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Abstract

A whole-stand growth model, Scube, was developed for spruce-dominated, even-aged, natural and planted stands, using permanent
sample plot data from the Sub-Boreal Spruce (SBS) biogeoclimatic zone of British Columbia, Canada. Available data were limited,
with no information on mature planted stands or thinning treatments. A parsimonious model design, incorporating knowledge
of stand dynamics and experience from other forests, made possible a logical reproduction of observed behavior and plausible
extrapolations to other conditions. Scube consists of a system of four differential equations, describing the evolution of four
state variables: top height, trees per hectare, basal area, and a stand closure indicator. Concepts of closure and site occupancy
drive the behavior of young stands and the response to thinning. Parameters were estimated through numerical optimization of
several residual functions, reflecting different projection interval types and weighting strategies. Differences in estimates among the
various criteria were small. Calculations are facilitated through expressions that remain invariant in the absence of disturbances.
The methods generalize the algebraic difference approach (ADA) and related forest modelling techniques, linking them to standard
dynamical systems theory.
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1. Introduction

Together with lodgepole pine (Pinus contorta Douglas ex
Louden), interior spruce is one of the main commercial trees in
British Columbia, with both species accounting for most of the
planting and wood production in the Province. Interior spruce
refers to the predominant complex of white spruce (Picea
glauca [Moench] Voss), Engelmann spruce (Picea engelmannii
Parry), and their hybrids, where the individual species cannot
be easily distinguished (Coates et al., 1994; Xie et al., 1998).
It is prevalent in the Central Interior, where interest in it might
increase after a mountain pine beetle epidemic that has killed
much of the mature pine over the last decade (Walton, 2009).
We focus on the economically important Sub-Boreal Spruce
Zone (SBS), which occupies the northern half of the Interior
Plateau (Meidinger and Pojar, 1991).

Reliable growth models are essential for effective long-term
planning, sustainability assessments, and the evaluation of sil-
vicultural alternatives such as planting density, thinning, and
rotation length. We are particularly interested in forecasting
the development of the extensive second-growth planted stands
coming on stream, as they are the main target of management
planning decisions. Two models have been available for spruce
in the SBS: TASS and VDYP 7. TASS is based on assump-
tions about the crown and stem development of individual trees,
with parameters adjusted by comparison of aggregated predic-
tions with field data at a regional or national level (Mitchell,
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1975; Di Lucca, 1998; Goudie, 1998). VDYP 7 is only appli-
cable to natural stands (Ministry of Forests and Range, 2009c).
This article describes Scube (named after Stand, Spruce, SBS),
a whole-stand growth model for spruce-dominated even-aged
interior spruce stands, developed using permanent sample plots
from the SBS.

The model uses a state-space approach, now standard in
many disciplines dealing with processes evolving in time
(Garcı́a, 1994, 2011; von Gadow and Hui, 1999, p. 47–49).
Instead of trying to represent functions of time directly, one
models rates of change for a number of state variables chosen
to describe adequately the dynamics of the system. Integration
produces global transition functions that predict the state at any
time given the state at some other time. In forestry, univariate
transition functions are often called “algebraic difference equa-
tions” (e.g., Tomé et al., 2006), although mathematically they
are neither difference equations nor algebraic. The objectives
were to faithfully reproduce the observed growth trends and to
produce reasonable extrapolations for conditions not present in
the data. To this effect, stands were modelled as a continuous-
time dynamical system with four state variables, top height,
trees per hectare, basal area, and a measure of stand closure,
making sure that the equations for their rates of change were
logically consistent, biologically sound, and parsimonious.

A high-level overview of Scube follows. Stand top height
growth and its relationship to site quality are given by a site-
index sub-model. For a given site, the rate of mortality or sur-
vival in trees per hectare is a function of number of trees and
top height. The growth rate of stem volume or biomass per
hectare equals gross increment minus mortality. This mortality
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is the mortality in number of trees multiplied by the mean size
of dying trees. In closed-canopy stands, the gross increment is
a function of stand density and top height. In young or recently
thinned stands that do not yet fully occupy the site, the incre-
ment is reduced by an occupancy factor, which is non-linearly
related to a “relative closure” variable representing the amount
of foliage and fine roots. Finally, the rate of increase in closure
in open stands is predicted as a function of current closure and
top height. In this model occupancy and closure are unobserved
variables, initialized at appropriate values and altered by thin-
ning, although in the future similar variables could be quantified
through remote sensing or other means. The rate equations just
described, for height and volume or basal area growth, mortal-
ity, and rate of closure, are formulated as differential equations.
In addition to the rate equations, several static relationships are
used for site index calculations, to estimate changes from thin-
ning, and to estimate volumes or other quantities of interest.

At each step, components were as far as possible tested
against observations, experience with other forests, and/or gen-
erally accepted theory. Graphical analysis and regression with
finite difference approximations were used to assess equation
forms and to obtain initial parameter estimates. The estimates
were refined through numerical optimization, using four alter-
native formulations of least-squares residuals for the complete
model.

Scube’s differential equations can be integrated analytically
or numerically to project the state of a stand over time intervals
of any length. A simpler and more efficient calculation proce-
dure makes use of a set of four invariants, quantities that re-
main unchanged in the absence of stand disturbances. This can
be seen as a multivariate generalization of principles implicit
in forest modelling methods known as the algebraic difference
approach (ADA).

The next section describes the data, followed by the develop-
ment of the model components that specify the rate of change of
each of the four state variables. The article continues with pa-
rameter estimation procedures and results, implementation, and
some examples, including a comparison with existing spruce
growth models. The final section discusses methodological and
practical implications and relationships to other work. An ex-
tended report with full details and computer code is available
from http://forestgrowth.unbc.ca/scube.

