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Abstract

This article deals with the dynamics of the volume control method
in forest regulation. The sustainability of harvesting a given constant
volume in a simplified forest model is studied. Depending on the ini-
tial age distribution, the cut can lead to the forest exhaustion, or to an
asymptotic steady-state uniform age distribution. A continuous model
is formulated in terms of various kinds of partial differential equations,
delay differential equations, and non-linear integral equations. Equilib-
rium solutions and their stability properties are determined. Discrete
models are also obtained, both by direct reasoning and as approxi-
mations to the continuous case. These are used for simulation and
graphical exploration of the system behavior. In addition, contrasting
various discrete and continuous versions was found useful in clarifying
some issues, in particular, ambiguity/redundancy problems in the rela-
tion between integral equations and delay differential equations derived
from them. The basic problem of evaluating sustainability for an ini-
tial distribution remains unsolved, however. Further progress is linked
to the asymptotic properties of a second-order recurrence relationship.
It is hoped that the interplay between the theory of functional differ-
ential equations and this concrete and easily interpretable problem in
forest management might prove fruitful in both fields.
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1 Introduction

Among mathematicians there is currently a great deal of interest in delay
differential equations (DDEs). Some simplified but fundamental forest man-
agement models can be formulated in terms of DDEs or non-linear integral
equations (both DDEs and integral equations are often included under the
more general label of functional differential equations, FDEs). Combining
the mathematical and forestry views may benefit both disciplines. Perhaps
FDE specialists might contribute to solve long-standing open questions that
block progress in the understanding and optimization of forest management
strategies. On the other hand, the forest models described here can help
mathematical developments, providing concrete physical interpretations to
guide intuition and suggest new approaches.

Forest management planning can be approached at least from two differ-
ent directions. Practical real-life problems are confronted with simulation
and Mathematical Programming techniques, mostly Linear Programming
and Mixed Integer Programming (Clutter et al., 1983; Leuschner, 1990;
Garćıa, 1990). In many instances reasonably realistic models can be solved
with current hardware and software, but there is always pressure to increase
resolution levels and computational efficiency, even more so when integer
constraints or nonlinearities are involved. On a theoretical level, highly
simplified models are studied analytically, hopefully improving our basic
understanding of the main issues (Johansson and Lofgren, 1985). Present
practical methods can to a large extent be characterized as “brute force”;
realizing the potential of fully exploiting special problem structure would
depend of further advances in the theoretical front (Garćıa, 1990).

Unfortunately, analytical developments in forest planning have not pro-
gressed as much as one would like. The optimization of independent for-
est stands, where over-all production level does not affect costs and rev-
enues, was solved by Faustmann (1849) long before modern investment the-
ory caught up with him. The steady-state solution for a level of produc-
tion (yield) that remains constant over time, the so-called “normal forest”,
is older still (Section 2). Further embellishments and extensions, such as
fluctuating prices and considerations of risk, are numerous, often utilizing
sophisticated Control Theory mathematics (e. g., Johansson and Lofgren,
1985). However, the logical next step of obtaining a constant yield start-
ing from an arbitrary, not steady-state age distribution, is not satisfactorily
resolved. This is the problem considered here, as a stepping stone to more
practically interesting problems involving non-decreasing yields, capacity
expansion costs, etc.
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The next section describes a forestry problem, followed by a more pre-
cise mathematical statement in continuous time. Several alternative for-
mulations are shown. Then some equilibrium properties of the system are
discussed. Finally, discrete model versions and some simulation results are
presented.

2 The problem: forest regulation and the normal
forest

The classical forest regulation problem deals with a forest consisting of a
collection of even-aged stands of various ages. Let the forest at time t
be characterized by its age distribution Ft(x) giving the area with ages less
than or equal to x. Without loss of generality, we shall assume that the total
forest area is 1. The volume yield per unit area is given by a nondecreasing
function of age g(x) with g(0) = 0 (see, for example, Figure 1). There is a
rate of volume harvesting v(t), taken from the oldest ages, with the cleared
land being regenerated immediately.

