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Abstract

Background: Distance-dependent individual-tree models have commonly been
found to add little predictive power to that of distance-independent ones. One
possible reason is plasticity, the ability of trees to lean and to alter crown and
root development to better occupy available growing space. Being able to
redeploy foliage (and roots) into canopy gaps and less contested areas can
diminish the importance of stem ground locations. Plasticity was simulated for 3
intensively measured forest stands, to see to what extent and under what
conditions the allocation of resources (e.g., light) to the individual trees
depended on their ground coordinates. The data came from 50 × 60 m
stem-mapped plots in natural monospecific stands of jack pine, trembling aspen
and black spruce from central Canada.

Conclusions: Qualitatively similar results were obtained under a variety of
modelling assumptions. The effects of plasticity varied with stand uniformity and
with assumed plasticity limits and other factors. Generally, under what seem like
conservative maximum plasticity constraints, spatial structure accounted for less
than 10% of the variance in resource allocation. Perfect-plasticity equations were
obtained for tessellation-type models. They approximated well the simulation
results for those models, but not those from models with less extreme
competition asymmetry. Stand-level implications for canopy depth, distribution
modelling and total productivity were examined. Whole-stand perfect plasticity
approximations seem an attractive alternative to individual-tree models.

Keywords: growth and yield; competition; perfect plasticity approximation
(PPA); siplab

1 Introduction
Distance-dependent individual-tree growth models, also known as spatially explicit

individual-based models, have a long history in forestry (Reventlow, 1879; Staebler,

1951; Newnham and Smith, 1964; Dudek and Ek, 1980), and more recently have

received considerable attention in plant ecology (e.g., Wyszomirski, 1983; Grimm,

1999; Grimm and Railsback, 2005). In them, stem base or breast-height coordinates

are used to compute indices that reflect the competitive status of each tree and

predict growth and mortality. Although such models are valuable research tools, it

has been generally found that tree locations contribute little to predictive power,

and in practical forest management they have been almost entirely replaced by

non-spatial approaches (Weiskittel et al, 2011; Burkhart and Tomé, 2012).

One possible reason for the insensitivity to stem location is plasticity, the ability

of trees to lean and/or to adjust crown development so as to occupy less contested
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spaces (Umeki, 1995; Rouvinen and Kuuluvainen, 1997; Stoll and Schmid, 1998;

Muth and Bazzaz, 2003; Seidel et al, 2011; Schröter et al, 2012; Longuetaud et al,

2013). Strigul et al (2008) simulated forest stand development combining ideas

from SORTIE (Pacala et al, 1993) and from the canopy tessellation methods of

Mitchell (1969, 1975), but allowing for crown displacements as in Umeki (1995).

They proposed a perfect plasticity approximation (PPA) as a limit where crowns

are free to move so as to equalize competition intensity along their periphery. It

was found that the simulation results were close to the PPA predictions, which do

not depend on tree coordinates.

The main objective of this study was to complement the findings of Strigul et al

(2008), at the same time simplifying and generalizing aspects of that work. Their

results are influenced by a number of specific assumptions and design choices, the

importance of which are difficult to assess. Those include a space tessellation based

on the intersection of crowns of a certain shape, allometric relationships linking

tree dimensions to dbh, and particular growth functions. Here a general spatial

individual-plant modelling framework implemented in the siplab R package was

used, testing several alternative assumptions about neighbouring tree interactions

(Garcia, 2014). Simulations were run for three data sets with different species, tree

sizes, and spatial structures. Unessential complications were avoided by using single-

species even-aged stands, focusing instead on key mechanisms. Some extensions to

mixed-species are discussed elsewhere (Lee and Garćıa, manuscript in preparation).

Spatial individual-tree models predict growth and mortality rates as functions of

the target tree size, and of a competition or resource capture index that encapsu-

lates neighbourhood effects. Observed correlations, however, do not imply causality,

trees that grow faster because of genetic, microsite or other factors will be larger.

Extrapolation of the individual variability in past growth rates, represented by cur-

rent size, may be another reason for the prediction efficiency of aspatial models

(Garcia, 2014). For the purposes of evaluating the effects of plasticity and spatial

structure, we side-stepped the circular size-growth ambiguity issues by limiting the

analysis to an index of effective resource capture (assimilation index, for short).

Clearly, dependence or independence between the assimilation index and spatial

structure implies the same for growth and survival. In addition, results will not

depend on specific assumptions about growth relationships.