2. Data

Permanent sample plot (PSP) data from natural stands were
provided by the Forest Analysis and Inventory Branch and from
plantation experiments by the Research Branch of the British
Columbia Ministry of Forests and Range. The Research Branch
also provided stem-analysis data that were used in the site index
/ height growth sub-model, not discussed here (Hu and Garcı́a,
2010). Zhengjun Hu carried out the extensive work of compila-
tion, re-formatting, data screening, and calculation of plot-level
variables, as part of his MSc thesis work at UNBC. Screening
selected plot measurements with at least 70% spruce by basal
area, single-layered, with a tree age range not larger than 20
years, unfertilized, and containing suitable site trees. The plots

had to be at least 0.03 ha in size and have no evidence of severe
wind or pest damage.

Naturally regenerated interior spruce stands are often highly
irregular in their composition and in their age and spatial struc-
ture. For these reasons, the screening rejected a large propor-
tion of the data initially available. Although the data may not
be fully representative of a large part of the existing old-growth,
our main interest lies in the development of the stands that have
been planted over the last several decades, constituting the bulk
of the future wood supply and the potential target of silvicul-
tural interventions. Relatively regular natural stands are ex-
pected to provide useful information for ages not available in
the young plantations.

The selected plots fall into two distinct groups: young stands,
less than 25 years-old (breast-height age), all planted except for
one plot of natural origin; and older stands, older than 25 years,
all of natural origin. Statistics for the measurements in both
groups and for the total are given in Table 1. Initial N is the es-
timated number of trees per hectare at breast height, and Spruce
% is the percentage of interior spruce in a plot. In the natural
plots, the most frequent secondary species was lodgepole pine,
in 52% of the measurements, followed by trembling aspen in
22%.

The data are also shown in various ways in Figures 1, 2, 3, 8.
All the planted data come from one large designed experiment,
with replications at four sites. The experiment, established in
1967, compared interior spruce, lodgepole pine, and Douglas
fir, planted at several spacings; details are available in Cooper-
smith et al. (1997). No data from thinned stands were available.

3. The Model

Clearly, the data coverage is far from ideal. In particular,
predictions for mature planted stands and thinning simulations
will necessarily be speculative. It is therefore important for the
model to have a sound biological basis to borrow strength from
the information on natural stands for plantation predictions and
vice-versa. In addition, the number of parameters to be esti-
mated should be kept low.

In the model, the condition (state) of a stand at any time is
described by four state variables: top height (H, meters), trees
per hectare (N), basal area (B, m2/ha), and relative closure (R).
Relative closure is not directly observed and represents the ex-
tent of the “resource capture apparatus”, i.e., foliage and fine
roots, relative to that in a fully closed stand (see below). The
dynamical system model consists of one differential equation
(DE) for each of the four state variables.

The height and mortality sub-models for dH/dt and dN/dt,
respectively, are described in detail elsewhere, and only a brief
summary is given below (t is time, in years). This article fo-
cuses on the development of the B and R components.

The DEs are integrated to predict the state at any time, given
the state at some other time, provided that there are no distur-
bances (e.g., thinning) in between. The initial R is estimated
indirectly from the initial stand density, or from the observed
degree of site occupancy in older stands. Calculations are sim-
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Table 1: Measurement statistics.

Mean St.dev. Min. Quart. 1 Median Quart. 3 Max.
Young stands (breast-height age < 25, n = 57), all but one planted

Site index (base age 50) 19.7 1.0 18.4 18.7 19.6 20.5 21.6
B.H. age (years) 11.9 6.5 1.6 6.8 12.3 17.4 23.4
Top height (m) 5.4 2.4 1.7 3.6 5.4 7.2 10.3
Trees/ha 831 439 446 586 754 1026 3600
Basal area (m2/ha) 3.68 3.83 0.02 0.47 2.18 6.42 13.68
Initial N 863 443 472 612 766 1088 3604
Spruce % 99.5 3.4 74.5 100 100 100 100
Meas. interval (yr) 4.96 0.86 4 5 5 5 10
Measurements / plot 4.39 0.87 2 4 5 5 5

Older stands (breast-height age > 25, n = 85), all of natural origin
Site index (base age 50) 20.4 1.8 16.2 19.0 20.9 21.7 23.0
B.H. age (years) 51.9 12.1 27.5 44.5 52.0 59.5 76.5
Top height (m) 20.6 4.1 10.8 18.2 20.8 23.1 29.8
Trees/ha 1716 838 272 1111 1600 2133 5284
Basal area (m2/ha) 35.7 8.3 13.1 29.5 36.9 41.2 52.1
Initial N 2709 2178 2869 1328 2364 3193 11616
Spruce % 81.2 6.5 71.7 76.2 78.4 86.3 95.3
Meas. interval (yr) 10.0 1.3 8 10 10 10 12
Measurements / plot 3.40 0.58 2 3 3 4 4

All stands (n = 142)
Site index (base age 50) 20.1 1.6 16.2 18.9 20.3 21.5 23.0
B.H. age (years) 36.1 22.1 1.6 14.7 39.0 54.5 76.5
Top height (m) 14.6 8.3 1.7 6.4 16.9 21.2 29.8
Trees/ha 1367 829 272 882 1087 1832 5284
Basal area (m2/ha) 23.0 17.1 0.0 4.1 27.7 38.3 52.1
Initial N 1981 1938 286 907 1145 2580 11616
Spruce % 88.4 10.5 71.7 78.2 88.0 100 100
Meas. interval (yr) 7.86 2.75 4 5 8 10 12
Measurements / plot 3.74 0.83 2 3 4 4 5

plified by making use of “invariants” (or first integrals), quanti-
ties that remain unchanged in the absence of disturbances.

