basis of inputs,
exactly what the outputs will be, and also to update the state itself” (Padulo
and Arbib, 1974).

To be more specific, we will assume that the values of the inputs and
of the outputs at a given time t are sets of numbers collected in finite-
dimensional vectors u(t) and v(t), respectively. In addition, the state will
also be a finite-dimensional vector. The components of the state vector are
called state variables. These restrictions are sufficient for most applications.

The behaviour of the system is described by a transition function

x(t) = F (x(t0), u, t − t0) , (2.1.1)

and an output function
v(t) = g(x(t)) , (2.1.2)

where x(t0) is the state at time t0, x(t) is the state at time t ≥ t0, u is
the input (a vector function of time, with only the values for times between
t0 and t affecting the value of (2.1.1) ), and v(t) is the value of the output
vector at time t. In words, a future state is completely determined by an
initial state, the elapsed time, and the values of the input during this time
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interval. The output is a function of the current state. For the moment we
are considering only deterministic systems; the extensions to probabilistic
systems are discussed later.

For our stand model we might take as state variables, for example, the
basal area, stocking (number of stems per hectare), and mean top height. In
matrix notation, we will write the state as a column vector x = (B, N, H)′,
where B is basal area, N is stocking, and H is mean top height. Our
inputs will be silvicultural regimes consisting of thinnings and possibly other
treatments. Usually these treatments occur at discrete points in time, and
their effect can be regarded as an instantaneous change in the state vector.
We can then simplify the discussion by considering the development of the
stand only between treatments. Thus, it is sufficient to model the stand as
a free system, that is, a system with no inputs or, equivalently, a system
with just one constant input.

Let us see how good the state vector x = (B, N, H)′ might be for a
stand model. (It is clear that any one-to-one transformation of x must
also be regarded as an equivalent state vector). Basically, the state must
describe the stand adequately for the purposes for which the model will
be used. Adequately in the sense that two stands with equal states (on a
given site) can always be regarded as practically equivalent in terms of their
present condition and of their future behaviour. In other words, the state
must determine, to a satisfactory degree of accuracy, both the future states,
according to (2.1.1), and the outputs in which we are ultimately interested,
through (2.1.2). The state vector x = (B, N, H)′ seems adequate for es-
timating the outputs usually required for management purposes. Volumes
for different products and standards of utilization may be estimated from
x with stand volume equations, or with procedures such as the “stand vol-
ume generator” of Goulding and Shirley (1978). As a determinant of future
behaviour, (B, N, H)′ may be considered as satisfactory if only moderate
thinning intensities and pruning heights are used. After a very heavy thin-
ning and/or pruning the amount of canopy remaining may not be enough to
make full use of the site potential, at least temporarily. The growth would
not be equal then to the growth of another stand which has reached the same
B, N and H values following a different path. For a good prediction of the
effects of heavy thinning and/or pruning it would seem necessary to include
an additional state variable, such as the mean green crown level. It is easy to
think of additional variables which might give a more complete description
of the stand, such as various characteristics of the d.b.h. distribution, for

3



example. In general, the selection of a state vector must be a compromise
between, among other things, the prediction requirements, on one hand, and
the availability of data for fitting the model and the information necessary
to use it, on the other.

Having discussed the selection of a state vector, we turn now to the
transition function. Notice that the transition function (2.1.1) must satisfy
some natural conditions:

(a) (consistency)

F (x(t), u, 0) = x(t) , for all times t, states x(t) and admissible input
functions u.

(b) (Composition or semigroup property)

F (F (x(t0), u, t1 − t0), u, t2 − t1) = F (x(t0), u, t2 − t0), for any t0 <
t1 < t2.

That is, the result of projecting the state first from t0 to t1, and then
from t1, to t2 must be the same as that of the “one go” projection
from t0 to t2.

(c) (Causality)

F (x(t0), u1, t1 − t0) = F (x(t0), u2, t1 − t0) if u1(t) = u2(t) for t0 ≤
t ≤ t1.

The most practical way of specifying a transition function with these prop-
erties is through a local transition function.

We first make an important distinction between discrete-time systems
and continuous-time systems. A discrete-time system is one in which the
time parameter t takes only integer values. In a continuous-time system t
can take any real values. It may seem natural to model a forest stand as
a discrete-time system, defined only when t is an integral number of years.
In a stand model we do not attempt to represent the seasonal pattern of
growth, so that predictions are strictly valid only at a fixed date within a
year, usually during the vegetative season. We will see, however, that there
are certain advantages in developing the model as a continuous-time system,
even if later in the applications we restrict it to integer time values.

In the discrete-time case the local transition function is completely
straightforward. We simply specify how the state and input at some time
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t determine the state at the next time t + 1 on the discrete-time scale. We
then observe how the “global” transition function (2.1.1) for any (integer)
time interval can be obtained by repeated application of this local “one-
step” description. Specifically, from (2.1.1), the state at time t + 1 is given
by

x(t + 1) = F (x(t), u, 1) .