The next section describes the test data, the spatial individual-based models,

perfect plasticity approximations, and the analysis of simulation output. Simulation

results follow, focusing on how much of the assimilation variability is explained only

by tree size (ignoring tree coordinates), with and without plasticity. The article

continues with stand-level implications of perfect plasticity useful for whole-stand

modelling and other applications, and ends with a Discussion and Conclusions. The

Supplementary Files include computer code and additional details.

2 Material and Methods
2.1 Data

Simulations were based on 3 plots from the Boreal Ecosystem-Atmosphere Study

(BOREAS, Rich and Fournier, 1999). They were established in unmanaged natural

stands in Manitoba and Saskatchewan, central Canada. Coordinates and diameter
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at breast height (dbh) were measured for all trees taller than 2 m on a 50 × 60 m

area. Heights and crown dimensions were measured on a subsample, and estimated

for all trees by regression on dbh. The stands were single species, approximately

even aged, and situated on flat terrain. Plot characteristics are shown in Table 1;

the crown base heights and crown widths are subsample averages.

Table 1 Data statistics. Arithmetic means, standard deviation in parenthesis.

Species Trees/ha Mean Mean Crown Crown
dbh (cm) height (m) base (m) width (m)

Jack pine 1400 12.4 (3.7) 13.6 (2.1) 6.7 1.4
Trembling aspen 980 21.6 (4.3) 22.6 (2.4) 16.4 1.8
Black spruce 4727 9.1 (3.3) 9.5 (2.7) 4.8 0.7

Garćıa (2006) analyzed the same data and includes additional details. From two

similar jack pine plots, only the one in the southern research site was used for this

study. The data sets are included and documented in the siplab package.

Figure 1 Tree spatial distributions for the 3 sample plots. Top: actual stem-base locations.
Bottom: simulated crown displacements (simulation runs with a = 1, α→∞, and
distance-decreasing use efficiency). Circle diameters are proportional to tree height and zone of
influence. Colour or shading follows influence function values. Trees in the 5 m border were
excluded from displacements and from the analysis.
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The jack pine attributes are intermediate between those of the other two plots. The

aspen trees are larger, and their density somewhat lower. The spruce stand is much

denser, with smaller trees and an irregular spatial pattern. Spatial distributions are

shown in Fig. 1 (top row).

2.2 Models and simulation

Following Strigul et al (2008), the model is most easily visualized through the

physical crown space interactions of Mitchell’s TASS model (Mitchell, 1975); gener-

alizations are introduced later. In TASS, trees have a radially symmetrical potential

crown shape with lateral crown expansion stopping at the points of contact, tessel-

lating the plane on a horizontal projection (Figure 2a). The shapes move upward
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Figure 2 Plasticity mechanisms that tend to equalize the competition pressure from the tree
neighbours. The curves represent potential crown profiles, or more generally, shading potential or
competitive strength (influence function). Dashed lines join neighbour contact points. (a) No
plasticity. (b) Leaning. (c) Differential branch growth. A combination of these mechanisms can be
expected, in addition to a redistribution of foliage density. Produced with Asymptote
(http://asymptote.org) using a = 1.5 in eq. (1).
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with height growth, modifying the tessellation, and possibly over-topping and even-

tually causing the death of the smaller trees. Light extinction produces a constant

depth of live foliage, so that light interception and growth are essentially propor-

tional to the horizontal area occupied by each tree.

2.2.1 Influence functions

It is often observed that crowns do not interlock, especially at higher latitudes, and

a direct interpretation of the models of Mitchell (1975) and Strigul et al (2008)

is then unrealistic (Fish et al, 2006; Goudie et al, 2009). However, rather than as

a crown surface, the shapes can be seen in a more abstract way as a shading po-

tential or competition intensity function, possibly representing both above-ground

and below-ground processes, which we call an influence function. Light arrives at

various angles, especially the important diffuse light radiation, so that the influence

function is likely to extend somewhat beyond the physical crown limits.

Regardless of interpretation, Gates et al (1979) derived forms for a crown profile

or influence function that ensure that the induced growing-space partition satisfies

a number of reasonable properties. Their conditions, together with the assump-

tion of shape preservation by upward movement through height growth (“gnomonic

scaling”), imply that the surface height must follow the equation

z = H − bRa , (1)

where H is tree height, R is horizontal distance, and a and b are positive parameters

(Garcia, 2014). Only positive values are used, otherwise the influence is taken as 0.

The circle z = 0 defines the tree zone of influence (ZOI).

The simulations used a = 1, which gives a cone, and a = 2 that corresponds to a

paraboloid of revolution. The pointed convex crown shapes used by Mitchell (1975)

and Strigul et al (2008) are intermediate between these two. Figure 2 was drawn

using eq. (1) with a = 1.5.