For projections from bare land the model is started at breast
height, with H = 1.3, B = 0, and R = ρN, where ρ is a parame-
ter.

3.1. Height Growth and Site Index

The growth rate equation is

dHc

dt
= b(ac − Hc) (1)

or, in the more usual form of the Bertalanffy-Richards differen-
tial equation,

dH
dt

=
b
c

H
[
(

a
H

)
c
− 1

]
.

The parameter c is 0.5829, b ≡ q is a parameter that varies
among plots according to site quality, and a = 283.87q0.5137

(Hu and Garcı́a, 2010).
Integration of (1) gives the invariant

[1 − (H/a)c]ebt = constant , (2)

that can be used to predict H2 at time t2, given a height H1 at
time t1, by equating the corresponding invariants and solving
for H2:

H2 = a{1 − [1 − (H1/a)c]e−b(t2−t1)}1/c (3)

(a global transition function).
The site quality parameter q can be related to the traditional

site index, defined as the predicted height at 50 years breast-
height age, by substituting the breast-height and age-50 values
into (3):

Site Index = a{1 − [1 − (1.3/a)c]e−49.5b}1/c (4)

(defining breast-height age as number of rings at breast height,
breast height is reached at age 0.5, on average (Nigh, 1995)).
This equation needs to be solved numerically for calculating a
value of q given a site index estimate.

3.2. Number of Trees

The mortality (or survival) model is fully explained in Garcı́a
(2009). It uses a site-independent relationship for the mortality
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relative to height growth:

dN
dH

= −4.5759 · 10−15 H5.009N2.9895 .

An equation for dN/dt can be obtained dividing by the equation
for dH/dt above.

The invariant, written in terms of the average spacing S ≡
100/

√
N, is

S 3.979 − (0.07213H)6.009 = constant . (5)

Species composition was tried as an additional predictor, but
there was no improvement.

3.3. Basal Area

3.3.1. Gross Increment
It is simpler to model growth for the product of basal area

and height, BH. This is approximately linearly related to total
volume or biomass per hectare, and for closed-canopy stands
in a given site its increment varies less over time than the basal
area increment (compare Figures 1 and 2).
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Figure 1: Sample-plot basal area over age. Consecutive measurements on a
same plot are joined by lines. Ages scaled to a site index 20 equivalent.

One can write

dBH
dt

= gross increment −mortality . (6)

Here gross increment and mortality are in units of BH per year.
This mortality can be expressed as the product of the mortality
in number of trees, the mean tree size, and a factor k represent-
ing the average relative size of dead trees:

mortality = −k
BH
N

dN
dt

.

Values of k estimated for each measurement interval were
found to be highly variable, ranging from 0.11 to 0.92, but not
clearly related to any stand variables. The average weighted by
number of dead trees per hectare was 0.299, and the model will
use k = 0.3. Attempts at finding a better estimate in the final

model showed that the sensitivity of predictions to a precise
value of k was very low. The k = 0.75 assumed by Garcı́a
and Ruiz (2003) seems high, with informal tests on data from
radiata pine, aspen and loblolly pine suggesting values in the
0.4–0.5 range. The lower value for spruce may reflect its higher
shade tolerance.

Taking the mortality term to the left-hand side of (6),

dBH
dt
− k

BH
N

dN
dt

= gross increment ,

which can be written as

dBHN−k

dt
= N−k × gross increment . (7)

This can be verified by expanding the derivative of the product
(BH)×N−k. The combination BHN−k is related to the accumu-
lated gross increment in a way that avoids dealing directly with
the mortality term.

3.3.2. Closed Stands
In a closed-canopy stand that fully utilizes the site potential,

the gross BH-increment on the right-hand side of (7) can be
modelled as some function of N and/or H. We prefer not to
include B as a driving variable, because it seems doubtful that
by some physiological mechanism the accumulation of (mostly
dead) xylem on the stems should directly and significantly af-
fect growth (Garcı́a, 2009).
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Figure 2: Observed trajectories from equation (7). Ages scaled to site-index 20
equivalent.

Figure 2 shows the changes in BHN−k over time. Age has
been scaled by a site-dependent factor to reduce the effects of
site quality, as in Garcı́a and Ruiz (2003). Once canopy closes,
there are no indications of important changes in the slope given
by equation (7). To analyze this further, the derivative in (7) was
approximated by divided differences for each pair of consecu-
tive measurements, and regressed over the mid-point values of
N and/or H. Only measurements with BH > 200 were used
to exclude young stands not yet fully occupying the site. No
significant regressions were found, with the best estimate being
dBHN−k/dt = 2.75.
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That would imply a BH gross increment proportional to N0.3.
Garcı́a (1990) and Garcı́a and Ruiz (2003) also found N to be
the best predictor, with increments increasing with N. Such
a model gave good results over the range of our data. How-
ever, extrapolation beyond about 100 years of (scaled) age often
produced seemingly unnatural inflections in basal area trends.
More plausible extrapolated behavior was obtained by mod-
elling the gross increment relative to height increment,

dBHN−k

dH
= f (H) , (8)

so that B does not keep increasing as H approaches its asymp-
tote. This also eliminated the need for age site-scaling, as-
suming that Eichhorn’s hypothesis about relationships between
stand state variables being approximately independent of site
quality is acceptable. Eichhorn’s assumption has generated
considerable controversy, a good review of which is contained
in Holten-Andersen (1989, pages 107–114). It has been found
that it can fail when applied over extensive areas, such as at
the European level, but it can be a good approximation within
smaller regions with less heterogeneous growing conditions.
Eichhorn’s rule has been used in the development of yield ta-
bles and growth models for Denmark (Holten-Andersen, 1989),
New Zealand (Beekhuis, 1966), the UK (Hamilton and Christie,
1971), and British Columbia (Mitchell and Cameron, 1985;
Mitchell et al., 2004). Graphing the residuals from our final
model over site index indicated that any deviations from Eich-
horn’s assumption would be small relative to other sources of
error.
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Figure 3: Observed trajectories from equation (8).

