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Oscar Garćıa Vidal

Management Section, Forestry Division

Instituto Forestal

1974

1Translated from “Sobre modelos matemáticos de rodal”, Informe Técnico
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Abstract

Some concepts that may be useful for the study of forest stands through
mathematical models are discussed. A set of examples to illustrate these
ideas is included.

Application to stand model formulation of an approach based on the
concept of dynamical system or multistage process, as used especially in
Control Theory, is described. This approach involves the specification of a
state vector which describes the system at a given time, and the specification
of a transition function which determines the changes of state. Furthermore
the need for multidimensional state vectors is pointed out.



The aim of this work is to discuss some concepts which may be useful in
the study of forest stands1 through mathematical models, illustrated with a
series of examples.

This report is an extension of some ideas presented previously (Garćıa,
1968), and is based on a talk presented at Universidad Austral in January
of 1972.

Models

A system is, in general terms, a set of components and a set of relations be-
tween the components. When we are able to act upon a system affecting its
behaviour, the problem of choosing the most appropriate course of action is
presented. In order to choose an appropriate course of action, it is necessary
to know first, at least approximately:

a) The relationship between our criterion of appropriateness and the be-
haviour of the system.

b) The relationship between the behaviour of the system and our actions.

We will refer only to the second point, that is, the prediction of the
behaviour of a system.

The behaviour of a system can be determined directly, testing the various
alternatives of action and recording the results. However, in many cases,
besides the fact that the number of alternatives can be infinite, the direct
experimentation can be slow, costly, or even impossible for various reasons.
For example, if the system is a forest stand in which we wish to know its
behaviour vis a vis various kinds of thinning programmes, even assuming
that the number of programmes of interest were finite, the experimentation
is costly and requires time. In the case of an economic or social system, the
experimentation is clearly impractical.

One can resort then to the use of models. A model of a system is another
system such that, having established a correspondence between aspects of
both systems, it behaves in a manner similar to the original system. One
can then experiment on the model (at less cost) and thus obtain information
about the behaviour of the system of interest.

Models can be of various types (see for example Ackoff and Sasieni, 1968;
Churchman, Ackoff and Arnoff, 1957). An example is a scale model of an
aeroplane which is tested in a wind tunnel. Or a board with figures where

1A forest stand is an area of forest of relatively homogeneous characteristics.
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military operations are simulated. Or an electric circuit which represents
a suspension system of an automobile (a very close analogy exists between
electrical systems and mechanical systems, with correspondence between
electric potential and force, intensity of current and velocity, electrical re-
sistance and friction, induction and inertia, condensers and springs, etc.).

In mathematical models, the system is represented by a group of symbols
linked by mathematical relationships. This type of model has gradually
acquired more importance with the use of digital computers, since the latter
make possible the operation of complex models at low cost. It is to this type
of model which we shall refer. With a mathematical model, depending on
its nature and complexity, the most appropriate alternatives may be sought
experimentally (simulation) or determined mathematically (optimisation).

It is important to point out that a system does not correspond to a unique
mathematical model, but it is possible to construct models of distinct math-
ematical nature and with diverse levels of refinement. The characteristics
of a model can depend, among other things, on the use for which it is con-
structed, on the knowledge one has of the system, on the possibilities of
estimating the necessary parameters, on the available mathematical tools,
on the computing facilities, etc.

In particular, a system may be considered as composed of interrelated
subsystems and, in turn, these subsystems composed of other subsystems,
etc. In this form, the problem of constructing a model may be subdivided
into various sub-problems which may be approached separately and may in-
volve various teams of people. It is thus that, for example, in order to develop
a model of the Forest Sector one may consider as subsystems the silvicul-
tural aspects, the forest industry, and the transportation and distribution
system. Within the silvicultural area one may consider the production units
(enterprises) and, within the production units, among other subsystems,
the stands. Also the trees could be considered as subsystems which form a
stand, etc. As already mentioned, the level of division into subsystems is
a matter of convenience which depends, among other things, on the knowl-
edge of the system and the degree of refinement sought. In the planning of
forest resources management, probably the major difficulty at this time is
in predicting the behaviour of a stand vis a vis silvicultural interventions.
That is to say, the problem is in developing adequate mathematical models
for the stands.
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Dynamical Systems

State

We are interested in the behaviour of a system over a period of time. At any
moment t, the system is characterised by its state, represented by a state
vector pt. This state vector is a point in a set or space S, which describes
adequately for our purposes the state of the system. “Adequately” signifies
that if two systems have the same state vector in a given moment, we can
consider them as equivalents, behaving in the same manner (for a more
rigorous discussion of the concept of state see: Wiberg, 1971; Zadeh, 1964).
The state vector can be a real number, a vector of finite dimension, an infinite
sequence of real numbers, a function, or any other convenient mathematical
entity.