The normal forest theory, dating from the 18th century, treats the
steady-state situation. A normal or fully regulated forest has a uniform
age distribution, with equal areas for all ages between 0 and the oldest age
r. The distribution is maintained by cutting all stands when they reach the
rotation age r. It is easy to see that the area is harvested and regenerated
at a rate 1/r, producing in perpetuity an even volume flow or sustained

yield equal to the “mean annual increment” (MAI) for the rotation age,
v = g(r)/r. The maximum sustainable yield is obtained with the rotation
of maximum MAI (Clutter et al., 1983; Leuschner, 1990)

The forest behavior outside the steady-state is much less well understood.
It is clear that a constant area harvesting rate (a forest regulation method
known as area control) perpetuates the age distribution except for a cyclical
shift, and produces a fluctuating volume yield. We shall examine here the
effects of a constant volume harvesting rate v(t) = v. Traditionally this
is known as volume control and, if the cut is kept within certain limits,
is supposed to lead to a normal forest. The dynamics of a forest under a
constant volume cut has been extensively investigated through simulation
by Allison (Allison, 1978; Clutter et al., 1983), in connection with measures
of forest “maturity”.

Actually, both Allison and classic forest regulation deal with a discrete
version of the model, with discrete age classes and annual or periodic harvest-
ing. Initially, we shall work mostly in continuous-time. It might be possible
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Figure 1: Example yield curve. Points A, B and C show possible normal forest
rotations for volume harvesting rates equal to the line slopes.

to include the discrete-time formulation by using appropriate stepped func-
tions for F (x) and g(x). Often it is convenient to assume that the functions
are strictly increasing; this could be assured by giving an arbitrarily small
slope ε to the steps, and taking limits at the end. Similarly, differentiability
can be achieved by an infinitesimal rounding of the step corners. I shall just
ignore the messy details, and assume functions as well-behaved as necessary
in any particular instance. Later, in Section 5, a different discretization that
may be more convenient for certain uses is introduced.

We may describe some “known” (or at least plausible) characteristics
of the simulated forest evolution (Clutter et al., 1983). Formal proofs will
be provided later. If a forest with an arbitrary initial age distribution is
harvested at a constant rate v, two possible outcomes have been observed.
If v is too high or if there is not enough area in older ages, at some point
the forest is exhausted, that is, the yield v is not sustainable. The cut-
ting age r(t) = F−1

t (1) fluctuates, finally reaching zero1. Otherwise, the
forest eventually approaches a steady-state uniform distribution (a normal

1As in the normal forest, it is common to refer to the cutting or felling age as “rotation”,
although the appropriateness of the term in this instance may be questionable. I will
continue denoting it by r
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forest). From our previous discussion of the normal forest, it follows that
the equilibrium cutting age must satisfy g(r) = vr. This corresponds to the
intersections of the yield curve g(x) and a line with slope v (Figure 1). With
a typical sigmoidal yield curve there are in general two possible solutions,
shown as A and B. However, A is an unstable equilibrium point, and most
simulations will either exhaust the forest or converge to B. It is clear that
the maximum possible sustainable v for any forest equals the maximum MAI
(point C).

It is also conceivable that some combinations of initial distribution and
harvesting rate might result in neither exhaustion nor a uniform steady
state. The cutting age r(t) might approach a limit cycle, oscillating indef-
initely without ever becoming constant. In fact, this possibility cannot be
ruled out by the simulation results; apart from numerical accuracy issues,
convergence in some instances is extremely slow. Determining without re-
sorting to simulation if a given initial distribution will lead to sustained yield
or to a forest “crash” is still an open question, but we show below that limit
cycles are not possible.

3 Mathematical formulations

3.1 Partial differential equations

We want to find how the age distribution Ft(x) ≡ F (t, x) changes over time.
Let ds be the area cut (from the oldest ages) and regenerated during a time
interval dt. Age x at time t becomes age x + dt at time t + dt. Therefore,
the area of ages ≤ x+ dt at time t+ dt equals the area of ages ≤ x at time
t, plus the area ds that was regenerated between t and t+ dt:

F (t+ dt, x+ dt) = F (t, x) + ds

(see Figure 2). Using a Taylor series on the left-hand side this becomes, for
dt→ 0,

∂F (t, x)

∂t
+
∂F (t, x)

∂x
=

ds

dt
.