The effect of the input is only through its value at time t (cf. the causality
property of F ), so that we can write the local transition function in the
simpler form

x(t + 1) = f(x(t), u(t)) . (2.1.3)

It is clear that this equation can be applied repeatedly to obtain the state
at any future time, given an initial state and the input. In some instances
it is also possible to obtain a closed analytical expression for the global
transition function (2.1.1) from (2.1.3) (e.g., Goldberg, 1958; Miller, 1968).
In any case, the behaviour of the system is completely determined by (2.1.3)
and (2.1.2).

For continuous-time systems some mathematical technicalities are in-
volved, but it is shown that, under some mild “smoothness” conditions on
the system, a local transition function takes the form of a differential equa-
tion

ẋ(t) = f(x(t), u(t)) (2.1.4)

(We use the notation ẋ for the time derivative dx/dt). The changes of state
over any finite time interval, as given by (2.1.1) , can then be obtained by
integration of (2.1.4). As in the discrete-time case, the system’s behaviour
is completely specified by (2.1.4) and (2.1.2).

Some words now about stochastic (or probabilistic) systems. In the de-
terministic systems discussed above, knowledge of the state x(t0) and of the
values u(t) of the input for t0 ≤ t ≤ t1 determine exactly the state x(t1). In
a stochastic system only the probability distribution of x(t1) is determined.
This leads us to the theory of Markov processes. Alternatively, we might
fit stochastic processes into the standard deterministic System Theory by
taking as the state the probability distribution of x(t), instead of x(t) (re-
member that the state can be any mathematical object, not necessarily a
finite-dimensional vector).

Instead of using these approaches we will find more convenient to keep all
the concepts about deterministic systems already mentioned, and to model
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stochastic systems by allowing random inputs. That is, we select a state
vector and specify the model by equations of the type (2.1.4) and (2.1.2) (or
(2.1.3) and (2.1.2)), where u is a random process of given characteristics.
We can also include random variables in (2.1.2), representing measurement
errors.

It is worth mentioning that a restriction to deterministic models is not
as strong as it might seem. It is clear that the evolution of the state of a
forest stand would be represented more realistically by a stochastic system.
However, the expected value or the most likely value or any other point
estimate of the state vector would behave as the state of a deterministic
system. It is theoretically possible to use the full probability distributions
of the predictions for making decisions. But the state of our knowledge
about forest stands and about the rest of the relevant aspects of a forest
operation suggest that point estimates will continue to be used for some
time. We will use a stochastic structure mainly for suggesting reasonable
estimation procedures, but it is anticipated that the models obtained will
be used mostly as deterministic models.

2.2 A Model

For concreteness, we select the state vector x = (x1, x2, x3)′ = (B, N, H)′,
and consider a model for predicting the effects of thinning regimes. The
extensions to other state vectors and other inputs is straightforward. A
continuous-time model will allow us to deal with the effect of site index
and of measurements taken at different dates during the year in simpler
ways. Also the theory of differential equations is more developed than that
of difference equations, or at least it is better known. A deterministic model
is considered first.

We model then the development of a stand between thinnings as a free
differential system (cf. 2.1.4):

ẋ = f(x) . (2.2.1)

(from now on, as is usual, we simplify the notation by dropping the dis-
tinction between a function x and its values x(t) when there is no risk of
confusion). The stand volume equations or stand volume generator (2.1.2)
will not be considered as part of the stand model. The development of
equations for estimating the instantaneous change of state produced by a
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thinning, essentially the change in basal area due to a given change in stock-
ing, is relatively simple and will not be discussed here.

It would be nice to use for (2.2.1) equations with a sound ecophysiological
basis. Extrapolations outside the range of data are usually less dangerous
this way. However, there are no satisfactory relationships of this type yet,
specially so for describing natural mortality. Once we decide on using an
empirical model, it is natural to use one which is mathematically convenient,
as well as flexible enough for describing the observed development patterns.
In particular, it is desirable that (2.2.1) could be integrated analytically.

Linear differential equations can be easily integrated, besides having
some other properties which might be useful when using the model for sim-
ulation or optimisation. Flexibility can be increased by not using the state
x directly in the differential equation, but some one-to-one transformation
of x instead. A useful class of transformations takes the form

y1 = k1B
c11N c12Hc13

y2 = k2B
c21N c22Hc23 (2.2.2)

y3 = k3B
c31N c32Hc33

Notice that these transformations also take out large part of the arbitrariness
in selecting as states variables basal area and stocking, and not mean d.b.h.
and spacing, for example. Many of the variables used in forestry are power
functions of B, N and H of the type (2.2.2) (e.g., mean d.b.h., average
spacing, relative spacing, Reineke’s density index, volume when estimated
by a logarithmic stand volume equation, etc.).