The parameter b determines the shape slenderness, the ZOI extent, and the height

of the function intersections between competing trees. The choice of values for the

simulations is discussed later in Section 2.4.

2.2.2 Allotment

In TASS and in Strigul et al (2008), the horizontal space is subdivided on an exclu-

sive basis, with the tree having the largest influence function value taking all the

resource (e.g., light) available at each point. Competition is completely asymmetric.

A less extreme alternative is to assume that the resource is somehow shared among

trees where their ZOIs overlap. Siplab implements a general allotment rule where at

each point (or pixel) a tree with influence function value zi captures a proportion

zαi∑
zαj

. (2)

The sum is over all the trees (or over all trees with positive influence at that point),

and the parameter α is a measure of local competition asymmetry. With α = 1

resource capture is directly proportional to z. In the limit α → 0 capture is fully
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symmetric, the same for all competing trees independently of z. For α → ∞ one

has the TASS tessellation where the largest z takes all. Simulations were run with

α→∞ and with α = 1.

2.2.3 Efficiency

As mentioned before, the area allocated to a tree can be used as a summary of

the effect of the neighbours on its development. For a given α, the values of (2)

are spatially integrated, assuming a uniform resource distribution with one unit per

unit area. Siplab discretizes these calculations, a 10-cm square pixel was used. More

generally, the integration can be weighted by an efficiency function, to produce an

effective resource capture or assimilation index reflecting contributions that dimin-

ish with distance from the tree location. An efficiency function of the same form as

the influence function was used, scaled by its value at the origin:

1− bRa/H . (3)

This efficiency is 1 at the tree location, and decreases to 0 at the edge of the ZOI.

The tessellations of Mitchell (1975) and Strigul et al (2008) correspond to the special

case α→∞ with a flat efficiency function.

2.2.4 Plasticity

With plasticity, phototropism induces a displacement toward areas where more light

is available. Leaning of the stem in the direction of canopy gaps is common (Fig,

2b). Differential branch growth (Fig, 2c) and redistribution of foliage density can

also be important. In most cases a combination of all these mechanisms is likely.

Either way, the result is a more even resource allocation and less dependence on the

basal stem locations. Note that plasticity makes the height of the crown contact or

influence function intersection points more uniform. Below ground, roots can follow

similar asymmetric patterns (Brisson and Reynolds, 1994).

To simulate plasticity, tree coordinates were iteratively displaced to the centroid

of the tree efficiency-weighted pixel resource captures. This tends to equalize com-

petitive pressure on opposite sides, in the spirit of Umeki (1995) and Strigul et al

(2008). Iterations terminated when all coordinates changed by less than 5 cm. To

prevent unlimited drifting, limits on the maximum displacement from the original

tree position were enforced (Section 2.4). Distortions due to the absence of com-

petitors beyond the plot boundaries were limited by excluding a 5 m border from

coordinate changes and from the results (Fig. 1).

This approach does not distort the influence profiles as in Fig. 2c. However, it

can be seen that only the vertical change in cross-sectional area near the contact

height is important. Another simplification is that, as in Strigul et al (2008), crowns

are displaced but the cross-sections remain circular. In reality, in many tree species

horizontal crown shape distortion can add significantly to the spatial regulariza-

tion of the canopy, although crown displacements still seem to be the main factor

(Longuetaud et al, 2013).
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2.3 Perfect plasticity

In the perfect plasticity approximation (PPA) of Strigul et al (2008), plasticity

causes all the crown contact points to be at a common height z∗ (Fig.2). Consider

a general influence function, where the horizontal cross-sectional area for tree i is

some function fi of the distance from the top. Then, for α→∞, the area captured

by the tree is

Ai = fi(Hi − z∗) . (4)

Assuming full canopy closure (z∗ > 0), these areas must add up to the total stand

area, so that the mean area is

A = fi(Hi − z∗) = 1/N , (5)

where N is the number of trees per unit area. This equation determines the contact

level z∗; a numerical solution is generally necessary.

In the models of Strigul et al (2008) all tree dimensions for a tree species are fixed

functions of dbh, and fi varies with species and dbh. With gnomonic scaling fi is

size-invariant, and for eq. (1) Ai = πR2
i is

Ai =
π

b2/a
(Hi − z∗)2/a (6)

if Hi ≥ z∗, otherwise Ai = 0. The parameters can be species-dependent.