It is seen in Figure 3 that the slopes increase with H. Again
using finite difference approximations and BH > 200, regres-
sions for (8) confirmed no significant contribution from N.
Closed-canopy data were available only from natural stands,
which in the sample may contain as little as 72% spruce, aver-
aging 81% (Table 1). Not surprisingly, the proportion of spruce
was found to be a significant increment predictor, either using
observed values for each measurement or plot averages. There
were no consistent trends of species composition over time, so

it was decided to use a plot average, calculated by dividing the
sum of the spruce basal areas from all the plot measurements
by the sum of the all-species basal area. The best predictor in
(8) was f (H) = 0.60pH, where p is the proportion of spruce.
For more flexibility, an exponent other than 1 was allowed in
the model:

dBHN−k

dH
= αpH1−β , (9)

with initial estimates α = 0.6, β = 0.

3.3.3. Open Stands
Young stands, or stands that have been recently thinned do

not yet have enough foliage and root extension to capture all
the available site resources. Their growth rate will be a fraction
Ω of that in a fully closed stand. That is, (9) changes to

dBHN−k

dH
= αpΩH1−β , (10)

where the “relative occupancy” Ω is 1 for fully closed stands.
Equation (9) becomes a special case of (10).

In open stands Ω increases as the amount of foliage and fine
roots build up until reaching some dynamic equilibrium where
Ω = 1. Let R, called relative closure, represent the extent of
this “assimilation apparatus” as a proportion of the maximum.
It may be useful to think of R as amount of foliage (e.g., leaf
area index), and of Ω as light interception, although these vari-
ables can also represent below-ground processes, and we do not
need to be precise about the exact mechanisms. Formally, Ω is
defined as the ratio of gross increment to the gross increment
in a fully closed stand. R is a measure of foliage and fine roots
relative to that in a closed stand, such that it is initially propor-
tional to the number of trees in the absence of competition, and
decreases in proportion to the basal area removed when thin-
ning.

Ω and R are non-linearly related. At low levels, resource
capture increases in proportion to the assimilating material, but
near the maximum an increase in R has a negligible effect on Ω:
leaves at the base of the canopy make a small or even negative
contribution to net photosynthesis, and it is known that moder-
ate thinning has a relatively minor effect on light interception
and per hectare growth rates (e.g. Beekhuis, 1966; Hale, 2003).
The only attempt at determining such a relationship directly at
the stand level seems to be the work of Hale (2003), in which
light interception was measured after removing successively in-
creasing proportions from a Sitka spruce stand in Scotland. Fig-
ure 4 compares a curve inferred from modelling the develop-
ment of intensively managed radiata pine plantations (Garcı́a,
1989, 1990), the measurements from Hale (2003), and the curve

Ω = 1 − (1 − R)2.2 (11)

to be used here. It will be seen that the exact relationship is not
critical.

Integration of (10) depends on the rate of closure and is dis-
cussed below.
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Figure 4: Relationships between relative occupancy and relative closure.
Dashed curve inferred from radiata pine growth (Garcı́a, 1989, 1990). Data
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basal area fraction in Sitka spruce (Hale, 2003). The continuous curve is used
here.

3.4. Relative Closure
It remains to model the increase of R (or of Ω) in less than

fully-closed stands. It makes sense to assume that initially the
increment of R is similar to the gross increment in (8)–(10),
later declining to 0 as full closure R = 1 is approached and the
canopy base starts to lift:

dR
dH

= g1(R)Ω f (H) ,

or, equivalently,
dΩ

dH
= g2(Ω)Ω f (H) ,

where g1 and g2 are decreasing functions such that g1(1) =

g2(1) = 0. Writing Ωg2(Ω) ≡ g(Ω),

dΩ

dH
= αpg(Ω)H1−β . (12)

In this model neither R nor Ω is observed; they are assumed
to equal 1 in closed stands, or they are otherwise projected with
the equations above, starting from suitable initial values. Before
competition begins, R should be proportional to the number of
trees. Therefore, we initialize R at breast height as

Rb = min{ρNb, 1} , (13)

where Nb is the number of trees per hectare at breast height and
ρ is a parameter to be estimated. On thinning, the current R is
reduced in proportion to the basal area removed. R is converted
to Ω with (11), and then projected with (12).

Equation (12) is separable,

dΩ

g(Ω)
= αpH1−β dH ,

and given g(Ω), both sides can be integrated to obtain an invari-
ant ∫

dΩ

g(Ω)
−

αp
2 − β

H2−β = constant . (14)

Equation (10) can now be integrated in a number of ways, a
convenient and numerically stable one being to write it as

dBHN−k = αpH1−β dH − αp(1 −Ω)H1−β dH ,

and substituting dH from (12) into the second term on the right-
hand side,

dBHN−k = αpH1−β dH −
1 −Ω

g(Ω)
dΩ .

Finally, integrating,

BHN−k −
αp

2 − β
H2−β +

∫
1 −Ω

g(Ω)
dΩ = constant . (15)

Three functional forms for g(Ω) were tested:

Linear:

g(Ω) = γ(1 −Ω) , (16)

Quadratic:

g(Ω) = γΩ(1 −Ω) , (17)

Two-parameter:

g(Ω) = γ(1 + 1/δ)(1 −Ω)1+δ/(δ+1)[1 − (1 −Ω)1/(δ+1)]1−δ ,
(18)

where γ and δ are parameters. The third form, with two free
parameters, was chosen so as to be flexible, but at the same
time give closed-form solutions for the integrals in (14) and
(15); the derivation is available from http://forestgrowth.

unbc.ca/scube.
Naturally regenerated stands have a more irregular spatial

pattern of tree locations than planted ones and might be ex-
pected to take longer to occupy the site. To allow for this pos-
sibility, a model variation with different values of γ in (18) for
natural and for planted stands was tried.