We propose then the model

ẏ = Ay + b , (2.2.3)

where
y = (y1, y2, y3)′ ,

yi = xci1
1 xci2

2 xci3
3 , i = 1, 2, 3 ,

and A and C = (cij) are 3 × 3 matrices of coefficients and b is a three-
dimensional vector of coefficients (the factors ki in (2.2.2) are absorbed into
A and b). Any of the coefficients may be functions of site index.

The transformation may also be denoted more neatly as

y = xC , (2.2.4)
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defining
xC = exp(C lnx) (2.2.5)

(the extension of scalar functions to vectors is understood in the stan-
dard way, as the vector of functions of the components: lnx =
(lnx1, lnx2, lnx3)′). The inverse transformation can then be written in
terms of the inverse of C as

x = yC−1
.

We will impose the constraints a31 = a32 = c31 = c32 = 0. Then the third
equation in (2.2.3) takes the form

dHc33

dt
= a33H

c33 + b3 . (2.2.6)

This is just one way of writing von Bertalanffy’s growth model (Bertalanffy,
1949, 1957; Richards, 1959). This model has been very popular in recent
years for describing height growth in the development of site index equations
(e.g., Elliott and Goulding, 1976; Burkhart and Tennent, 1978). In a way,
(2.2.3) might be regarded as a multivariate generalisation of Bertalanffy’s
model. This becomes clearer if we write it as

dxC

dt
= AxC + b . (2.2.7)

Now we derive a stochastic model by introducing a random input, as
suggested at the end of 2.1. The simplest way of doing this is by changing
(2.2.7) to

dxC

dt
= AxC + b + Bẇ , (2.2.8)

where B is a 3×3 matrix and w is the standardised three-dimensional Wiener
process (or Brownian motion, process). The relevant properties of this pro-
cess are that the increments wi(t2) − wi(t1) (i = 1, 2, 3) are independent
random variables, normally distributed with mean 0 and variance |t2 − t1|,
and that increments over non-overlapping time intervals are independent
(see for example Karlin, 1966).

The important assumptions here are that the random input (which may
be thought as representing the effects of environmental variation and of
the approximate nature of the model) enters additively in (2.2.8), and that
the increments are independent. The matrix B accounts for correlation
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between the components of the random process, and the proportionality of
the covariance matrix to |t2 − t1| is a consequence of the independence of
the increments. It can be shown (Gihman and Skorohod, 1972, Theorem 1)
that if we assume that w is continuous, the normality of the distribution
follows.

It must be admitted that the assumptions of additivity and of indepen-
dent increments are not very realistic. For one thing, there are climatic
periodicities (Tomlinson, 1976). However, the stochastic structure of the
model is intended only for the development of estimation procedures. Gen-
eral statistical experience suggests that in most cases the performance of
estimators is not too affected by moderate deviations from the distributional
assumptions.

2.3 Estimation

We are confronted now with the problem of estimating the parameters of
the model using permanent sample plot data. The parameters are the coef-
ficients of A, b, C and B (or rather BB′, see below). Some of the coefficients
may actually be functions of the site index, containing other parameters to
be estimated; more on this later.

The method of Maximum Likelihood (M.L.) provides a convenient
methodology for this purpose. The M.L. estimators usually perform well,
and some optimum asymptotic properties can be proven (assuming that
the model used is the “true” one, whatever this means). More important,
the method has two very useful characteristics. First, given a model and
data, no matter how complicated the model, the method of M.L. specifies
a well-defined procedure for estimating the parameters: we “simply” set
up the likelihood function (the probability density for the observed data,
considered as a function of the parameters) and select the values of the
parameters for which the function has a maximum. Second, the following
invariance property is true: if θ̂ is a M.L.E. of θ then g(θ̂) is a M.L.E. of
g(θ), for any function g(θ) of θ (Zacks, 1971). This means that parameter
transformations have no effect, and that any quantities computed from the
model with the M.L. estimates substituted for the parameters will be M.L.
estimates for those quantities.

To find the likelihood function we first make another assumption, that
observations from different plots are statistically independent. This is an
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approximation, since observations for different plots made in a same year
will tend to be correlated. If the number of measurement periods is large
enough we might expect the assumption to be acceptable.

We use pairs of successive measurements with no thinnings between
them. Let x1 be the first measurement and x2 the second measurement
for one of these pairs. Given the conditional probability density f(x2|x1)
of x2 given x1, from the assumptions of independent increments and of in-
dependence between plots it follows that the likelihood function is just the
product of the f(x2|x1) over all the pairs. It is more convenient to work
with the logarithm of the likelihood function,

lnL =
∑

ln f(x2|x1) , (2.3.1)

where the sum is over all the pairs of successive measurements without
thinnings between them.