From equations (5) and (6),

(Hi − z∗)2/a =
b2/a

πN
, (7)

provided that all trees are taller than z∗. Explicit expressions for z∗ can be obtained

for a = 1 and a = 2. In the paraboloid a = 2, the tree area Ai is a linear function

of Hi, and eq. (7) reduces to

z∗ = H − b

πN
. (8)

In the cone a = 1 the function is quadratic, and

(Hi − z∗)2 = [(Hi −H) + (H − z∗)]2 = σ2 + (H − z∗)2

where σ2 is the height variance, giving

z∗ = H −
√

b2

πN
− σ2 . (9)

With the weighting of eq. (3), the effective resource capture or assimilation index

A′i can be obtained by integration over annular differentials of area 2πr dr:

A′i = 2π

∫ Ri

0

(1− b ra/Hi) r dr ,
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giving

A′i = Ai

[
1− 2

a+ 2

(
1− z∗

Hi

)]
. (10)

Some additional relationships are derived in Section 4.

Finding an explicit assimilation PPA for non-tessellation models (α < ∞) seems

more complicated. In any case, resource capture under perfect plasticity, and the

consequent predicted growth and mortality, depend on tree size and stand density

but not on spatial coordinates.

2.4 Simulation parameters

It remains to choose values for the parameter b in eq. (1), and limits for the ZOI

displacements.

The stands have closed canopies, signalled by a rising canopy base. Influence

intersection heights should therefore lie mostly above the average green crown level.

It seemed reasonable to choose b so that the PPA intersections are about 2 m above

the crown base, for a foliage depth of approximately 2 m (Mitchell, 1975). Values

thus obtained from equations (8)–(9) and Table 1 are shown in Table 2. Other values

of b gave qualitatively similar simulation results.

Table 2 Values of the parameter b used in the simulations

a = 1 a = 2

Jack pine 3.5 2.2

Trembling aspen 2.7 1.3

Black spruce 4.7 4.0

With regards to displacement limits, the plasticity literature usually reports means

for the horizontal distances between crown centroid and stem base, often as rela-

tive displacements (displacement divided by mean crown radius), but maximum

values are less common. Muth and Bazzaz (2003) show relative displacements less

than 1 for mixed hardwoods. In old-growth European beech, Schröter et al (2012)

found a maximum displacement of 6.26 m. Longuetaud et al (2013) gave relative

displacements of up to 7.68 in mixed broadleaves. In Scots pine, Vacchiano et al

(2011) calculated stand means between 1.0 and 3.9 m across 4 sites in the Alps.

Figure 5 of Gatziolis et al (2010) shows horizontal deviations between surveyed stem

base and LiDAR-assessed tree top exceeding 10 m in both conifers and hardwoods,

although some of that may be due to measurement error.

Besides crown displacement, foliage distribution also affects the influence function,

and the contribution of crown shape distortion (Longuetaud et al, 2013) is ignored

in the model. Based on this information, for the main results the algorithm total

ZOI displacement was limited by a seemingly conservative upper bound of 3 m

in all cases. To assess the effects of this parameter, also partial results with more

restrictive bounds of 1.5 m for pine and 1 m for spruce will be shown (the spruce

narrower crowns and perhaps their closer spacing might justify the smaller bound;

aspen exhibits more stem leaning than conifers).
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2.5 Analysis

We are interested in to what extent allowing for plasticity in the simulations dimin-

ishes the effect of spatial structure. In other words, how good is a perfect plasticity

approximation, which assumes that assimilation indices depend only on tree size. To

that effect, assimilation indices were analyzed both in the absence of plasticity, i.e.,

with the original tree coordinates, and after convergence of the ZOI displacement

algorithm.

As a direct visual evaluation, the spread in scattergrams of assimilation index

over tree height was examined, for the various model variants and data sets. The

simulated values were compared to the theoretical tessellation PPA relationships of

Section 2.3. As a numerical summary, the r-squared from a quadratic polynomial

regression indicated the proportion of variance accounted for by tree size alone.

Also of interest are the differences in total resource capture (sum of the assimila-

tion indices). Values per unit area and tree averages were calculated.

In a tessellation, some smaller trees may be completely over-topped, receiving

no resources. The centroid-driven ZOI displacement algorithm ignores these trees,

affecting total resource utilization (this is not the case with α <∞). The proportion

of such trees is shown in the results. The proportion of trees where the displacement

was constrained by the bounds of Section 2.4 was also computed. This indicates to

what extent approaching the PPA was limited by those assumptions.