For example, an even-aged stand can be characterised by its cubic volume
per hectare and its age (two-dimensional vector). This is what has been used
most in yield models.

In general, age in itself does not seem important as a state variable.
To include it really what will be done is to consider other variables which
depend on age and which have a more direct causal relationship with stand
development. Especially, dominant height (mean height of dominant or
dominant and codominant trees) has a very close relationship with the age
for a given site, so that another state vector almost equivalent to the former
can be that consisting of the volume and the dominant height.

The use of these state vectors would indicate that we are accepting that,
for a given site, two stands which have equal volume and age, or equal volume
and height, will behave in the same manner. However, it seems obvious that
if, in spite of coincidence in these state vectors, the stands differ markedly
in the number of trees per hectare, their increments can be very different.

We can then consider as state variables volume, dominant height and
number of trees per hectare. In order to describe acceptably the state of an
even-aged stand, at least three variables seem to be necessary which can be
those indicated or others related to them, as for example, basal area, mean
diameter and height. Other variables could be added such as measures of
dispersion (variances) which indicate the homogeneity of the stand, measures
of stem form, etc.

Another state vector used in projections by Reynolds’ method is the
number of trees per hectare by dbh2 classes. This is an example of a vector
of infinite dimension (sequence of real numbers), though it can be reduced

2Diameter at breast height (1.3 meters above ground).
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to a finite-dimensional vector by limiting the number of dbh classes.
If one considers the number of trees per hectare by dbh classes and by

height classes, with a finite number of classes, it follows that the state vector
is a matrix (which can also be represented in other ways).

The case of a diameter distribution is an example in which the state
vector is a function (vector of uncountable infinite dimension).

Upon considering a tree, its state may be described by its dbh and
height (two-dimensional vector), by its dbh, height and form factor (three-
dimensional vector), by its diameter as a function of height (function), etc.

It is clear then that we can take as S any convenient set.

Processes

The behaviour of a system during a period of time T would be completely
chracterised by the set of states {p(t) : t ∈ T }. This set or sequence (count-
able or not) of states constitutes a process. It is possible to imagine the
process as a point which moves in the state space S. This visualisation is
particularly simple when the state vector is two- or three-dimensional, en-
abling one then to represent S in a plane or in a three-dimensional space,
respectively.

The processes can be deterministic or stochastic. A process is deter-
ministic if the knowledge of an initial state and the later actions upon the
system completely determine its future behaviour. Stochastic processes are
characterised by containing random elements which allow only a probability
distribution for future states to be determined (see for example: Cox and
Miller, 1965; Barttlet, 1966). In particular, stochastic processes in which the
future behaviour depends on an initial state and on the later actions upon
the system and not on its previous history, are named Markov processes,
being the most interesting as stochastic stand models. Here we will discuss
only deterministic models.

Let us consider first the case in which we are interested only in the
states at certain uniformly spaced times. In order to simplify, let us assume
in addition that the spacing is of one time unit, beginning at zero. It is
always possible to formulate the problem thus using an appropriate change
of scale. In this case T is the set {0, 1, 2, 3, . . .}. The evolution of the system
will be given then by the sequence {p0, p1, p2, p3, . . .}.

Since the behaviour of the system depends only on its state and our
action on the system, the change of state between the times t and t + 1 can
be represented by a transformation (transition function)

pt+1 = T (pt, qt) ,
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where qt is a vector which describes our action on the system at the moment
t and which we will call the control vector (Bellman, 1956; Bellman and
Kalaba, 1965). In other words, the state at time t + 1 is a function T of the
state at time t and the control vector for time t.

Notice that the evolution of the system is completely specified given the
initial state p0, the function T and the control schedule {qt : t = 0, 1, 2, . . .}.
In effect, the state at time n can be calculated by applying n times the
function T :

p1 = T (p0, q0)

p2 = T (p1, q1)

...
...