To find f(x2|x1), consider a measurement pair with x1 being the state
at time t1 and x2 the state at time t2. According to our model, given x1,
x2 is obtained by integration of

dxC

dt
= A(xC − a) + Bẇ (2.3.2)

between t1, and t2 with initial condition x(t1) = x1. Here a = −A−1b,
an asymptote or equilibrium point for xC . There is no loss of generality in
assuming that A has distinct eigenvalues, so that it can be factorised as

A = P−1ΛP , (2.3.3)

where

Λ =

⎡
⎢⎣

λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎥⎦ ,

the λi are the eigenvalues, and the rows of the 3× 3 matrix P are the (left)
eigenvectors of A. The eigenvalues are assumed to be real, since complex
eigenvalues imply an oscillatory behaviour which is unacceptable for our
system.

Writing
z = P (xC − a) (2.3.4)
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and ∆t = t2 − tl, the integration of (2.3.2) is equivalent to integrating

ż = Λz + PBẇ (2.3.5)

between 0 and ∆t, with the initial condition z(0) = P (xC
1 −a). The solution

takes the form
z(∆t) = eΛ ∆tz(0) + ε , (2.3.6)

where, conditional on x1, ε is multivariate normal with mean 0 and covari-
ance matrix

V =
∫ ∆t

0
eΛsPBB′P ′eΛs ds (2.3.7)

(Erickson, 1971).
Note:

eΛs =

⎡
⎢⎣

eλ1s 0 0
0 eλ2s 0
0 0 eλ3s

⎤
⎥⎦ .

Performing the integration in (2.3.7) we find

V = eΛ∆tSeΛ∆t − S , (2.3.8)

where the elements of S are sij = σij/(λi + λj), and σij are the elements of
the matrix Σ = PBB′P ′.

Since
ε = P (xC

2 − a) − eΛ ∆tP (xC
1 − a) , (2.3.9)

the probability density f(x2|x1) can be obtained by multiplying the proba-
bility density of ε by the absolute value of the Jacobian of the transformation
(2.3.9). The Jacobian is the determinant

∣∣∣∣ ∂ε

∂x2

∣∣∣∣ = |P |
∣∣∣∣∣
∂xC

2

∂x2

∣∣∣∣∣ = |P | |diag(xC
2 )C diag(x−1

2 )|

= |P | |C| |diag(xC−I
2 )| .

We finally get for the log-likelihood (2.3.1):

lnL = −1
2
(np ln 2π +

∑
ln |V | +

∑
ε′V −1ε) (2.3.10)

+n[ln abs(|P | · |C|)] + 1′(C − I)
∑

lnx2 ,

where 1 = (1, 1, 1)′, the sums are over all observation pairs, n is the number
of observation pairs, p = 3 is the length of the state vector, V is given by
(2.3.8), and ε is given by (2.3.9).
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The parameters for the third equation of the model, (2.2.6), are best
estimated separately. Note that H alone is a perfectly adequate state vector
when the outputs of interest are functions of H. The mean top height
development may then be regarded as a self-contained subsystem which can
be studied in isolation.

Initially, the site indices for the different plots are unknown. Some or
all of the coefficients in (2.2.6) may then differ between plots, being func-
tions of the unknown site quality. Also, assuming as usual that thinnings do
not affect mean top height, all the measurements and also the ages of mea-
surement carry information on height growth, not only the periods without
thinnings as in the case of the other state variables. All this makes the prob-
lem of estimating the parameters of the height growth submodel different
and more complicated than the estimation of parameters for the rest of the
model. A method has been developed for modelling the height growth and
site index relationships, and it will be published elsewhere.

Once estimates for the site indices and for the parameters in (2.2.6) are
available (some or all of them functions of site index), they are substituted
into (2.3.10). Note that a33 = λ3, and b3 = −λ3a3. Since the eigenvectors
are defined only up to a actor of proportionality, we normalise them arbi-
trarily by setting P11 = P22 = P33 = 1. The constraints c31 = c32 = 0 and
a31 = a32 = 0 mentioned in section 2.2 are enforced (these last ones result
in P31 = P32 = 0). Finally, we must ensure that V is always a symmetric
positive-definite matrix. The easiest way of doing this is by substituting
V = TT ′, where T is a lower-triangular matrix. This also simplifies the
computation of |V | and of the quadratic form in (2.3.10) (see Martin et al.,
1971). Some of the remaining parameters may actually be functions of site
index, containing other parameters to be estimated. Now M.L. estimates
for the parameters can be obtained by finding a maximum of (2.3.10), us-
ing any of the procedures available for unconstrained nonlinear optimisation
(Chambers, 1973; Murray, 1972; Jacoby et al., 1972).

The selection of a good starting point for the optimisation is important.
A possible approach is to first select C, by guessing or from previous ex-
perience with other sets of data, and then to fit (2.2.3) by ordinary linear
regression, using central finite differences to approximate the derivatives.
This is assuming that after introducing the site index we still have a model
linear on the parameters. As a second stage, a restricted version of (2.3.10)
may be maximised. Specifically, if Σ in (2.3.8) is taken as a diagonal matrix,
then its M.L.E. can be obtained explicitly by equating to zero the partial
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derivatives of (2.3.10), resulting in

σ̂ii =
1
n

∑
ε2i /Ri(∆t) , (i = 1, 2, 3) , (2.3.11)

where

Ri(∆t) =
e2λi ∆t − 1

2λi
.