3.5. Summary of Projection Equations
For brevity, calculations are shown only for the linear closure

rate sub-model (16), the one finally chosen.
To efficiently project the state of a stand between times t1 and

t2, one can compute the invariants at t1 and then invert them to
recover the state at t2. The invariants, from (2), (5), (14), and
(15), are:

y1 = [1 − (H1/a)c] exp(bt1)

y2 = (100/
√

N1)3.979 − (0.07213H1)6.009

y3 = (1 − R1)2.2 exp[γ ϕ(H1)]

y4 = B1H1N−k
1 − ϕ(H1) + [1 − (1 − R1)2.2]/γ

where ϕ(H) =
αp
2−βH2−β. The exponential of (14) has been used

to avoid difficulties when Ω → 1. Without thinnings or other
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disturbances between t1 and t2, the yi do not change, so that the
equations are valid with t2 and the state at time t2 substituted on
the right-hand sides. The new state is obtained by solving the yi

equations sequentially:

H2 = a[1 − y1 exp(−bt2)]1/c

N2 = 10000/[y2 + (0.07213H2)6.009]2/3.979

R2 = 1 − {y3/ exp[γ ϕ(H2)]]}1/2.2

B2 = Nk
2{y4 + ϕ(H2) − [1 − (1 − R2)2.2]/γ}/H2

Somewhat simpler equations can be obtained by using Ω as a
state variable instead of R.

As already mentioned, for projections from bare land the
state is initialized at breast-height age with H1 = 1.3, N1 as-
sumed known, B1 = 0, and R1 from (13). In case of thinning,
there is an instantaneous reduction in N and B, with the top
height H assumed unchanged. R is reduced in proportion to
the basal area removed. If either the residual B or residual N
is not known, the relationships in Garcı́a (2005) can be used to
estimate one from the other for “typical” thinnings.

When projecting an existing stand, R1 is not available. One
can use R1 = 1 for closed-canopy stands, e.g., if the base of
the crowns is rising. Following a thinning, R1 approximately
equals the fraction of basal area remaining. For young open
stands, R1 may need to be estimated through a projection from
breast-height.

Usually t2 > t1, but the procedure is also mathematically
valid going back in time, which is sometimes useful. Some
care is needed, however, because the back-projection of R can
be numerically unstable if R1 is close to 1.

3.6. Volumes

Volumes per hectare can be estimated given the state vari-
ables H, N, and B. Most stand volume tables use only H and
B (see, for instance, Husch et al., 2003, Sec. 8–6.1, van Laar
and Akça, 2007, Sec. 7.3). Beekhuis (1966) pointed out, how-
ever, that after thinning the volume per unit of basal area rises
slightly because of the greater average height of the trees left;
including also N in the volume function can account for this.
Augmenting the data used here with single-measurement plots,
Zhengjun Hu obtained the following regression for the volume
to basal area ratio:

V
B

= 0.2716 + 0.3370H + 6.5262
H
N

(19)

(n = 252, SE = 0.3684). This equation is of the same form
as the one in Garcı́a (2005), but the coefficients are consider-
ably different. Garcı́a (2005) used the TIPSY spruce data base,
that was generated by simulation with the TASS growth model
(Mitchell, 1975; Di Lucca, 1998; Mitchell et al., 2004). For
similar values of the state variables and within the range of
our data, volumes in the simulated plots are on average 6% to
12% lower than those observed in the SBS permanent sample
plots. The reasons for the discrepancy are not clear; it may be

due to different tree volume calculation procedures, or to dif-
ferences between the simulated and observed tree size distribu-
tions. Equation (19) is used in the current model implementa-
tion, although further investigation might be warranted.

Merchantable volumes are being estimated with ratios of
merchantable to total volume from Garcı́a (2005).

4. Parameter Estimation and Results

Statistical parameter estimation optimizes some criterion of
fit, given a certain stochastic model for the observations. In
this instance, a reasonable model for the variability could be
fairly complex, possibly involving environmental perturbation
of growth rates, giving rise to stochastic differential equations,
compounded with sampling and measurement errors in a hier-
archical structure (e.g. Seber and Wild, 2003, Sec. 7.5). Any
optimal properties and error estimates are conditional on the
assumed model being “true”, but little is known about the con-
sequences of model misspecification. A more heuristic and di-
rect approach was used here, trying to obtain a good over-all fit
to the observations while avoiding biases for particular growing
conditions.

Estimation in dynamical systems can be based on projections
over a variety of time intervals (Ch.VIII in Bard, 1974; Borders
et al., 1988; Garcı́a, 1994; Seber and Wild, 2003, Sec. 7.5). The
model parameters were estimated by minimizing a root mean
square error (RMSE) calculated in four different ways:

1. From breast height. Many applications require predictions
starting from bare land, and model evaluation typically
looks at the quality of such predictions (Goulding, 1979;
Vanclay and Skovsgaard, 1997). It seems natural, there-
fore, to minimize the deviations for each measurement oc-
casion with respect to the predictions calculated starting
from breast height.

2. Shortest intervals. Observed sizes on a same plot are
highly correlated, because they arise from accumulated
growth over overlapping time intervals. Deviations for
projections starting from the first point in each pair of con-
secutive measurements are more nearly independent, lead-
ing to better statistical properties (Borders et al., 1988; Se-
ber and Wild, 2003, Sec. 7.5.1). On the other hand, bias
might accumulate over longer time spans if the model is
poor. The RMSE included the intervals from breast height
to the first measurement in each plot.