The area cut is the volume cut divided by the yield (assumed positive).
That is, for a small dt,

ds =
vdt

g[r(t)]
, (1)

where r(t) = F−1
t (1) ≡ F−1(t, 1) is the cutting age. Finally,

∂F (t, x)

∂t
+
∂F (t, x)

∂x
=

v

g[F−1(t, 1)]
. (2)

6



Figure 2: Change in the cumulative age distribution between times t and t+dt. The
area cut and regenerated is ds.

A slightly better-looking relationship is obtained for the inverse distri-
bution function F−1

t (p) ≡ Ht(p) ≡ H(t, p), assuming that Ft(x) is strictly
increasing. Using a similar argument (swap axes in Figure 2), we get

H(t+ dt, p+ ds) = H(t, p) + dt ,

∂H(t, p)

∂t
+
∂H(t, p)

∂p

ds

dt
= 1 ,

or

v
∂H(t, p)

∂p
= g[H(t, 1)][1−

∂H(t, p)

∂t
] . (3)

This type of partial differential equation is non-standard in that it con-
tains a “cross-section” H(t, 1) of the independent function. It is not clear
to me how to proceed further, so we take a different tack.

3.2 Delay differential equations: The wandering coordinates
trick

It is clear from Figure 2 that for small time intervals most of the distribution
function remains the same, it just gets shifted. So, instead of shifting F , let
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us try keeping the curve fixed and shift the axes. Figure 3 shows the same
sequence of distributions from Figure 2, but with two sets of coordinates.

Figure 3: Same as Figure 2, but with the curve fixed and the coordinate axes displaced.
The evolution of the distribution is determined by the trajectory of the origin in the
x–F or t–s plane.

The origin of coordinates moves along a curve of s(t) (or t(s)) deter-
mined by equation (1). Doing so it determines Ft(x) for any future t as an
appropriate segment of that curve. For a more conventional view of the s-
over-t trajectory, rotate the page 180 degrees. Again, things turn out neater
with the inverse distribution, so we swap the axes after the rotation (Figure
4, where to simplify we show the situation at t = 0).

The quantity s is the cumulative harvested area. When s = 1 all the
original forest has just been harvested and a new cycle commences, so that
s can be interpreted as measuring “rotation units”. The elapsed time t(s)
reflects the changing rotation length.

Now we can write the equation for the trajectory t(s) in Figure 4. In
the third quadrant,

t(s) = −H0(−s) for − 1 ≤ s ≤ 0 (4)

(we take s as 0 at t = 0). For s ≥ 0 the trajectory can be obtained from
the differential equation (1), or dt/ds = g(r)/v, except that it depends of
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Figure 4: Rotation and reflection of Figure 3 demonstrates the delay differential
equation formulation in equation (5).
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previous values of s through the current cutting age r. From Figure 4 we
see that r(t(s)) = t(s)− t(s− 1), so that substituting in (1),

dt

ds
=

1

v
g[t(s)− t(s− 1)] for s ≥ 0 . (5)

Equation (5) is a delay differential equation (DDE) with a constant (unit)
delay (Bellman and Cooke, 1963; Hale, 1971, 1977; El’sgol’ts and Norkin,
1973; Driver, 1977; Kolmanovskii and Myshkis, 1992; Kuang, 1993; Diek-
mann et al., 1995). Given the initial inverse age distribution F−1

0 (p) ≡ H0(p)
and the harvesting rate v, it uniquely determines t as a function of s. The
distribution for any future time can be recovered from

Ht(s)(p) = t(s)− t(s− p) . (6)

We note a somewhat subtle point that can cause trouble later if ignored.
For s = 0 the derivative 1

v
g[H0(1)] given by (5) is actually the right deriva-

tive, and may differ from the left derivative H ′
0(0) obtained from (4). In

what follows, derivatives will be understood as right derivatives wherever
the distinction is necessary. It is seen, however, that t(s) is continuously
differentiable for s > 0 (given that H0 is continuous), with both the left
and right derivatives coinciding with (5). Therefore, the distribution must
satisfy

H ′
t(0) =

1

v
g[Ht(1)] for t > 0 . (7)

3.3 Related DDEs

Other DDE forms, possibly more widely studied or easier to handle, can be
produced by change of variables.