...

pn = T (pn−1, qn−1) ,

that is:
pn = T (T (. . . T (T (T (p0, q0), q1), q2) . . . , qn−1), qn) .

In the case of stand models, our actions are generally silvicultural in-
terventions (partial cuts) which are equivalent to changes of state which we
can consider as instantaneous. In order to simplify the problem, we can
then consider only the evolution of the stand between two successive inter-
ventions, omitting the control vector. Our transition function, then, will be
simply:

pt+1 = T (pt) (1)

This equation may also be written, subtracting pt from each member:

pt+1 − pt = T (pt)− pt ,

or as well:
∆p = f(p) . (2)

Either of the two forms, (1) or (2), is adequate for a mathematical stand
model.

We go now to the continuous case. Sometimes it is of interest to consider
the process as continuous in time, that is, {p(t)} with t varying continuously
in an interval. T will be the interval [0,∞).

If, as in the case described, we consider points spaced by steps ∆t in
time, the state at time t + ∆t will be a function of the state at time t. This
function depends also on the size of the intervals considered:

p(t + ∆t) = T [p(t),∆t] .
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The function T can be expanded in Taylor series around t, giving an
expression of the form

p(t + ∆t) = p(t) + f [p(t)]∆t + o(∆t) ,

where o(∆t) denotes the terms of order smaller than ∆t, that is such that

lim
∆t→0

o(∆t)

∆t
= 0

One has then
p(t + ∆t)− p(t)

∆t
= f [p(t)] +

o(∆t)

∆t

If we consider decreasing intervals of t, that is allow t to approach zero,
the limit is:

lim
∆t→0

p(t + ∆t)− p(t)

∆t
=

dp(t)

dt
= f [p(t)] ,

or
dp

dt
= f(p) . (3)

which is analogous to (2).

Examples of Stand Models

Example 1

Let us assume that we are interested only in the growth in dominant height
of an even-aged stand. We take as the state vector the dominant height H.
Then S = <, the set of real numbers. The increase in dominant height is
usually considered independent of tending, and thus, of other stand charac-
teristics distinct from height, so that it is an appropriate state vector.

Let us consider a model in discrete time at intervals of a year. In ac-
cordance with (1), the height at year t + 1 depends on the height at year
t:

Ht+1 = T (Ht) .

Let us assume that the function T is linear:

Ht+1 = a + bHt .

This equation, together with the initial height H0, completely deter-
mines the height development (for a discussion of this type of equations see
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Goldberg, 1964):

H1 = a + bH0

H2 = a + ab + b2H0

H3 = a + ab + ab2 + b3H0

...
...

...
...

Hn = a
n−1
∑

k=0

bk + bnH0 ,

from where,

Hn =
a(1− bn)

1− b
+ bnH0 ,

Hn =
a

1− b
− (

a

1− b
−H0)b

n . (4)

It is also possible to present the model in the form ∆H = f(H):

∆H = Ht+1 −Ht = a + (b− 1)Ht ,

that is:
∆H = a− cH ,

with c = 1− b.
Let us now consider a continuous model of this same type. According to

eq. (3):
dH

dt
= f(H) .

Let us assume that f is linear:

dH

dt
= α− βH

This equation, together with the initial height (or the height H0 at a given
time t0), also determines the development in height:

dH

α− βH
= dt

∫ H

H0

dH

α− βH
=

∫ t

t0

dt

− 1

β
[ln(α− βH)− ln(α− βH0)] = t− t0
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α− βH

α− βH0
= e−β(t−t0)

H =
α

β
(
α

β
−H0)e

−β(t−t0)

This equation is the same type as (4) and coincides with it when one
takes:

b = e−β and
a

1− b
=

α

β

Example 2

In an even-aged stand, let us take as a state vector the 3-tuple X =
(B,D,H), formed by the basal area, mean diameter, and dominant height.
Here S = <3. Let us consider the annual increments

∆X = f(X) ,

or, written in another manner:

∆B = f1(B,D,H)

∆D = f2(B,D,H)

∆H = f3(B,D,H) .

Let us assume that the equations are of the following form:

∆B = a11B + a12D + a13H + b1

∆D = a21B + a22D + a23H + b2

∆B = a33H + b3 .