3. Weighted shortest. Although the deviations for non-
overlapping intervals might be considered as statistically
independent, their variances vary with the interval length.
Under certain conditions, the variance increases roughly
proportionally to time, and an RMSE with inverse weight-
ing by interval length would be favored by statistical the-
ory (Seber and Wild, 2003, Appendix C). In this instance,
the effect is mainly a reduced contribution of the long
intervals from breast height to first measurement in the
natural-origin plots, which might not be desirable when
the model is not “true”.
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4. Weighted from breast height. Finally, an RMSE was cal-
culated with breast-height predictions as in criterion 1, but
with the inverse time difference weighting of criterion 3.
This might to some extent attenuate the redundancy from
interval overlapping.

In the case of the older sample plot appearing below the others
toward the bottom-right of Figure 1, projections were started
from its first measurement, because it seemed likely that it may
have suffered some disturbance earlier in life.

The RMSE calculations were programmed in R (R Develop-
ment Core Team, 2009), and the values minimized using the
BCFGS method of function optim.

Allowing different rate-of-closure parameters (γ), as dis-
cussed at the end of the section on Relative Closure, resulted
in an earlier estimated closure in natural than in planted stands,
contrary to expectations. The reduction in RMSE compared to
a common γ was small. Gaps in the natural spruce regeneration
can promote the emergence of other species, so that the inclu-
sion of the species composition variable p in the model may
already account sufficiently for any growth differences. There-
fore, only model variants with a single γ parameter are consid-
ered in what follows.

When assessing degree of fit, the complexity of the models
needs to be taken into account. Akaike’s Information Criterion
(AIC) and Schwartz’s Bayesian Information Criterion (BIC),
are commonly used for this purpose. The AIC and BIC are
defined in terms of the likelihood, but assuming independent
normal residuals they can be calculated from the RMSE, the
number of parameters m, and the number of observations n, as

2n ln RMSE + λm ,

where the factor λ that penalizes the number of parameters is
2 for the AIC and ln n for the BIC (e.g., R Development Core
Team, 2009; Venables and Ripley, 2002, p. 174). The values are
defined only up to an arbitrary constant, so that only differences
are meaningful. Although the distributional assumptions are
never “true”, these indices should still be useful for comparison,
at least with criteria 2 and 3.

The calculated basal area RMSE, AIC and BIC are given in
Table 2 for the four fitting criteria, and for the model variants
in decreasing order of complexity: the two-parameter rate-of-
closure model of equation (18), the linear (16), and the linear
with the β parameter of (10) fixed at 0. The quadratic model
(17) is omitted, because the RMSE was consistently higher than
that of the linear, with the same number of parameters. Values
are not comparable across fitting criteria, because they corre-
spond to different kinds of residuals.

It is seen that the additional flexibility of the two-parameter
closure rate model, compared to the linear one, made little or
no difference to the fit as measured by the RMSE; both the AIC
and the BIC favor the later. Graphs show that the predicted Ω

vs H trajectories had similar shapes. Basal area or volume pre-
dictions depend on the integral of these, causing rather different
rate equations to be indistinguishable in practice.

All the estimated β values were close to 0, and fixing β = 0
was largely inconsequential, agreeing with the earlier prelim-

inary analysis. Overall, the fit statistics point to the simplest
model as the most appropriate for these data. Extensive graphi-
cal analysis confirmed that residuals and predictions for all the
model variants were very similar.

Parameter estimates for the linear β = 0 version obtained
according to each of the four fitting criteria are given in Table
3. For comparison, the RMSE from each fit under the other
criteria were also computed, and the relative differences with
respect to the minimum are shown as percentages in the last 4
columns of the Table.

Graphical examination showed generally negligible differ-
ences in predictions among the 4 parameter sets, with only cri-
terion 1 slightly different from the others in some instances.
Worsening in degree of fit according to criteria different from
the one used in estimation was slight (columns C1–C4 in Table
3), indicating predictions that are robust under the various esti-
mation methods. The parameters from criterion 2 were chosen
for the final model.
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Figure 5: Observed and predicted basal areas. Predictions starting from breast
height. Linear regression (dashed) not significantly different from the identity
line (solid).

An extensive analysis of residuals was performed, both
graphically and by fitting trend surfaces. Although variabil-
ity was high, no systematic biases were detected. A commonly
used display and measure of model performance, recommended
by Vanclay and Skovsgaard (1997), tests a linear regression of
observed vs. predicted data (Figure 5). A statistically equiva-
lent but more visually stringent method is to graph the residuals
on the y-axis; this is done for the relative residuals in Figure 6.

Table 4 gives an idea of the differences that can be expected
in individual plot predictions. The statistics are for observed
minus predicted from breast height, using all the available mea-
surements, and are tabulated as percentages of the mean. V is
total volume per hectare, estimated by (19).
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Table 2: Root mean square eror, AIC, and BIC statistics for three model forms.

Two-par., eq. (18) Linear, eq. (16) Linear, β = 0
Criteria RMSE AIC BIC RMSE AIC BIC RMSE AIC BIC

1 (from b.h.) 2.978 317.8 332.5 2.994 317.3 329.1 3.009 316.6 325.5
2 (shortest int.) 1.919 193.8 208.5 1.919 191.9 203.7 1.923 190.4 199.3
3 (weighted sh.) 1.213 64.6 79.3 1.216 63.2 75.0 1.217 61.3 70.1
4 (weighted b.h.) 1.631 147.9 162.7 1.642 147.8 159.6 1.643 146.0 154.9

Table 3: Parameter estimation results under 4 criteria. Columns C1–C4 show the % RMSE increase for the other criteria.