Consider the cutting age as a function of s:

r[t(s)] ≡ y(s) = t(s)− t(s− 1) . (8)

Then, from (5),

dy

ds
=











1
v
g[y(s)]− 1

v
g[y(s− 1)] if s ≥ 1

1
v
g[y(s)]−H ′

0(1− s) if 0 ≤ s < 1

or
dy

ds
=

1

v
g[y(s)]−

1

v
g[y(s− 1)] ; s ≥ 0 . (9)
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with
y(s) = g−1[vH ′

0(−s)] for − 1 ≤ s < 0 , (10)

assuming g and H0 continuous.
A third DDE, linear in the finite differences, is obtained defining

z(s) ≡
dt

ds
=

1

v
g(y) . (11)

Then,
dz

ds
=

1

v
g′[g−1(vz)][z(s)− z(s− 1)] ; s ≥ 0 , (12)

with
z(s) = H ′

0(−s) for − 1 ≤ s < 0 . (13)

Remark: g′[g−1(u)] = 1/(g−1)′(u) .
In terms of the forest regulation problem, y(s) = r(t) is the cutting or

oldest age after s rotations, and the duration of the rotation that ends at s.
In forestry, the cutting age is commonly called rotation, probably by analogy
to the normal forest situation. To avoid confusion I shall say “rotation s”,
use the plural, or call it rotation number, and shall refer to y(s) as the
cutting age or rotation length.

z(s) is the ratio of harvestable volume per unit area to volume harvesting
rate, or the reciprocal of the area harvesting rate. vz(s) is the current yield,
i. e. the volume per unit area for the cutting age of rotation s.

From (6) it is seen that there is a one-to-one relationship between the y
and z functions and the evolution of the age distribution with s

H ′
t(s)(p) = t′(s− p) = z(s− p) =

1

v
g[y(s− p)] (14)

(assuming Ht and g continuous), generalizing (7), (10) and (13).

3.4 Integral equations

Instead of a DDE, we can state an integral equation for y(s):

y(s) = t(s)− t(s− 1) =

∫ s

s−1
dt(u) ,

and, using (1),

y(s) =

∫ s

s−1

1

v
g[y(u)] du ; s ≥ 0 , (15)
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defining y(s) for −1 ≤ s < 0 as in (10). This can also be obtained from (9).
According to Baker (1996, see his equations (3.1) and (3.7)), it is a Volterra

integral equation of the second kind, and more specifically a convolution

equation2. The equivalent form

y(s) =
1

v

∫ 1

0
g[y(s− u)] du

might on occasion be more convenient.
For z(s), from (11),

z(s) =
1

v
g[

∫ s

s−1
z(u) du] ; s ≥ 0 , (16)

or

z(s) =
1

v
g[

∫ 1

0
z(s− u) du] ,

with (13) for s < 0.
The interpretations are interesting. Equation (15) says that the average

volume harvesting rate for any rotation, (
∫ s
s−1 g[y(u)] du)/y(s), must equal v.

This effectively ensures that the harvesting rate will be constant. Equation
(16) shows that the slope of the curve of t over s at any point is a function
(g/v) of the average slope over the previous unit s-interval. In this light, note
the close correspondence between (16) and (5). Fluctuations are smoothed-
out provided that g/v is not “too steep”.

3.5 The method of steps

The DDEs described above can be transformed into a sequence of ordinary
differential equations (ODEs) by the method of steps (El’sgol’ts and Norkin,
1973; Driver, 1977; Baker et al., 1995). In this instance the process can be
clearly explained introducing some new notation for function segments.

For y, for example, define yk(s) = y(k + s), where k is an integer and
0 ≤ s < 1. This corresponds to a segment of y with domain [k, k + 1).
Conversely, with k = [s] (i. e. the integer part of s), any y(s) equals yk(s−k)
in the segment that contains s. Then, substituting in (9),

dyk

ds
=

1

v
g(yk)−

1

v
g(yk−1) ; 0 ≤ s < 1 ; k = 0, 1, 2, . . . (17)

For k = 0,

dy0

ds
=

1

v
g(y0)−

1

v
g(y−1) =

1

v
g(y0)−H ′

0(1− s) .