V can then be eliminated from (2.3.10), so that the terms
∑

ln |V | +
∑

ε′V −1ε

reduce to
p∑

i=1

[n ln σ̂ii +
∑

lnRi(∆t)] + np . (2.3.12)

3 Results

3.1 Data

The permanent sample plots for radiata pine in Southland Conservancy
were used. The main reasons for choosing this particular set of data were
that it was readily available (a preliminary analysis had been carried out by
B. Manley), and that the amount of data seemed about right for developing
the estimation procedures at a reasonable cost in computing resources.

The data was screened by examining scattergrams displaying the mean
top height, basal area, stocking and mean d.b.h. measurements, and also
annual increments for the same variables computed from successive mea-
surements. All measurements showing inconsistent or highly suspect values
were eliminated. In the case of increments where it was not clear which
of the two measurements was in error both measurements were eliminated.
Two complete plot series with numerous inconsistencies were left out of the
study. Since the time was limited and the main purpose was to develop
methods, no attempt was made at tracing inconsistencies to the original
records or to the individual tree measurements. A considerable amount of
data was discarded.

It seemed useful to introduce some kind of correction for reducing part
of the variation caused by differences in dates of measurement. The only
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data found on seasonal growth patterns for radiata pine was in Jackson et
al. (1976) and in unpublished reports by J. Beekhuis (pers. comm.), both
for the central North Island. The accumulated growth as a fraction of a
year’s growth was plotted against the months of measurement, with the
origin in July. Corrections to be applied to the age were obtained for each
month by reading from the graph back onto the growth axis. The basal
area growth follows a pattern different from that of the height growth, but
a reasonable compromise was found for the months of February to October.
For November to January the corrections become large and different for
height and basal area, so that the few measurements taken in these months
were discarded. The corrections used, to be added to the age, are:

February -0.2 July 0.0
March -0.2 August 0.1
April -0.1 September 0.2
May -0.1 October 0.3
June 0.0

Figure 1:

The data used for the height growth model included 58 plots, with a
total of 247 measurements. Figure 1 shows the data, together with the site
index curves.
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Figure 2:

For estimating the rest of the parameters, 171 pairs of measurements
from 56 plots are available. These are shown in the stereogram of Fig. 2.
The three-dimensional distribution and trends of the measurements of basal
area (B), stocking (N) and mean top height (H) may be appreciated using
a pocket-size lens stereoscope. The range of the axis is from 0 to 130 m2/ha
for B, from 0 to 3500 stems/ha for N , and from 0 to 50 m for H. Pairs
of successive measurements with no thinnings between them are joined by
straight line segments. The dotted curves correspond to predictions by a
provisory model, and are discussed in 3.3.

It can be seen from the stereogram that the observations do not cover
adequately the region of interest in the B-N -H state space. Also, most
of the data seems concentrated near a surface. In addition to suggesting
the likely range of validity of a stand model based on a particular set of
data, this kind of graphical representation seems potentially useful for the
planning of future measurements.

3.2 Height Growth

The model used may be written in the form

dHc

dt
= b(ac − Hc) , (3.2.1)

with an initial condition H(t0) = 0. In addition to the Wiener process rep-
resenting environmental variation, as in 2.2, a random variable representing
measurement error was also included.

Three ways of allowing for the differences in site quality were studied in
detail (with t0 = 0):
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(a) Parameters a and c were forced to be the same for every plot, and b
free to take a different value for each plot. This produces site index
curves with a common upper asymptote (the asymptote is a).

(b) Parameters b and c the same for every plot, and a free. This produces
anamorphic site index curves.

(c) Parameters a and b related by a = α + βS, with α, β and c common
for all plots. S is the predicted height at age 20 years for each plot.
and involves the free parameter b. This covers (a) and (b) as partic-
ular cases (β = 0 and α = 0, respectively), at the cost of one extra
parameter.

The “measurement” variance was allowed to take different values for each
of the plots, and the “environmental” variance was taken as proportional
to b, with the same proportionality constant for all plots. No appreciable
improvements were observed when t0 was allowed to take values different
from zero.

The following guides may be used to compare models in terms of the like-
lihood function. Edwards (1972) considers that a difference of about two
units in the log-likelihood might be taken as “significant”. When compar-
ing models with different numbers of parameters, Akaike (1975) and Stone
(1977) suggest subtracting one unit for each additional parameter. Only dif-
ferences in the log-likelihood matter; the exact values are largely irrelevant.

