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Abstract

Recent refinements in methods being used to develop growth mod-
els in New Zealand are described. These include new approaches to
the modelling of site occupancy and fertilising, and computational im-
provements in parameter estimation. The desirability of models that
are mathematically tractable as well as realistic is emphasized.

Introduction

A series of regional growth models for radiata pine in New Zealand is being
developed. The models consist of systems of differential equations using
stand-level variables. Parameters are estimated by maximum-likelihood.

This growth modelling program has been reviewed recently (Garćıa 1988a).
Goulding (1986) surveys these and other growth models available in New
Zealand. Conceptual aspects have also been discussed by Garćıa (1988b).
Only a very brief sketch of the general methodology will be given here,
followed by a description of some new work.

General methods

The models, in their simplest form, describe the state of a stand at any time
by three variables: top height (H), basal area (B), and number of trees per
hectare (N). Growth and natural mortality are given by three differential

1



equations:

dH
dt

= f1(H) (1a)

dB
dt

= f2(H,B,N) (1b)

dN
dt

= f3(H,B,N) (1c)

The form of the equations has been selected so that they are able to approx-
imate observed growth patterns, and they can be integrated analytically.
Analytical integration, among other benefits, makes feasible the use of effi-
cient parameter estimation procedures.

For parameter estimation, random processes are included in equations (1)
to represent the variation of observed variable values. A likelihood function
can then be computed. Again, this is done in a way that is not unrealistic,
and at the same time results in a closed-form expression for the likelihood.
A numerical maximisation of the likelihood function is then carried out to
obtain the parameter estimates.

Growth multipliers

An extension to (1) has been found useful. It consists of multiplying some or
all of the equations by functions of an additional state variable. Applications
to modelling site occupancy and fertiliser effects are described below. A
similar approach could be used to include genetic gains and other variables.

Site occupancy

Under heavy thinning and pruning regimes, the three variables H, B and N
may not be sufficient to adequately describe the state of a stand. Immedi-
ately following thinning or pruning a stand will not be fully utilising the site
potential, and would grow more slowly than another stand with the same
H, B, and N , but not recently treated (Garćıa 1979, 1984).

An additional state variable representing the degree of “site occupancy”
may improve growth prediction in these circumstances. Lack of data and
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the cost of measurement make impractical at this stage the use of variables
such as foliage biomass or leaf area index, which might be appropriate. We
can, however, use a proxy that we shall call “relative closure” and denote
by R . This variable is not necessarily observable at all times. We need only
to assume that it is 1 for closed stands fully occupying the site, and that
it is reduced by thinning in proportion to the basal area removed. R may
be also be reduced by pruning, by an amount related to the crown length
removed. After thinning or pruning, R recovers approaching 1 as the stand
closes. Diameter growth and mortality rates depend on the current value
of R . Note that we make no assumptions about the mechanism of site
occupancy; below ground (roots) as well as above ground (foliage) processes
may be involved.

The relative closure variable may be included as a straightforward extension
of our differential equations (1) to more than three dimensions. This was
done, with satisfactory results, in models for the Hawkes Bay and Auck-
land Clays regions (Garćıa 1984, 1988a). One potential problem with this,
however, is that the predicted growth may not always decrease with decreas-
ing R. In fact, for small enough R the growth predicted by these models
increases, although this happens well outside of the range of the data.

A better-behaved model can be obtained by extending (1) as follows:

dH
dt

= f1(H) (2a)

dB
dt

= g(R)f2(B,N,H) (2b)

dN
dt

= g(R)f3(B,N,H) (2c)

dR
dt

= h(R) (2d)

Here g(R) is the growth and mortality reduction factor due to less than
full closure. The function h(R) specifies the rate of recovery of the relative
closure.

It can be seen that with the substitution

ds = g(R) dt , (3)

equations (2b) and (2c) take the same form as (1b) and (1c). Therefore, if
(1a) to (1c) are integrable, (2a) to (2c) can be integrated in the same way as
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functions of t and s . With suitable functions for g(R) and h(R), closed-form
solutions in terms of t can be obtained.

The function g(R) must be strictly increasing between 0 for R = 0, and 1
for R = 1. It is known that small reductions in closure have negligible effect,
so that it is also desirable that the derivative of g(R) at R = 1 should be
zero. Appropriate functions are

g(R) = 1− (1− R)m . (4)

More convenient is a cubic of the form

g(R) = R[a+ (3− 2a)R + (a − 2)R2]
= 1− (1− R)2[1− (a − 2)R] . (5)

The parameter a is the slope at the origin, and curves of suitable shape
are obtained for values of a between 0 and 3. Equation (5) includes (4) for
m = 2 and m = 3.