2For other authors Volterra equations are linear (James, 1992; Petrovski, 1971).
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This is an ODE which, with the initial condition y0(0) = y(0) = H0(1),
uniquely determines y0(s) for 0 ≤ s ≤ 1 (numerical integration would gen-
erally be required in practice). Now, knowing y0(s), (17) for k = 1 is also
an ODE, which with the initial condition y1(0) = y0(1) determines the next
segment y1(s). The argument is repeated for k = 2, 3, . . .

The initial age distribution determines the oldest or cutting ages y0(s)
during the first rotation, where 0 ≤ s ≤ 1 is the elapsed fraction of that
rotation (the harvested fraction of the initial forest). Then, the cutting ages
y1(s) for the second rotation are obtained from the known cutting ages y0(s)
from the previous rotation, and so on.

Similar sequences of ODEs are obtained for t and z:

dtk
ds

=
1

v
g(tk − tk−1) ; 0 ≤ s < 1 ; k = 0, 1, 2, . . . (18)

dzk

ds
=

1

v
g′[g−1(vzk)](zk − zk−1) ; 0 ≤ s < 1 ; k = 0, 1, 2, . . . (19)

Note also that taking s = k integer in (14) and (6), the relationships
between the various characterizations of rotation k are

H ′
t(k)(p) = zk−1(1− p) =

1

v
g[yk−1(1− p)] (20)

Ht(k)(p) = tk−1(1)− tk−1(1− p) . (21)

In terms of segments, the integral equations (15) and (16) just produce
other integral equations:

yk(s) =

∫ s

0

1

v
g[yk(u)] du+

∫ 1

s

1

v
g[yk−1(u)] du) ,

and

zk(s) =
1

v
g[

∫ s

0
zk(u) du+

∫ 1

s
zk−1(u) du] ,

respectively.

4 Properties

As usual, existence and uniqueness questions tend to be of more mathe-
matical than practical interest. A properly formulated model should “make
sense”. Either way, formal proofs are not difficult, using for example the
method of steps and standard ODE results (Hale, 1971; El’sgol’ts and
Norkin, 1973; Driver, 1977).

13



4.1 No limit cycles

The asymptotic behavior of (9) and (15) is studied by Bélair (1991), in a
more general situation where the time delay is a function of y(s). He also
presents results of Cooke and Yorke (1973) for a constant time lag. Bélair’s
Theorem 3, from Cooke and Yorke (1973), says that if g is continuously
differentiable then, as s → ∞, for every solution of (15) y(s) tends to a
constant or to ±∞. Actually, Bélair points out that differentiability of g is
not necessary for this, a weaker local Lipschitz property suffices. This result
effectively rules out the possibility of asymptotically oscillating solutions, as
mentioned before.

4.2 Equilibria

It is clear, from (8) or (15) for example, that y cannot become negative
(see also Theorem 4 in Bélair (1991)). In addition, it is not a practical
limitation to assume that g has some (arbitrarily high) upper bound, and
then the solutions of (15) cannot become unbounded. Therefore, if a forest
does not become exhausted under an even volume harvest (y(s) → 0), it
must converge toward a normal forest with some constant finite cutting age
r.

To find the possible stationary solutions we substitute y(s) = r in (15):

r =

∫ s

s−1

1

v
g[r] du =

1

v
g[r] ,

and any equilibrium cutting age (6= 0) must therefore satisfy

g(r)/r = v , (22)

as already “known”(Figure 1). In other words, the MAI of the normal forest
rotation equals the volume harvesting rate3.

4.3 Potential pitfalls

The same result is obtained by substituting z(s) = r or t(s) = rs+ c in (16)
or (5), respectively. Substituting constants in (9) or (12), however, appears
at first sight to indicate that any constant is a possible solution.