The following results were obtained for each of the models:

(a) Log-likelihood = 374.6
a = 74.8
c = 0.783

(b) Log-likelihood = 377.3
b = 0.0267
c = 0.775

(c) Log-likelihood = 377.9
α = -46.3
β = 5.08
c = 0.774

There are no large differences in goodness of fit between the three models,
although the data gives slightly better support to hypothesis (b). Graphical
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comparison of the height-age curves shows little practical differences up to
the age of 30 years. Over 30 years the three models tend to diverge for low
and for high site indices. This suggests that the data do not define well the
trends in those regions (see Fig. 1), and any of the models must be regarded
as unreliable for old stands in extreme sites.

Model (a) was selected, since it greatly simplifies the development of the
rest of the stand model. The resultant site index curves are shown in Figure
1 (heights and site indices are in metres). These curves agree closely with
those obtained by Burkhart and Tennent (1978) using a different approach.

3.3 Full Model

Basal area, stocking and mean top height were adopted as the state variables.
Three state variables is certainly a minimum for a satisfactory stand model
(Garcia, 1968, 1974). As mentioned in 2.1, it might be desirable to add the
green crown level and perhaps other variables. The green crown level might
improve the performance of the model when heavy thinning or pruning are
involved, and also improve the estimation of outputs by explaining part of
the variation in log quality and in stem form. However, only a small part of
the permanent sample plots available include measurements of crown level.
It seems better at this stage to use the simpler three-dimensional state vector
and to assess the need for adjustments later (see 3.4).

A problem in implementing the model is to decide in what form the site
index should enter in it. A convenient assumption is that the trajectories fol-
lowed by stands in the state space (Fig. 2) do not depend on site index, only
the speed of movement along a trajectory depending on it. In other words,
the effect of the site index is a change in the time scale. Similar-assumptions
have often been used in forestry, for example in Beekhuis (1966). The model
of Elliott and Goulding (1976) does not make this assumption, but even so,
the predicted trajectories differ remarkably little among site indices. It
seems useful to adopt this as a working hypothesis and to check it later at
the validation stage.

The height growth model with common asymptotes is compatible with
the time-scaling effect hypothesis, and this is the main reason why it was
selected. In terms of the stand model (2.3.2), the hypothesis implies that
only the eigenvalues of A are functions of the site index; all the other pa-
rameters are constants. Also, the eigenvalues depend on site index through
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a proportionality factor which is the same for all the eigenvalues. An easy
way of handling the effect of the site index when fitting the model is then
to multiply the age by this factor, which can be taken as λ3. λ3 is the same
as −b in 3.2, and is a known function of the site index for each plot.

Two algorithms were tried for maximising the log-likelihood: a quasi-
Newton procedure using finite difference approximations for the derivatives,
coded in Algol (Lill, 1970), and a Fortran implementation of Nelder and
Mead’s (1965) Simplex method (O’Neill, 1971). Both algorithms were cho-
sen mainly because they do not require derivatives and were readily avail-
able. Quasi-Newton procedures (also known as Davidon-type or variable-
metric methods) are usually very efficient, with good rates of convergence,
specially near the optimum. The Simplex procedure is more robust, often
succeeding with difficult functions when other methods fail, but it is gener-
ally regarded as slower, specially when the number of variables is large.

Attempts using Lill’s program failed repeatedly, with the procedure ex-
iting after a few iterations without reaching an optimum. It was found
later that it also fails in the some way with a simple test function, for some
starting points. No errors have been detected in the transcription from the
publication, but some misprint is suspected.

With the Simplex method a rapid initial improvement in the function
value was generally obtained, but convergence was extremely slow after-
wards. Several attempts with different starting points using the full function
(2.3.10) (20 variables) were discontinued because of slow convergence.

Somewhat better results were obtained with a stage-wise approach, as
suggested at the end of 2.3. First, some values were selected for C, and
initial estimates for the other parameters were obtained by linear regression
with finite-difference approximations. Then the optimisation procedure was
applied using (2.3.12). In addition, in this second stage the matrix A was also
restricted to be diagonal (which implies P = I) . This reduces the number of
variables (parameters) to 10. Much better values of the log-likelihood than
before were obtained, but still convergence was not complete after several
thousand function evaluations. In a third stage, the constraint P = I was
lifted, increasing the number of variables to 14, and the optimisation was
restarted. The computation was discontinued after about 6000 function
evaluations, with the log-likelihood still decreasing at a very slow but roughly
linear rate.

This seems to confirm the slow ultimate convergence of the Simplex
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method for functions of many variables. It is hoped that the use of other
quasi-Newton procedures will produce much better results. The computing
time on the ICL 2980 computer, with the full 20-variables function (2.3.10),
is approximately 1.3 minutes per thousand function evaluations, for our sam-
ple of 171 observation pairs. The total optimisation time may be expected
to be roughly proportional to the number of observations.

Although their discrepancy from the M.L. estimates is unknown, the
best parameter values obtained until now way be used to illustrate some
characteristics of the model and possible methods of validation.