The trend toward a more regular spatial distribution under plasticity was as-

sessed with the Clark and Evans aggregation index, calculated with spatstat (Bad-

deley and Turner, 2005) using the default Donnelly edge correction (Rouvinen and

Kuuluvainen, 1997; Schröter et al, 2012). The index is 1 for a “random” (Poisson)

pattern, values less than 1 indicate clustering, while more uniform spacings produce

indices greater than 1.

3 Simulation results
Simulation results are shown graphically in Figures 3 to 5, and numerical summaries

are given in Table 3. Note that the simple iterative algorithm generally progresses

toward more balanced competition, but there is no guaranteed convergence to any

sort of optimum; anomalies can occur.

Simulated plasticity resulted in good relationships between assimilation indices

and tree size, in most instances explaining over 90% of the variance as indicated

by the regression R2. That is, less than 10% of the variability can be attributed

to spatial structure. The assimilation PPA works well for the tessellation models

on which it is based (α → ∞), but the relationships for α = 1 are substantially

different.

The Clark-Evans aggregation index indicates clustering of the stem coordinates.

Plasticity moves the ZOIs into less occupied areas, tending to a more regular pat-

tern, See also Fig. 1. For the same reason, the total resource capture (or mean as-

similation) increases, although perhaps not as much as might have been expected.

The outliers with high assimilation indices in the aspen graphs of Fig. 4 correspond

to trees near the large gap on the bottom-right corner of Fig. 1.

In the tessellation models, trees that are underneath the influence functions of

other trees have zero assimilation, and do not participate in the displacements
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Figure 3 Simulation results for jack pine. Without plasticity, much of the assimilation variability is
due to the spatial structure of tree locations. Plasticity reduces the effect of tree coordinates, so
that the variability is largely explained by tree height. Curves are the tessellation (α→∞)
assimilation PPA. It is seen that the approximation is satisfactory in that case, but clearly it is not
appropriate for α = 1.
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Figure 4 Simulation results for trembling aspen (see the legend of Fig. 3). Outliers correspond to
trees close to a large gap.
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Figure 5 Simulation results for black spruce (see the legend of Fig. 3). In this denser and more
heterogeneous stand the effect of plasticity is weaker.
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Table 3 Simulation results, maximum displacement 3m

Flat efficiency Decreasing efficiency
Plasticity a = 1 a = 2 a = 1 a = 2

α→∞ α = 1 α→∞ α = 1 α→∞ α = 1 α→∞ α = 1
Jack pine

Regression R2 No 0.61 0.66 0.55 0.47 0.68 0.67 0.60 0.48
Yes 0.94 0.94 0.88 0.79 0.96 0.94 0.93 0.82

Residual S.E. No 3.5 2.3 2.7 2.2 1.8 1.0 1.6 1.2
Yes 1.1 0.8 1.2 1.3 0.6 0.4 0.6 0.8

Clark-Evans index No 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Yes 1.3 1.1 1.4 1.4 1.3 1.1 1.4 1.4

Assimilation / m2 No 0.64 0.64 0.58 0.58 0.41 0.30 0.41 0.35
Yes 0.69 0.67 0.68 0.68 0.49 0.33 0.52 0.45

Assimilation / tree No 7.3 7.4 6.7 6.7 4.8 3.4 4.7 4.0
Yes 7.9 7.7 7.9 7.8 5.6 3.8 6.0 5.2

% with assim. 0 No 12.3 0.0 4.6 0.0 12.3 0.0 4.6 0.0
Yes 4.2 0.0 1.9 0.0 4.6 0.0 1.1 0.0

Mean displacement (m) Yes 1.7 1.6 1.7 1.6 1.6 1.5 1.7 1.6
% at disp. bound Yes 52 48 57 50 52 43 54 51
Iterations Yes 46 43 41 40 41 37 51 45

Trembling aspen
Regression R2 No 0.66 0.86 0.48 0.47 0.67 0.87 0.49 0.43

Yes 0.91 0.90 0.92 0.79 0.95 0.94 0.95 0.84
Residual S.E. No 5.4 1.5 4.6 2.7 4.0 0.7 3.5 1.8

Yes 2.8 1.2 1.6 1.3 1.7 0.5 1.0 0.7
Clark-Evans index No 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Yes 1.3 0.8 1.4 1.1 1.3 0.8 1.4 1.0
Assimilation / m2 No 0.66 0.68 0.65 0.65 0.53 0.33 0.54 0.42

Yes 0.71 0.71 0.70 0.69 0.59 0.36 0.62 0.46
Assimilation / tree No 9.8 10.0 9.7 9.7 7.8 4.9 8.0 6.2

Yes 10.5 10.6 10.5 10.3 8.7 5.3 9.2 6.9
% with assim. 0 No 11.9 0.0 3.5 0.0 11.9 0.0 3.5 0.0