Considering X as a column vector, this system of difference equations may
be abbreviated using matrix notation:

∆X = AX + b ,

where:

A =







a11 a12 a13

a21 a22 a23

0 0 a33






b =







b1

b2

b3







It is possible to solve this equation to obtain the state after n years starting
from an initial state X0. For this, let us make the substitution

X = Y −A−1
b .
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then
∆Y = AY , or, Yt+1 = (A + I)Yt .

Applying repeatedly this recurrence relation:

Y1 = (A + I)Y0

Y2 = (A + I)2Y0

...
...

...

Yn = (A + I)nY0 .

Returning to the original variable one has:

Xn = (A + I)n(X0 + A−1
b)−A−1

b .

Also, one can establish a continuous version of this same model:

dX

dt
= AX + b , X(t0) = X0 .

This system of differential equations may be integrated, obtaining a formula
for X as a function of time, starting from any initial state X0. The solution
is analogous to the discrete model, coinciding with it for integer values of t.

It is clear that all the above is directly applicable to vectors of any finite
dimension.

The Forestry Institute is working on a model of this type for Pinus

radiata. A convenient state vector will be sought, and A and b will be
estimated using data from experimental thinning plots.

Example 3

Let us consider an even-aged stand described by the state vector (V,N,H),
where V is the cubic volume per hectare, N is the number of trees per
hectare, and H is the dominant height. Let M be the total dry weight per
hectare of the stand.

The annual gross increment in dry weight of the stand is equal to the
photosynthetic assimilation minus the loss from respiration:

∆M = assimilation − respiration

Let us make the following assumptions:

(i) The gross increment in volume of the stems is proportional to the gross
increment in dry weight: ∆V ∝ ∆M .
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(ii) The density always remains sufficiently high in order to make complete
utilisation of the site. Then the assimilation per unit of surface area
is constant.

(iii) Respiration can be assumed proportional to the quantity of live tissue
and this proportional to the surface area of the stems. The surface
area of the stems is proportional to the product of the mean diameter
times the height and the number of trees.

Then:
∆V = a− bNHD .

We need to substitute for D a function involving N , H, and V . Assuming
a constant form factor, one may write V = fBH. Further, B = π

4 ND2.
Eliminating B between these two formulas and solving for D we obtain:

D =

√

4

πf
·
√

V

NH
.

Substituting in the formula for the gross increment in volume one has
finally

∆V = a− b′
√

V NH .

If we assume that the thinnings are frequent and heavy enough so that
the natural mortality is insignificant, then ∆N = 0 and the net increment
of the volume is equal to the gross increment.

Assuming a linear increment for the height, as in example 1, one has the
complete model:

∆V = a− b′
√

V NH

∆N = 0

∆H = c− dH .

To the contrary in the former example, this system of non-linear equa-
tions apparently cannot be integrated analytically. One continuous version
of this model was formulated by Garćıa (1968) and was used to simulate the
effect of different thinning schedules using an analog computer. A modified
version, including natural mortality, has been programmed in order to work
in conversational form in the APL/360 Time-Sharing System. An example
of its application is presented in the Appendix.
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Example 4

Let us examine the Reynolds projection method with regard to the concepts
which we have stated here.

As the state, one takes the number of trees per hectare by dbh class.
This can be represented by an infinite sequence of real numbers

{x1, x2, x3, . . .}, where xi is the number of trees per hectare in class i. By
making the number of dbh classes sufficiently large but finite, we may also
have a finite-dimensional state vector.

a

c c ci-1 i i+1

i-1 i i+1
dbh

dbh

t:

t+1:

Figure 1:

Let us see how the transition function is obtained. The reasoning is
illustrated graphically in figure 1. It represents first a distribution of trees
by dbh classes for classes i− 1, i, i + 1, in the year t.

In the second part of the figure one observes the number of trees for the
following year, which have been displaced by amounts equal to the annual
diameter increments {ci}. If the width of the dbh classes is a, one sees that
the number of trees in class i for the year t + 1 is

xi,t+1 = xit −
cixit

a
+

ci−1xi−1,t

a
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Then, making ci/a = bi, the transition function is given by the equations

xi,t+1 = bi−1xi−1,t + (1− bi)xit ; i = 1, 2, 3, . . . (5)

or
∆xi = bi−1xi−1 − bixi ; i = 1, 2, 3, . . .