According to the concepts explained in 2.1 and 2.2, the model defines a
field of velocities and a set of trajectories or flow-lines that fill completely the
B-N -H state space. Through each point in this space, passes one and only
one trajectory. No matter how a stand arrives to a point, it will follow the
corresponding trajectory until the next thinning. The effect of a thinning
is a jump from one trajectory onto another. Observing the paths followed
by stands in Figure 2, and considering the natural variability in this kind of
data, these ideas do not seem entirely unrealistic.

A few trajectories predicted by the provisional model are included in
Figure 2 as dotted curves. Each dot corresponds to one year growth for
site index 23. They do not seem too unreasonable, except for the higher
densities where one would expect heavier mortality. It might be observed
that there are very few plots in this region, and their trends are somewhat
erratic.

Figure 3 represents two “cuts” through Figure 2, showing projections of
the predicted velocity field at the planes H = 15 m and H = 30 m. The line
segments represent the directions in which stands at different points in the
state space would move. The length of the line segments corresponds to two-
years’ growth on site 23. 0f course, reliable prediction is only possible within
the area covered by the data. In particular, the increases in stocking shown
for the region of high stocking and low basal area are clearly impossible. The
possibility that predictions would be improved by constraining the model to
feasible behaviour over all or part of the state space is still an open question.
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Figure 3:

3.4 Validation

The discussion is limited to demonstrating a particular technique which
seems useful for assessing results obtained with models of the type described
in 2.2. For other validation methods which could also be used see Goulding
(1978).

From (2.3.6), note that the M.L.E. for the logarithms of the absolute
values of the zi are linear functions of time. We might then plot the ln |zi|
computed from the data versus t, and look for systematic deviations from
linearity.

It seems better, instead, to plot ln |zi| vs. ln |zj | for all the combinations
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of i and j. These relationships still tend to straight lines, and it might be
expected that large part of the variation due to year-to-year differences in
growth rates would be eliminated. In addition, with the particular assump-
tion on the effect of site index made in 3.3, the slopes λi/λj must be the
same for all plots.

The data have been plotted in this way in Figure 4. Successive mea-
surements with no thinnings between have been joined with straight line
segments. The same data is also shown three-dimensionally in the stere-
ogram in Figure 5. In addition, in Figure 4 the plots have been grouped
in three site index classes and distinguished with different line types: site
indices less than 22.5 with dotted lines, 22.5 to 23.5 with dashed lines, and
over 23.5 with continuous lines. The small triangles mark measurements
immediately following a thinning.

In general, the trajectories seem to follow reasonably well the theoretical
pattern of parallel straight lines. Some notable exceptions correspond to the
plots with high density and erratic mortality already mentioned. There is no
evidence of systematic differences in slope or in curvature between site index
classes; the site index hypothesis seems satisfactory. The graphs also give
some information on the effect of thinnings. In most cases the trajectories
immediately after thinnings (triangles) are not appreciably different from
those for other measurements, but there are several instances in which clearly
this is not so. Identification of these measurements and examination of the
plot records might show if there is anything special about them, if they
correspond to exceptionally heavy thinnings or perhaps high prunings, and
indicate if adjustments to the model become necessary.

Notes

Section 2.1

System Theory has been developing as an independent discipline during
the 1970s and late ’60s, embracing and extending what was the “state space
approach” in the Control Theory of the ’60s. In turn, Control Theory derived
mainly from part of what was called Cybernetics in the ’50s. For further
details the following sequence of readings can be recommended:

Garcia (1974), Chapter 1 of Bellman and Kalaba (1965), Chapter 1 of
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Figure 4:
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Figure 5:

Wiberg (1971), and Padulo and Arbib (1974). Patten (1971) and Bellman
and Kalaba (1960) are also useful.

Many efforts in modelling stands have suffered from failures in selecting
appropriate states and transition functions. The model of Beekhuis (1966)
is remarkable in being perhaps the first model for managed stands with a
sound structure. It had an adequate state vector, and its transition function
“almost” satisfied the semigroup property. The same can be said of many
later models (e.g., Elliott and Goulding, 1976), but some ones with serious
deficiencies continue to be produced. It is felt that a better appreciation
of system-theoretic ideas might help to clarify the issues involved (Garcia,
1968, 1974).

The discussion of systems in section 2.1 has actually been restricted to
time-invariant systems. This is not considered important, since time-varying
systems, that is those whose behaviour depends explicitly on time, can be
formulated as time-invariant ones by including time as an additional state
variable.

Section 2.2

What we have called the Bertalanffy model is frequently referred to as the
Chapman-Richards model in the forestry literature. It seems to have been
first proposed by Bertalanffy (1949, 1957), and later its properties exten-
sively analysed by Richards (1959). The usual reference for Chapman is
Chapman (1961), where the model is used but nothing new about it is
added.
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A useful reference for linear differential systems is Wiberg (1971).