3Incidentally, with g unbounded it is seen in Figure 1 that y(s) → ∞ can occur if v
is small enough for the line y = vs to remain always below the curve y = g(s) without
intersecting it.
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A similar situation is mentioned by Bélair (1991). He discusses a popu-
lation model, in his notation,

x(t) =

∫ t

t−L[x(t)]
b(x(s)) ds , (23)

where L[x(t)] is a state-dependent time lag. This is equivalent to our equa-
tion (15) for a constant lag L = 1. Quoting in full (changing the equation
numbers to agree with those here):

“Differentiating both sides leads to the functional differential
equation

x′(t) =
b(x(t))− b(x(t− L[x(t)]))

1− L′[x(t)]b(x(t− L[x(t)]))
(24)

Although there is a close correspondence between solutions of
(23) and (24), caution must be employed in using one equation to
investigate the other (see Busenberg and Cooke, 1980), especially
when numerical simulations are performed. For example, any
constant x(t) = x is a solution of (24), whereas (23) only has, for
stationary solutions, those constants that satisfy x = b(x)L(x).
Also, the initial condition appropriate for a correct biological
interpretation of (24) as a population model is not arbitrary but
is incorporated in the integral form, (23). We analyze (23) and
(24) together, considering that (24) is, literally, derived from
(23).”

Clearly, (24) with L = 1 is equivalent to (9), and the analogy is obvious.
What happens here is that not all solutions of the DDE are admissible. For
a uniform distribution between 0 and r, H ′

0(p) = r, so that (10) implies
condition (22). But with (12)-(13), if we ignore (11), the constraint has
effectively been “lost” in the derivation.

However, (9) and (12) are still useful as necessary, although not sufficient

conditions on the solutions. Especially given that these DDEs appear to have
been investigated more than the integral equation alternatives.

4.4 Stability

If the forest can sustain a cut v, typically there will be two equilibrium or
fixed points y(s) = z(s) = r with r satisfying (22), points A and B in Figure
1 (in addition to r = 0). What happens if there is a small perturbation
in those steady-state solutions? For instance, if for a short time the cut
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differs from v, or the yield deviates from the expected? Then, after remov-
ing the perturbation, y and z may converge again toward r (the solution is
asymptotically stable), or they may diverge, eventually settling at a differ-
ent equilibrium point (the original solution was unstable). In practice an
unstable equilibrium would never be reached.

More precisely, the relevant definitions are as follows (for example, Baker
et al., 1995; Baker, 1996; Driver, 1977). An equilibrium solution r is stable
if, for any ε > 0, there is a δ such that if the initial data of another solution
is within a distance δ from r then all future values will not differ from r
by more than ε. That is, if y(u) is any solution such that |y(u) − r| ≤ δ
for s − 1 ≤ u ≤ s, then |y(u) − r| ≤ ε for all u > s. The solution r
is asymptotically stable if, in addition to being stable, any other solution
initially within a small enough δ converges to r: |y(u) − r| ≤ δ for s − 1 ≤
u ≤ s implies |y(u) − r| → 0 as u → ∞. A solution is unstable if it is not
stable.

The usual approach to stability of DDEs is based on local linearization.
Thus, the linearization of (9) around r is

dy

ds
=

1

v
g′(r)[y(s)− y(s− 1)] .

The condition for stability of this linear DDE is g′(r) < v (Bélair, 1991, page
174). We would conclude then that B in Figure 1 would be stable and A un-
stable, as had been conjectured before (Section 2). C would also be unstable,
as might be expected (but see Section 5.5). Because the only equilibrium
solutions correspond to those points, stability has to be asymptotic.

Two aspects of this analysis, however, appear unsatisfactory. First, it is
not clear to me to what extent the linearization is valid in this case. That is,
if this stability in variation or stability in first approximation (Baker et al.,
1995) implies stability of the non-linear DDE as defined above. Second, it is
clear from (9) that, regardless of g′(r), any constant perturbation r+δ would
remain unchanged (also true for the linearized equation), contradicting the
conclusions. Obviously, there are complications arising from the fact that
not all perturbations are “admissible”, as explained in Section 4.34.

It is possible to carry out a much more direct stability analysis, avoiding
the problems of linearization and of inadmissible solutions. Consider equa-
tion (16), and let r be an equilibrium point, a zero of (22). For any solution
z(s) of (16),

sup
s−1<u<s

|z(u)− r| ≤ δ ⇒ |

∫ s

s−1
z(u) du − r| ≤ δ

4I am indebted to Brian Hassard for useful discussion on this issue
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⇒
1

v
g(r − δ) ≤ z(s) ≤

1

v
g(r + δ) ,

with δ > 0. If g′(r) < v then g(y) has a downward crossing of the line vy at
y = r. Therefore, g(r+ δ) < v(r+ δ), at least for δ not too large. Similarly,
g(r − δ) > v(r − δ). It follows that for δ small enough z(s) − r is strictly
bounded by ±δ. The same argument ensures that the bound remains valid
for larger values of s (and in fact decreases with s).