We agree that the variables x0t represent the regeneration which enters
the first dbh class at year t + 1, and that b0 = 1.

The equations (5) also can be represented in matrix form using the ma-
trix





















1− b1 0 0 0 · · · 0 0
b1 1− b2 0 0 · · · 0 0
0 b2 1− b3 0 · · · 0 0
0 0 b3 1− b4 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · bn−1 1− bn





















and used to obtain expressions for the state from an initial state, as in
example 2. This notation could be used for theoretical studies, but compu-
tationally it is more efficient to work directly with the equations (5).

Also, one can formulate a continuous version of this model. Let z be
the dbh, c(z) the rate of diameter increment, y(z, t) the density of trees
according to diameter at time t (limit of xi/a when a approaches zero),
y0(z) the initial density, t0 the initial time, and r(t) the rate of appearance
of regeneration at time t. Then, using the same argument as in figure 1, series
expansion and taking limits, one obtains the partial differential equation

∂y

∂t
+

∂c(z)y

∂z
= 0 ,

with the boundary conditions

y(z, t0) = y0(z)

y(0, t) = r(t) .

The solution is:

y =

{ 1
c(z)c[F

−1(F (z)− t + t0)]y0[F
−1(F (z)− t + t0)] , for F (z) ≥ t− t0

c(0)
c(z)r[t− F (z)] , for F (z) ≤ t− t0 ,

where

F (z) =

∫ z

0

dx

c(x)
.
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It is fitting to make note that this model contains two not very satis-
factory assumptions. In the first place, it supposes that the behaviour of
the stand depends only on the diameter of the trees. The system could be
described better by adding to the state vector the heights and, in the case of
mixed forests, the species. The other assumption is that the rate of increase
in diameter of each tree depends only on its diameter. It is clear that the
growth of a tree depends on the size and number of its neighbours, so that
the rate of growth ought to be a more complicated function of the state
vector.

Example 5

We will examine briefly the structure of a type of model which has been used
to simulate the development of a small portion of a stand, by way of the
development of individual trees. To be specific, we will take as an example
a model proposed by Newnham (1964, 1968a, 1968b) for even-aged stands.

In Newnham’s model, the state of the portion of the stand (plot) whose
development is to be simulated, is characterised, at a given time, by the
age of the stand and by the dbh and position of each tree in the plot. This
state is projected, using periods of five years, through the changes in the
dbh of each tree. The periodic increment in dbh of a tree is assumed a linear
function of its dbh, age, and of a “competition index”, which we will discuss
later. If the predicted increment is less than a certain quantity, it is assumed
that the tree dies.

The competition index is intended to represent the effect of size and
proximity of neighbouring trees upon the growth of a tree. That used by
Newnham is based on a circle of competition within which a tree would
compete for site factors, and which is assumed equivalent to the projection of
the crown of a tree of the same size growing on open ground. Experimentally,
it has been determined that such crown diameter is an approximately linear
function of dbh The competition index for a given tree is defined according
to the overlapping of the circles of competition in the form described in
figure 2 (for other indices of competition see: Opie, 1968; Mitchell, 1969;
Van Laar, 1969).

In order to advance a plot to the following period, the procedure consists
of calculating for each tree its competition index and, with this, its diameter
increment.

These types of models can be interpreted in different manners making
use of the concepts discussed here. The most direct form is to consider a
single system: the complete plot. Then the state vector is composed of the

13
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Figure 2: Competition index =
∑

5

i=1
θi/2π

positions of all the trees (specified, for example, by rectangular coordinates),
one or more state variables for each tree and, optionally, one or more global
state variables for the stand. In the model which we have described, the
state variables for each tree should be its dbh and its age, if age is considered
as the age of each tree. Age could be considered alternatively as a global
variable for the stand. If in place of age we used the dominant height, it
would be necessarily a global variable. The transition function would be
the procedure which permits the advancement from the present state to the
state of the following period. It is fitting to make note that the transition
function does not need to have a closed analytical expression, but it is any
procedure which determines uniquely a state as a function of the previous
state (and of the corresponding control vector, if it exists). In this case the
transition function is an algorithm more or less complicated, programmed
for its execution in a computer.