Crit. α γ ρ × 106 C1 C2 C3 C4
1 (from b.h.) 0.5270 0.11663 0.159 – 1.1 4.3 0.7

2 (shortest int.) 0.5345 0.09662 1.815 0.9 – 1.4 0.3
3 (weighted sh.) 0.5512 0.08569 1.621 2.7 1.1 – 1.6
4 (weighted b.h.) 0.5323 0.10098 5.026 0.5 0.2 1.9 –

Table 4: Residual statistics for plot predictions from breast height

Age < 25 Age > 25
Variable Mean Mean Mean abs. RMSE % Mean Mean Mean abs. RMSE %

deviation % deviation % deviation % deviation %
H 5.37 0.81 4.26 5.16 20.6 -0.077 1.95 2.43
N 780.8 -4.11 4.11 6.14 1733 0.255 6.59 11.3
B 3.61 -6.45 18.7 30.7 35.8 1.296 8.56 10.6
V 10.8 -4.89 16.8 29.9 270 0.611 9.98 12.7
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Figure 6: Relative basal area residuals, predictions from breast height (ob-
served minus predicted, as percentage of the observed value). Linear regression
(dashed) not significantly different from 0.

5. Implementation and Examples

Various computer implementations of the model are possi-
ble. An interactive simulator implemented in Microsoft Excel
with VBA macros is available from http://forestgrowth.

unbc.ca/scube. Code based on the macros or on the R func-
tions used in parameter estimation can be easily embedded into
decision support systems or other applications.

The invariants approach provides explicit and computation-
ally efficient solutions. It can be useful, however, to write down
the model differential equations in the more traditional form
used in dynamical systems theory. There are 4 differential equa-
tions, for the 4 state variables H, N. R, and B:

dH
dt

= 46.167q1.2994H0.4171 − 1.7156qH (20a)

dN
dH

= −4.5759 · 10−15 H5.009N2.9895 (20b)

dR
dH

= 0.023474pH(1 − R) (20c)

dB
dH

= 0.53449pN0.3[1 − (1 − R)2.2] − B/H

− 1.3728 · 10−15H5.009N1.9895B (20d)

The last three equations can be expressed as the usual deriva-
tives with respect to t through multiplying by (20a). Initial
conditions at breast height are H = 1.3, N = Nbh, R =

1.815 · 10−6 Nbh, and B = 0. The parameter p is the propor-
tion of spruce, assumed constant, and q represents site quality,
with q = 0.02028 for site index 20.
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The DE system (20) can be numerically integrated in visual
simulators like Vensim, Stella, or Simulink, that follow Sys-
tem Dynamics principles (e.g., Ford, 1999, Ch. 2). This can
be useful for experimentation and can help to better understand
the structure of the system. Figure 7 is a System Dynamics
diagram using the free version of Vensim (www.vensim.com/
venple.html). The boxes represent the state variables (stocks,
levels), and the double-arrow ”pipes” with control ”taps” rep-
resent their rates of change over time (flows, rates). Arrows in-
dicate influences, i.e., variable dependencies. Symbols not en-
closed in boxes are parameters, or input, output, or intermediate
variables. The software can display graphs or tables for any of
the variables, with inputs and parameters changeable through
keyboard entry or graphical sliders in real-time.

Figure 7: System Dynamics diagram of the model in Vensim (see text).

Verification that the R, Excel, and Vensim implementations
all produced the same results gives ample confidence in the cor-
rectness of the equations, and in that the programs perform as
intended.

Two other models are available for predicting spruce growth
in the SBS Zone. VDYP 7 is a whole-stand growth model for
natural stands of various species in BC (Ministry of Forests
and Range, 2009c). Predictions starting from bare land pro-
duced very low basal areas and volumes, compared to our PSP
data. TASS (Mitchell, 1975; Di Lucca, 1998) is a distance-
dependent individual-tree growth model for even-aged stands,
with versions for natural and for planted white spruce in the
BC Interior, among others. The program is only available on
a Ministry of Forests computer in Victoria, so it is commonly
used indirectly through TIPSY, which is a look-up and inter-
polation system that accesses yield tables generated by TASS
(Di Lucca, 1998; Ministry of Forests and Range, 2009b). To
illustrate model predictions, two examples were simulated on
Scube and TIPSY, using site index 20: (a) A planted stand of

pure spruce, unthinned, starting with 1000 stems per hectare at
breast height. This density is near the upper end in the planted
sample plots, but perhaps close to the minimum advisable op-
erationally. (b) A natural stand with 80% spruce by basal area,
and 2500 (spruce) stems per hectare at breast height, about av-
erage for the natural PSPs (Table 1). The mixed species facility
in TIPSY actually applies to forest-level combinations of mono-
specific stands, but it was used here as an approximation, spec-
ifying lodgepole pine for the other species component. TIPSY
reports over-all totals per hectare, so it was assumed that 80%
of the number of trees and volume, as well as basal area, was
spruce.

Results are shown in Figure 8, superimposed on the PSP
data. For the higher-density natural stand, both models agree
closely in the basal area and total volume predictions. TIPSY
predicts higher mortality and consequently larger tree sizes and
higher merchantable volumes. For young plantations, TIPSY’s
predictions are below the observed basal areas, volumes, and
dbh. Given the absence of data, predictions from both models
for mature planted stands are speculative. VDYP-7 predictions
generated with the program defaults were close to the lower
boundary of the observed data (excluding the lowest plot, pre-
sumably damaged) and are not shown.

The time to reach breast height is highly variable, and in
plantations it is sensitive to site preparation and to nursery and
planting techniques. Estimates representing “typical” condi-
tions are given by the Site Tools package (Ministry of Forests
and Range, 2009a). According to it, at site index 20, age from
seed is obtained by adding 13 and 9 years to breast-height age
for natural and planted stands, respectively. See also Table 5 of
Coates et al. (1994).