We conclude that if g′(r) < v at an equilibrium point r, then r is asymp-
totically stable5. A proof of instability if g′(r) ≥ v could possibly be obtained
along similar lines.

4.5 Basins of attraction

The really interesting question is to distinguish those age distributions that
converge to a stationary solution from those that diverge to zero. That
is, to find the basins of attraction of zero and of the stable fixed point.
Unfortunately there are no significant advances in this direction yet.

We might speculate that the unstable fixed point (r such that g(r) = vr
and g′(r) > v) could play a role in delimiting those domains. Perhaps if some
appropriate invariant functional could be found, a real-valued transforma-
tion of the age distribution that remained constant over time, its value for
the unstable equilibrium normal forest could separate the sustainable and
unsustainable distribution classes (see also Section 6.3).

5 Discrete models

The continuous model discussed up to here seems convenient for obtaining
analytical results and insights. For simulation and numerical results, how-
ever, it is necessary to use discrete formulations. These may be based on
close approximations to the continuous case, as when using numeric inte-
gration techniques, or may be discrete models derived by direct reasoning
about the practical problem.

5.1 The classical forest regulation model

The classical approach partitions the forest into equal-width age classes, and
looks at the process as advancing by discrete time steps. The time steps are
equal to the age class width. In the simplest situation there is only one kind

5Note that the requirement of differentiability of g can be easily relaxed.
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of forest stand, characterized by one yield table that assigns a fixed volume
per unit area to each class. To be specific, let us assume one-year steps and
classes. Then, for the simple problem that we have been considering the
evolution of the system can be described as follows.

For any year t, the state of the forest is given by the areas in each age
class, a vector at ≡ (at1, at2, . . . , atm). Let the areas cut from each class
be ct ≡ (ct1, ct2, . . . , ctm). Then, assuming that the areas cut are replanted
immediately, the state in year t + 1 is obtained by subtracting ct from at,
shifting forward by one age class, and making the new first age class equal
to the total area cut:

at+1,i+1 = ati − cti ; i = 1, . . . ,m

at+1,1 =
∑

i

cti = A−
∑

i>1

at+1,i ,

where A is the total area. The number of classes m is dynamically made
as large as necessary or, alternatively, class m is taken as open (i. e., it
represents ages ≥ m) and any areas that would shift to m + 1 accumulate
there.

The volume cut is vt = gct, where g ≡ (g1, g2, . . . , gm) is the yield table.
In this model it is obtained by cutting oldest ages first, making cti = ati as
necessary for i = m,m− 1, . . . until the required vt is completed, in general
cutting only a fraction of the final remaining class6.

It is clear that an initial age distribution and a given constant volume
cut vt = v completely determine the evolution of the system. It may con-
verge to a uniform distribution (except possibly for the oldest age class),
or it may reach a point where it is not possible to continue harvesting v.
The implementation of simulations is straightforward. Analysis is some-
what complicated by the volume cut accumulation procedure, and by the
fractional oldest non-empty age class. The model is related to the continuous
formulation of equation (2). We return to this in Section 6.3.

5.2 A different discretization

The classical model groups forest stands of increasing age into fixed age
classes with variable areas. Consider instead grouping into fixed area classes
with variable ages. In addition, use variable time steps, so that a whole class
is cut in each step. The total area A is distributed into n equal-area classes
which at step k have ages xk1 ≤ xk2 ≤ · · · ≤ xkn. In other words, instead

6It can be shown that under many circumstances this strategy is optimal (Garćıa, 1990)
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of describing the forest by the age histogram we use n quantiles from the
distribution, xk ≡ (xk1, xk2, . . . , xkn)

7. There is a continuous yield function
g(x) and a constant annual volume cut v.

The state transitions are simple, just shift to the right and add the time
step length:

xk+1,i+1 = xki +∆tk ; i = 1, . . . , n− 1

xk+1,1 = ∆tk .

The step length ∆tk = tk+1− tk is the time it takes to harvest the last class,
which contains A/n units of area of age xkn:

∆tk =
Ag(xkn)

nv
.