Yes 3.5 0.0 1.0 0.0 4.0 0.0 1.0 0.0
Mean displacement (m) Yes 1.9 1.7 1.8 1.7 1.9 1.8 1.8 1.7
% at disp. bound Yes 19 24 19 15 20 24 21 13
Iterations Yes 35 49 45 38 53 62 60 42

Black spruce
Regression R2 No 0.61 0.63 0.57 0.46 0.70 0.64 0.63 0.48

Yes 0.94 0.92 0.92 0.85 0.96 0.93 0.93 0.89
Residual S.E. No 1.50 1.05 1.19 0.98 0.74 0.46 0.74 0.57

Yes 0.55 0.43 0.47 0.44 0.26 0.20 0.34 0.26
Clark-Evans index No 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Yes 1.1 1.1 1.2 1.2 1.1 1.1 1.2 1.1
Assimilation / m2 No 0.65 0.65 0.60 0.60 0.40 0.29 0.43 0.36

Yes 0.73 0.71 0.73 0.72 0.50 0.36 0.58 0.48
Assimilation / tree No 1.9 1.9 1.7 1.7 1.2 0.9 1.2 1.0

Yes 2.1 2.1 2.1 2.1 1.5 1.0 1.7 1.4
% with assim. 0 No 34 0 24 0 34 0 24 0

Yes 20 0 17 0 21 0 18 0
Mean displacement (m) Yes 1.0 1.2 1.1 1.2 1.0 1.1 1.1 1.3
% at disp. bound Yes 44 49 52 55 45 45 48 59
Iterations Yes 55 42 57 36 56 41 50 61
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unless movement of their competitors changes their circumstances. That can be

seen in the graphs, and in the rows labelled “% with assimilation 0” in Table 3.

These trees are relatively more numerous in the more heterogeneous spruce stand.

With α <∞ all trees receive some resources.

About half of the pine and spruce trees, and 1/4 of the aspens, are constrained

by the 3 m displacement bound at the last iteration. This and the visually tighter

relationships for the aspen suggest that relaxing this bound would decrease further

the importance of spatiality. To examine the effects of more severe constraints,

simulations were run with displacement limits of 1.5 m for pine and 1 m for spruce.

Results are shown in Table 4 for distance-weighted efficiency. As expected, the R2

decreased, although size still accounts for much of the variation.

Table 4 Plasticity simulations with displacement bounds of 1.5 m for pine and 1 m for spruce.
Distance-decreasing efficiency weighting.

Jack pine Black spruce
a = 1 a = 2 a = 1 a = 2

α→∞ α = 1 α→∞ α = 1 α→∞ α = 1 α→∞ α = 1

Regression R2 0.90 0.86 0.86 0.70 0.88 0.83 0.84 0.71
Residual S.E. 1.0 0.6 0.9 1.0 0.47 0.29 0.49 0.42
Clark-Evans index 1.2 0.9 1.3 1.2 1.0 0.9 1.1 1.0
Assimilation / m2 0.47 0.32 0.50 0.43 0.47 0.33 0.53 0.44
Assimilation / tree 5.4 3.7 5.7 4.9 1.4 1.0 1.5 1.3
% with assim. 0 5.7 0.0 1.9 0.0 25 0 20 0
Mean displacement (m) 1.2 1.1 1.2 1.1 0.60 0.76 0.66 0.79
% at disp. bound 52 49 46 41 38 49 44 48
Iterations 32 28 29 25 37 27 43 27

4 Stand-level implications

A number of global relationships can be derived from the perfect plasticity approx-

imation. These can be useful for canopy depth prediction, distribution modelling,

and to develop whole-stand models for complex stands.

4.1 Canopy depth

With perfect plasticity, a tree crown length equals the distance from the top to the

contact level z∗, plus the depth d of the foliage layer:

Li = Hi − z∗ + d ,

and z∗ is related to stand density N as described in Section 2.3. The mean canopy

depth is L = H − z∗ + d.

From eq. (7), for the crown profiles or influence functions of eq. (1)

(Li − d)2/a =
b2/a

πN
. (11)

As a first approximation, ignoring the height variability gives

L ≈ b

(πN)a/2
+ d .
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A second order approximation can be obtained applying the delta method (a 2nd

order Taylor expansion around L) on the left-hand side of (11), leading to

L ≈ b

[1 + (2− a)C2/a2]a/2
1

(πN)a/2
+ d , (12)

where C = σ/L is the coefficient of variation of the crown lengths. Either way,

assuming that C is relatively stable, the mean canopy depth is approximately linear

in 1/Na/2, or in terms of the average spacing S = 1/
√
N , approximately linear in

Sa. In the special case a = 1 eq. (9) gives an exact relationship that is only slightly

nonlinear, while for a = 2 equations (8) and (12) coincide.