The recovery function h(R) could be expected to be zero at R = 0 (no
growth), then increase with R as closure increases, and finally decrease to
0 for R = 1, so that R tends to 1 asymptotically. Alternatively, it may be
thought of as affected by closure in the same way as the growth rate,

h(R) = g(R)k(R) ,

where k(R) is initially constant (derivative zero at R = 0), and then de-
creases to zero as the stand reaches full closure. The logistic

h(R) = bR(1− R) (6)

satisfies these conditions, and leads to a closed-form solution in conjunction
with (5).

With this choice of functions, (2d) can be integrated giving R as a function
of t and the initial R , substituted into (3), and (3) integrated with respect
to t , to obtain the relationship between the “adjusted time” s and the real
time t . A more convenient form for computation was obtained by rewriting
(3) as

ds = dt − [1− g(R)]/h(R)dR . (7)

Then, substituting (5) and (6) and integrating,

s − s0 = t − t0 − [ln(R/R0) + (1− a)(R − R0) + (a/2 − 1)(R2 − R2
0)]/b .
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Note that integrating the alternative form

ds = [g(R)/h(R)] dR

leads to numerical difficulties when R tends to 1.

A slight variation on this model (described below) has been fitted to data
from radiata pine in the Pumice Plateau. The model includes also an esti-
mated relationship between canopy depth removed in pruning and reduction
in R . Another difference with previous models is that R is initialised with
a small value for young stands. Specifically, stands start at an age corre-
sponding to top height 1.4 m (to avoid problems related to basal area being
undefined before then), with an R value proportional to the number of trees
per hectare. That is, the initial closure corresponds to a small area utilised
by each tree (a parameter estimated from the growth data). It is hoped that
consistent modelling of young and old open stands would improve predic-
tions for both.

All the parameters were estimated simultaneously by maximum likelihood.
Considering the indirect nature of the estimates, it is perhaps surprising
that the values obtained are reasonable. The value for a in (5) was 2.65,
and the initial R per tree at 1.4 m implies full closure at a spacing of 48 cm.
The effect of a 50% reduction in closure is negligible after about two years.
It appears that the model extrapolates well to very young stands, without
the need for the separate relationships used in previous models.

At this stage, no multiplier has been included in (2a). Therefore, very severe
treatments that could affect the top height growth may not be modelled
correctly.

Fertiliser effects

For the Auckland Clays region, a model was developed with data from stands
that had been “adequately” fertilised with phosphorous. Multiplier func-
tions were then added to predict the effect of lower phosphorous levels.

The model is similar to (2), with R representing the foliar P content. A
multiplier function, with different parameter values, was also included in
(2a), since the fertiliser had been found to affect both height and diameter
growth but to different degrees. (The model included also a relative closure
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variable, and the height growth multiplier was applied to the closure recovery
equation as well).

In this instance, the growth multipliers g (R ) represent the growth reduction
due to a less than adequate level of foliar P. This function should cross the
R axis at a value below which there is no growth (estimated at 0.06% of
foliar P), then increase up to a value of 1 at the level of P typically present
in the plots used for the initial model (about 0.13%), and finally tend to a
horizontal asymptote slightly above 1. Hyperbolae of the form

g(R) = (R − 0.06)/(aR − 0.13a + 0.07)

are suitable. The parameters a were estimated from the ratios of the growth
in fertilizer experiment plots to the growth predicted by the initial model.

Equation (2d) describes here the decay in foliar P after fertilising. As a first
approximation, an exponential decay down to an equilibrium level of 0.06%
was satisfactory:

h(R) = b(0.06 − R) .

With these functions, (3) or (7) can be integrated to obtain “adjusted” or
“physiological” times for phosphorous-deficient stands.

Variations

The actual models implemented differed slightly from the description given
above. Although the deterministic model (2) can be solved as shown, it was
not obvious how to extend this to the stochastic model needed for computing
the likelihood. Therefore, the multipliers were applied after a transformation
of these equations.

With our model form for (1), it is possible to find certain transformations
of the state variables such that the equations are “uncoupled”:

dH
dt

= f1(H) (8a)

du
dt

= f ′
2(u) (8b)

dv
dt

= f ′
3(v) . (8c)
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Here u and v are functions of B , N and H [e.g. equation (2.3.4) of Garćıa
1979]. Variability is modelled by random processes added to the right-hand
sides of (8).

The multiplier functions were applied to equations (8b) and (8c), instead of
(2b) and (2c). This allowed computations to be carried out with relatively
minor alterations to the existing programs.

Contrary to (2), with this formulation the diameter growth does not neces-
sarily drop to zero when the closure is zero. This is related to the already
mentioned absence of a multiplier in (2a), and does not occur in the fertiliser
model. On the other hand, (8) allows the flexibility of using a different mul-
tiplier for each equation.