The notation for the stochastic differential equation (2.2.8) follows Er-
ickson (1971). Strictly speaking it might be considered as incorrect, because
the Wiener process is not differentiable. More correct and more usual (for
stochastic differential equations) would be

dxC = (AxC + b) dt + B dw

(Gihman and Skorohod, 1972). However, (2.2.8) has been used because it
looks more familiar for most people.

Section 2.3

Instead of permanent sample plot data, stem analysis could be used if some
way of estimating mortality is available. A combination of both types of
data is also possible.

Many authors define a likelihood function only up to a factor of propor-
tionality (which can depend on the data).

A maximum of the likelihood function may do not exist. In practice this
usually indicates an inadequate formulation of the model. More troublesome
is the possibility of local maxima (see Chambers, 1973).

All the results of sections 2.2 and 2.3 are valid for state vectors with any
number of components.

It may be sometimes desirable to impose constraints on some of the
parameters when maximising the log-likelihood. Many constraints can easily
be implemented by transformations of parameters. For example, parameters
constrained to be non-negative may be replaced by the square of a new
parameter. In fact, any constraint can be enforced through transformations,
possibly at the cost of adding new variables. Alternatively, a Nonlinear
Programming algorithm may be used.

Section 3.2

The guides suggested for comparing models on the basis of likelihoods must
be regarded only as a rough aid to intuition, and used in conjunction with
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other knowledge or sources of evidence, if possible. In general, the whole
problem of Statistical Inference tends to be an ill-defined one. See Barnett
(1973) for a good review of some of the issues involved.

An unexpected result was that in all cases the estimate for the “environ-
mental” variance was zero. However, the estimated correlations between the
estimates for the two variances were fairly high. This suggests that the data
does not allow a reliable partition of the variation into “environmental” and
“measurement” components.

Section 3.3

A practical way of simulating the development of a stand with the model is
as follows. First, compute the one-year transition matrix corresponding to
the appropriate site index as

T = P−1eΛP ,

and the vector h = a−Ta. Compute y(t0) = xC for the initial state vector
x = x(t0). Then project forward by repeatedly applying the recursion

y(t + 1) = Ty(t) + h .

The states are recovered through x = yC−1
. Note that the zeros in the

matrices allow for some simplification in the computations.

It seems evident that to develop a reliable stand model a fair amount of
data, well distributed over the state space, is required. A possible strategy
for developing local models for regions where the data are inadequate might
be the use of “adapted” models. This means that part of the parameters,
for example the matrix C and perhaps also P , are taken from other region
where a good model is already available. Then the optimization, possibly
using the simplified log-likelihood given by (2.3.12), is carried out over the
remaining parameters using the local data.

References

Akaike, H. 1973: Information Theory and an extension of the maximum like-
lihood principle. In: Petrov, B.N. and Czaki, G. (eds), 2nd International
Symposium on Information Theory. Akademia Kiado, Budapest.

25



Barnett, V. 1973: Comparative Statistical Inference. Wiley, London.

Beekhuis, J. 1966: Prediction of yield and increment in Pinus radiata stands
in New Zealand. Technical Paper No. 49, Forest Research Institute, N. Z.
Forest Service.

Bellman, R. and Kalaba, R. 1960: Dynamic Programming and Adaptive
Processes: Mathematical foundation. IRE Transactions on Automatic
Control, AC–5, 5–10. (Reprinted in: Bellman, R. and Kalaba, R. (eds)
Selected papers on mathematical trends in Control Theory. Dover, New
York, 1964).

Bellman, R. and Kalaba, R. 1965: Dynamic Programming and modern Con-
trol Theory. Academic Press, New York.

Bertalanffy, L. von 1949: Problems of organic growth. Nature, 163 : 156–
158.

Bertalanffy, L. von 1957: Quantitative laws in metabolism and growth. The
Quart. Rev. Biol., 32 : 217–231.

Burkhart, H.B. and Tennent, R.B. 1978: Site index equations for Radiata
pine in New Zealand. N .Z. J. For. Sci. 7 : 408–416.

Chambers, J. M. 1973: Fitting nonlinear models: Numerical techniques.
Biometrika, 60 : 1–13.

Chapman, D. G. 1961: Statistical problems in population dynamics. Proc.
Fourth Berkeley Symp. Math. Stat. and Prob. University of California
Press, Berkeley.

Edwards, A. W. F. 1972: Likelihood. Cambridge Univ. Press.

Elliott, D. A. and Goulding, C .J. 1976: The Kaingaroa growth model for
Radiata pine and its implications for maximum volume production (ab-
stract). N. Z. J. For. Sci., 6 : 187.

Erickson, R. V. 1971: Constant coefficient linear differential equations driven
by white noise. Ann. Math. Statist., 42 : 820–823.

Garcia V., O. 1968: Problemas y modelos en el manejo de las plantaciones
forestales. U. of Chile, Esc. Ing. Forestal. (thesis).

26



Garcia V., O. 1974: Sobre modelos matemáticos de rodal. Informe Tecnico
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