Brown (1962) and Valentine et al (1994) used a similar argument with equal-sized

conical crowns, but assuming that the crown base coincided with z∗, to conclude

that L should be proportional to S. Beekhuis (1965) and Valentine et al (2013)

found that including an intercept in a linear regression gave better results for pine

plantation data. That agrees with eq. (12) for a = 1 (Beekhuis’ canopy depth was

based on stand top height instead of mean height, so that his intercept includes the

difference between those height measures).

A nonlinear least-squares regression with Beekhuis’ data, in metric units, gives

L = 3.67 + 3.77S0.742 or L = 6.26 + 1.97S, with the exponent not significantly

different from 1 (p = 0.456). A similar analysis with the grouped summaries from

Table 2 of Amateis and Burkhart (2012), excluding the age 5 data which might

not have reached canopy closure, gives L = 2.30 + 0.854S1.27 or L = 1.54 + 1.41S,

again with the exponent not significantly different from 1 (p = 0.429). The linear

regression is similar to those of Valentine et al (2013) for individual trees from the

same experiment. These observations support a value of a ≈ 1, at least for conifers.

4.2 Distributions

Perfect plasticity makes growth and mortality independent of tree locations, they

only depend on tree size and stand density. The state of a stand is then fully

characterized by a size distribution and N . In a discrete approximation, individual-

based aspatial models can then simulate the development of a finite sample of trees,

as in the traditional distance-independent individual-tree growth and yield models

(Weiskittel et al, 2011; Burkhart and Tomé, 2012).

Strigul et al (2008) calculated the evolution of a continuous size distribution with

a partial differential equation (PDE) known as the McKendrick or von Foerster

equation. It extends the classical Liouville equation to include mortality and re-

cruitment (Picard and Franc, 2004). Introducing stochastic elements would produce

the Fokker-Planck (or Kolmogorov forward) PDE. Stochastic differential equations

are a sometimes advantageous alternative representation.

Another possibility is to avoid PDEs by describing the state through the distri-

bution moments instead of a continuous function. In general, this would require

an infinite sequence of equations, one for the rate of change of each moment. The

problem is solved by moment closure methods, which ignore higher moments or

approximate them as functions of lower-order moments (e.g., Murrell et al, 2004;

Milner et al, 2011).
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Most models have used a simple scalar measure of tree size, usually dbh or basal

area. A biologically meaningful tree description, however, requires at least two vari-

ables such as height and volume or biomass, a two-dimensional size vector (Garcia,

2014). In principle, the methods above can be applied to vectors, although that has

rarely been done.

It should be recognized that the size-dependent growth or mortality relationships

apply only within a stand. Large dominant trees tend to grow faster than the stand

average, but at the landscape level large trees may correspond to older stands with

lower growth rates. Hierarchical statistical methods should give better results than

the common practice of fitting simple regressions to data gathered from different

stands.

A spatially uniform resource availability is also assumed. This is appropriate for

light, but nutrients and moisture vary and tend to be spatially correlated. In fact,

for these data sets neighbouring tree sizes were found to be positively correlated,

instead of the negative correlation predicted by spatial competition models, or of

the independence assumed when using distributions (Garćıa, 2006). In aspen, clonal

vegetative propagation adds to the positive size correlations through spatial clus-

tering of genotypes and growth rates.

As mentioned in the Introduction, a growth-size correlation may not be due to

large size causing faster growth, but to the fact that faster-growing trees are larger.

Specially with diameter-driven models and under management or natural distur-

bances, this statistical confounding can be problematic (Garcia, 2014).

4.3 Whole-stand

Production can be expected to be approximately proportional to effective resource

capture, so that there is interest in the total assimilation or assimilation per unit

area. With a flat efficiency function, assimilation corresponds to the area allocated

to the tree, and with full canopy closure the total is independent of stand density

and spatial structure (although it can change with stand age or height, and with site

productivity). If use efficiency decreases with distance, however, stand assimilation

and biomass or volume growth should decrease with increasing average spacing

(Garćıa, 1990).