Computing

As already indicated, the growth model parameters are estimated by direct
maximisation of the log-likelihood function using a general-purpose numer-
ical optimisation procedure (Garćıa 1984). The most efficient procedures,
e.g. quasi-Newton or variable-metric methods, require the knowledge of the
partial derivatives of the function with respect to the parameters. Because
of the complexity of the function, it has not been practical to code the com-
putation of the analytical derivatives, and finite difference approximations
have been used instead.

The computation of finite differences, however, is costly, especially when
the data sets and number of parameters are large. Each function evaluation
performs a loop over all the observations. A gradient computation requires
one or two function evaluations for each parameter, depending on if forward
or central differences are used.

Recently, a computer program for the automatic generation of partial deriva-
tives was developed. The program takes the Fortran subroutine that com-
putes the function value, and produces another subroutine that computes
the partial derivatives with respect to specified variables. For the Pumice
Plateau growth model, this has reduced the CPU time used for typical pa-
rameter estimation runs from 8 hours to 1 hour, on a VAX 785. Between 15
and 20 parameters are estimated, using over 2000 observations.

Although a number of symbolic algebra systems, such as MACSYMA and
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muMATH, can generate derivatives of mathematical expressions, what was
required was to derivate functions computed by complex routines, including
conditionals, loops, and intermediate variables. The basic idea originated
from Wengert (1964), and a similar principle was implemented by hand in
the height growth parameter estimation program (Garćıa 1983). In it each
statement of the function evaluation routine is followed by statements to
compute the derivatives of the left-hand-side variable (usually an interme-
diate variable). For example,

C = A * B

would be followed by

C1 = A1 * B + A * B1
C2 = A2 * B + A * B2
etc.,

where the Ai and Bi are partial derivatives with respect to parameter i,
computed in previous statements (with obvious simplifications where the
partials for some terms do not exist). The function derivatives sought follow
the statement defining the final value of the function, at the end of the
subroutine.

The derivative-generating program essentially automates this procedure.
The statements computing derivatives precede instead of follow each func-
tion evaluation statement, to deal correctly with statements such as

A = A * B .

For each statement, the right-hand side expression is processed by a recur-
sive descent parser. The program avoids generating many redundant com-
putations, and an optimising Fortran compiler will eliminate many others.
Certain situations involving loops and conditionals require more than one
pass, and this is handled automatically. Some manual editing of the input
and output Fortran routines may be needed, but this is usually simple and
of a minor nature.
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The system runs on a microcomputer under STSC’s APL Plus or Pocket
APL. It is a tribute to the power of the APL computer language that such
a complex system could be implemented within a very short time.

Another factor facilitating growth model development has been the porting
of the parameter estimation programs to a microcomputer. With a 20 MHz
80386 processor the CPU time used is not much higher that on the VAX
785, and the turn-around is much faster.

Concluding remarks

One school of thought in growth modelling searches for simple mathematical
“laws”, that all plants are supposed to follow. Examples of this are the 3/2
self-thinning rule, and the belief in particular growth curve equations. At
the other extreme, with modern computing facilities it is easy to build very
complex process-based models. Large numbers of equations are put together
and output is generated by numerical simulation.

In relation to the first approach, it can be argued that there is nothing
mathematical about plant growth, models being just convenient approxi-
mate representations of parts of the real world. Different equations can be
equally “biologically meaningful” (or meaningless) as descriptions for ob-
served relationships. For example, for all practical purposes equation (4)
with m = 2.5 would be indistinguishable from (5) with a = 2.58. Even
Newton’s laws in physics, seen by many as the epitome of natural laws,
have no theoretical basis whatsoever. They are just empirical approxima-
tions (and not very accurate under some conditions, as shown by Einstein).
In the words of G.E.P. Box in a slightly different context, “all models are
wrong, but some are useful”.

A problem with complex aggregates of equations that can only be solved
numerically, is that they can be almost as much of a “black box” as the
real system. They may contribute little to our understanding of the sys-
tem behavior (“The purpose of computing is insight, not numbers”, R.W.
Hamming). In addition, it can be difficult or impossible to obtain satis-
factory parameter estimates. Some of these models effectively amount to
hypotheses that cannot be invalidated with empirical data, being therefore
of questionable scientific value.
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Although there is a place for all types of models, much work needs to be
done on models having both a rational basis and mathematical tractability.
Building models with these properties, however, is a difficult art involving
much trial and error. Mathematical expediency must not override the re-
quirement of agreeing with the field data. To end with yet another quotation,
we may paraphrase A. Einstein: a model “must be as simple as possible,
but not simpler”.
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