14



Another form for interpreting these models is to consider the plot as a
system and the trees as subsystems. Each subsystem is characterised by
its state vector (dbh and age in Newnham’s model) and by its transition
function.

The transition function of a subsystem determines its change of state as
a function of its state and of a control vector which depends on the state
of the remaining subsystems (for example, a competition index). The state
and the changes of state of the system (plot) are determined then by the
states and changes of state of all the subsystems which comprise it.

Discussion

The principal idea which has been set forth here is the application to the
formulation of stand models of a scheme based on the concept of a dynamic
system, as utilised especially in Control Theory. According to this scheme,
the formulation of a model contains two parts: the specification of a state
vector, which describes the system at a given time, and the specification of
a transition function, which describes the changes of state. Although many
authors have presented stand models which agree with this, the explicit
establishment of this conceptual model can help to clarify and guide the
study of forest stands. It is fitting to make note that these concepts of state
and transition function are valid not only for stand models, but also for
many other systems in which time plays a fundamental role.

Another important aspect is the necessity, in the great majority of the
cases, of using multidimensional state vectors to describe a stand adequately.
Thus, in the case of an even-aged stand, we saw that at least three state
variables are necessary for a satisfactory description. Other variables of
interest, like various types of volumes, cash returns etc., can be calculated
as functions of the state variables, with regression equations if necessary.
This contrasts with a large part of the work performed on yield tables,
where the volume per hectare has been used as the only state variable,
including in some cases also an index of density. The system of yield tables is
unsatisfactory for predicting the development of managed stands, especially
with species of rapid growth, for two reasons: the use of inadequate state
vectors, and the attempt of determining directly the state-age relationship
instead of using transition functions.

it is possible to use models in discrete time or in continuous time. The
discrete models are more adequate for working in digital computers and
generally are easier to understand for people with less mathematical training.
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The continuous models are convenient for simulation in analog computers
and, in some cases, can be more convenient for the mathematical study of
the system. The stand models can be used as a guide for management or for
research in silviculture, logging, genetic improvement, etc. (see for example:
Smith et al., 1965; Newnham, 1966; Sakai et al., 1968).

In forest management applications, the stand model normally consti-
tutes a submodel within a model of a larger system, which can contain
other stands, price forecasting models, other subsystems, and the relation-
ship between the state variables and an index of the efficiency of the system
(Garćıa, 1968). It is then possible to attempt to determine the values of the
control variables which maximise the index of efficiency, using appropriate
optimisation techniques. If this is not possible one must turn to simula-
tion techniques in order to arrive at a “good” solution. In formulating a
stand model with these objectives, it is necessary then to keep in mind the
computational difficulties which may arise.

Besides the former, the type and complexity of the model determines
also the difficulties of determining the parameters which must be estimated
from experimental data. It also should be kept in mind that the state vector
used determines the information on the initial state of the stand necessary
for predicting its growth. Consequently, in the formulation of a stand model
for management purposes, one ought to arrive at a compromise between the
level of refinement of the model and the information required for its use,
the possibilities of estimating the parameters with the available information
and the optimisation difficulties.

For the management of pure even-aged stands the most adequate models
seem to be those similar to examples 2 and 3. The ideal would be a model
based on eco-physiological considerations, as in example 3. For a model for
Pinus radiata of the Instituto Forestal, however, the lack of an adequate
theoretical expression for natural mortality and difficulties of estimation
of the parameters caused by deficiencies in the experimental data make
preferable the use of an empirical model similar to example 2. The linearity
of that model will facilitate its use as well.

For uneven-aged stands it is necessary to resort to more detailed mod-
els, analogous to example 4 although more complex. The development of
adequate models of this type still requires much research.

The basic research necessary for the development of the models men-
tioned in the previous paragraph, and for improvement of the other models
mentioned for even-aged stands, can be guided partly by means of the study
of even more detailed models, as those in example 5, even if these are not
directly useful for forest management. These models at individual tree level,
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which we could call structural models, can be useful, as has been mentioned
before, for research in silviculture, logging, genetics, pathology, etc. The
study of stochastic models of this type may also be useful.

Appendix — Example of Simulation of the Growth

of a Stand

The simulation example has been omitted in this translation, but may be
obtained from pages 23–26 of the original paper.
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