Under the PPA with α→∞ and ignoring size variability, equations (10) and (7)

give the following approximation for the assimilation per unit area:

NA′ ≈ 1− 2b

(a+ 2)πa/2
Sa

H
, (13)

with S = 1/
√
N being the average spacing. As in Sec. 4.1, the delta method can be

used to produce a more accurate approximation of the same form. This is similar

to moment closure (Sec. 4.2), retaining only the first moment. Garćıa (1990) found

in radiata pine that gross volume increment per hectare, adjusted for site quality,

decreased linearly with S, pointing again to a ≈ 1.

If this is still approximately true with α <∞ is an open question.
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5 Discussion
These simulations are static, representing one point in time, instead of simulating

stand development over long periods of time as in Strigul et al (2008). However,

dynamically the plasticity adjustments correspond to fast variables that act on

much shorter time scales than tree growth, leading approximately to a dynamic

equilibrium. Dispensing with the details of full growth, mortality and regeneration

models allows for more general inferences, appropriate to the time horizons typically

considered in growth and yield prediction. This might not be sufficient for study-

ing succession mechanisms, including natural regeneration and changes in species

composition over several centuries (Strigul et al, 2008).

Ignoring crown distortion underestimates the effectiveness of plasticity in reduc-

ing the effects of spatial pattern. With circular cross-sections it is not possible to

achieve in three dimensions the idealized equalizing of inter-tree competition pres-

sures suggested by Fig. 2. That would require the crown or influence function width

to vary with azimuth, leading to irregular cross-sections similar to those commonly

observed in practice (Longuetaud et al, 2013). Therefore, one would expect tighter

relationships than those shown in Figs. 3–5, unless the 3 m bound on displacements

turns out to be far too high.

Intuition and experimental results suggest that the simple centroid-chasing algo-

rithm tends to the PPA, although that is not mathematically proven. Even so, the

algorithm does not necessarily always converge to a “best” solution, and improve-

ments might be possible. At a more fundamental level, it is not entirely obvious why

the uniform z∗ of Strigul et al (2008) might be biologically optimal or desirable. In

fact, it can be shown that deviations from it can increase the total effective resource

capture by the stand, so it may not be strategically optimal at the population level

in the sense of Parker and Smith (1990). Balancing competitive pressure on all sides

seems however a reasonable tree-level tactic.

The simulations supported the hypothesis that plasticity causes assimilation in-

dices, and hence growth and mortality, to be affected much less by tree location

than by tree size. The degree of spatial independence varied among the test stands,

presumably mainly in relation to the regularity of the spatial pattern. The plastic

capabilities of the trees, represented by the bounds on maximum displacement, can

be important in the more irregular stands. These conclusions were robust, mostly

insensitive to assumptions about influence function shape, competition asymme-

try, or resource use efficiency. The PPA assimilation-size relationships derived from

tessellation models were not appropriate with less extreme asymmetry (α = 1); it

would be interesting to find correct explicit equations for that case.

Plasticity can also help to explain the insensitivity to spacing rectangularity in

forest plantations. It has been observed that planting pattern has little or no effect

on tree sizes, mortality, or yield (e.g., Amateis and Burkhart, 2012). A simulation

of equal-sized trees on a 1:3 rectangular spacing (Fig. 6) showed that plasticity pro-

duced tree growing areas indistinguishable from those arising from square spacing

(a small random coordinate perturbation was used to get the algorithm started).

With plasticity the total assimilation was 15% higher than without plasticity.

Fertility and other spatial correlations, and growth-size statistical confounding,

are additional reasons for the generally small contribution of tree coordinates to

growth predictions (Sec. 4.2). More research on these topics is needed.
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Figure 6 Rectangular planting. Left: no plasticity, crowns centred on the rectangular planting
pattern. Right: plasticity simulated with the centroid-chasing algorithm, crowns are displaced into
less contested spaces. Shading indicates effective resource capture, line segments show the
displacement of the crown centroid from the stem base locations. Trees at 1.5 × 4.5 m spacing,
Hi = 14 m, a = 1, b = 3.5, α→∞, efficiency weighting.

It appears that for spatial patterns that are not too irregular, and for sufficiently

plastic tree species, there is little to be gained by including spatial structure in

growth and yield forecasting models. However, spatial modelling is likely to be still

important in relation to severe disturbances and gap dynamics, and their effects

on natural regeneration and succession. Difficulties with distance-independent and

other distribution-based models (Sec. 4.2) make whole-stand modelling approaches

attractive. Extensions of the PPA and similar approximations to multiple species,

and to cohorts in uneven-aged forests, can produce whole-stand level equations

suitable for complex stands.
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a1infeff: aspen, a = 1, α =∞, efficiency weighting

p1infeff: pine, a = 1, α =∞, efficiency weighting
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