6. Discussion and Conclusions

The growth model is summarized in differential equation
form in (20) and as invariants in the Summary of Projection
Equations section. It may be surprising that such a simple
model can describe basal area dynamics with only two free pa-
rameters (α and γ; ρ enters into the initialization). There is
support for the observed relationships in the literature. It is
sometimes thought that volume or biomass should follow an
asymptotic sigmoid curve over time, and such an assumption is
built into some yield tables. Tree physiologists have searched
for plausible mechanisms to explain the implied growth rate
decline after canopy closure (Ryan et al., 2004). Published
volume-age trends for substantial bodies of data, however, are
remarkably linear, at least within the main range of interest for
management and considering mortality (Figure 11 in Sjolte-
Jorgensen, 1967, Figure 4 in Pretzsch, 2005, Garcı́a, 1990).
This agrees with our initial finding of an age-independent gross
BH increment (section Closed Stands, figure 2). Increment de-
creases slightly with spacing, which may induce some curvature
when there is high mortality or repeated thinnings. The revised
model (9)–(10) does imply a growth decline as H approaches
its asymptote, but this occurs at advanced ages. The decrease in
growth rate at wider spacings might be attributed to lower effi-
ciency in utilizing space farther from the stem (Garcı́a, 1990).
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Figure 8: Data and predictions with Scube and TIPSY. Planted projections for pure spruce, with initial density of 1000 sph. Natural for 80% spruce, initial density
2500 sph.
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Ignoring changes in N, (9)–(10) predicts that in closed
canopy stands BH, and approximately volume per hectare, in-
crease linearly with H2−β, or as a quadratic in H if β = 0.
For plantations where mortality is moderate, Alder (1980),
Green et al. (1992), and Alder et al. (2003) have predicted vol-
ume per hectare with functions where the dominant term is a
power of H with the estimated exponents being close to 2. If
β = 0, dividing by H gives a relationship between B and H that
tends to a straight line, as found by Beekhuis (1966), Hamilton
and Christie (1971, Graphs 17–28), and Manley and Knowles
(1980).

Closure and occupancy are in fact an abstraction and gener-
alization of variables such as leaf area index (LAI), and inter-
cepted photosynthetically active radiation (IPAR), commonly
used in process models and ecophysiology. Relationships be-
tween IPAR and LAI, and between growth rates and IPAR, are
presented by Balster and Marshall (2000), Allen et al. (2004),
and Will et al. (2005), among others. For growth and yield pre-
diction it is necessary, in addition, to model the dynamics of
these variables in young stands, and as affected by thinning.
In Scube, closure or occupancy are unobserved state variables,
but in the future it may be possible to estimate them at an op-
erational scale using remote sensing techniques, in particular
LiDAR.

It should be interesting to evaluate the approach with more
extensive data from other species. Complexity can be tailored
to the information available: the more flexible variants with ad-
ditional parameters may be used if warranted, or appropriate
shape parameter values could be found and fixed for use in data-
poor situations. The model can serve also as a parsimonious
but biologically sound baseline where the scale parameters, as
multipliers, may be further developed to include the effect of
genetics (Carson et al., 1999), nutrients (Garcı́a, 1989; Shula,
1989; Carlson et al., 2008), or climate (Landsberg and Waring,
1997; Woollons et al., 1997).

The modelling of dynamical systems through rates of change
in continuous time, introduced by Isaac Newton, has for long
been taken for granted in the physical sciences and engineer-
ing, and adopted more recently in some areas of biology (e.g.,
Lotka, 1924, Part II, Patten, 1971; Ford, 1999). There are few
examples in forestry, however, an early one being Buckman
(1962). It is more common to discretize time, typically in 5-
or 10-year intervals, and use difference instead of differential
equations. In simple instances the mathematics and computa-
tions are easier, but they become awkward when observation or
projection intervals do not match the interval used in the model
(McDill and Amateis, 1993; Weiskittel et al., 2007; Salas et al.,
2008). Note that although Scube’s variables are continuous,
seasonal intra-annual growth fluctuations are not modelled.

An increasingly popular paradigm in forest growth and yield
modelling makes a direct use of continuous transition func-
tions. Sometimes called algebraic difference equations or self-
referencing functions, these relationships are based on an in-
variant, not always made explicit, often motivated by a dif-
ferential equation (Bailey and Clutter, 1974; Diéguez-Aranda
et al., 2006; Tomé et al., 2006; Cieszewski and Strub, 2008).
The present work generalizes that approach to more than one

dependent variable and links it to mainstream dynamical sys-
tems theory. A rigorous mathematical foundation is provided
by Arnold (1973, Ch. 1), who turns around the classical view
by starting with families of smooth state trajectories (“flows”)
as the most primitive concept. It is shown that any flow can
be described by a system of differential equations, although not
all differential equations generate a flow. A flow is also de-
termined by a complete set of independent first integrals, our
invariants. First integrals may be defined in a more restrictive
sense, in which “nonconstant first integrals are rarely encoun-
tered” (Arnold, 1973, page 77), so that the more generic termi-
nology has been preferred here. Further discussion is contained
in Garcı́a (2011).

From a statistical point of view, it is interesting that differ-
ent estimation methods produced similar parameter values and
predictions, suggesting that an adequate representation of sys-
tem dynamics might be insensitive to the details of stochastic
modelling and statistical procedures.

Scube’s modelling framework seems logically and biologi-
cally sound. The model describes well the available data, and
its design makes extrapolations plausible. Considerable vari-
ability and uncertainty remains, however. These can only be
resolved with proper long-term growth and yield monitoring,
especially in second-growth planted stands.
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