As before, in what follows I shall drop the constant A by assuming that
A = 1, or by expressing v on a per unit area basis.

An advantage of this formulation, from a simulation point of view, is
maintaining at all times a consistent level of resolution in the forest repre-
sentation, with a fixed size array. As in the classical approach, the shifts
may be avoided by keeping a pointer into the array. In pseudocode the basic
algorithm could be as follows:

Initialize:

read x

k, t ← 0

Loop:

p ← 1 + (k − 1)(mod n)

∆t ←
1

nv
g(xp)

xp ← 0

x ← x +∆t

k ← k + 1

t ← t+∆t

output k, t,x
7 The exact interpretation of the xki may vary somewhat. They may be seen as

quantiles of a continuous distribution, or as average or representative ages for each class.
Or, more simply, the distribution may be thought as being discrete. In any case, in the
calculations it is assumed that all the area in a class has the same age. The problem
of choosing representative quantiles is related to the selection of “plotting positions” in
nonparametric statistics (Hosking, 1990); one could also shift slightly the yield function
to adjust for bias due to the quantiles location.
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Here n steps make one “rotation”, that is, the whole area is recycled
every n steps. Therefore, it may be of interest to compute also the elapsed
“rotation units”, sk = k/n.

5.3 Simplifications and analogies

Further streamlining of the computations is possible, leading to discrete
analogs of the DDEs and integral equations discussed before.

First, note that oldest age is

xkn ≡ yk = tk − tk−n ,

if we define t−u = −x0u for u = 1, . . . , n. Then, it is sufficient to keep track
of t,

tk+1 = tk +∆tk ,

where

∆tk =
1

nv
g(tk − tk−n) . (25)

This is analogous to (5). A closer analogy may be written as

∆tk
∆sk

=
1

v
g(tk − tk−n) ,

noting that ∆sk ≡ sk+1 − sk = 1/n.
If needed, any xki could be recovered from

xki = tk − tk−i .

For testing sustainability, though, t is sufficient. If the “instantaneous rota-
tion length” zk ≡ ∆tk/∆sk = n∆tk tends to a positive constant, then that
is the equilibrium normal forest rotation, and the cutting rate v is sustained.
If zk tends to zero, it means that v is not sustainable. The reciprocal of z
might be interpreted also as a measure of cutting intensity.

The simulation algorithm becomes:

Initialize:

read x

t ← −x

k, t ← 0

Loop:

p ← n− k(mod n)
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y ← t− tp

z ←
1

v
g(y)

output k, t, k/n, y, z

tp ← t

t ← t+ z/n

k ← k + 1

Alternatively, we could keep track of the cutting age yk. We have

yk = tk − tk−n =
k−1
∑

k−n

∆ti ,

from where,

yk =
k−1
∑

k−n

1

nv
g(yi) , (26)

the analog of (15). Maintaining a record of the last n values of y this
may be used directly to calculate the next y. Or y may be updated as
yk+1 = yk+∆yk, where the formula for the increment, similar to (9), results
from differencing the previous expression:

∆yk = yk+1 − yk

∆yk =
1

nv
g(yk)−

1

nv
g(yk−n) . (27)

The necessary initial values yk for k < 0 are a bit messy. It is found that they
must be y−1 = g−1[nvx01], and y−i = g−1[nv(x0i − x0,i−1)] for 1 < i ≤ n.

A third possibility is to work with the quantities zk = n∆tk = g(yk)/v.
The discrete analog of (16) is

zk = n∆tk =
1

v
g(tk − tk−n) =

1

v
g(

k−1
∑

k−n

∆tk)

zk =
1

v
g(

1

n

k−1
∑

k−n

zi) , (28)

with z−1 = nx01, and z−i = n(x0i − x0,i−1) for 1 < i ≤ n. No convenient
difference equation similar to (12) is found, however.
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All these formulas require more calculation. A mixed strategy is quite
efficient, though. We update y keeping a history of z:

zk =
1

v
g(yk)

yk+1 = yk + (zk − zk−n)/n .

It works like this:

Initialize:

read x

y ← xn

z1 ← nx1

zi ← n(xi − xi−1) ; i = 2, . . . , n

k, t ← 0

Loop:

z ←
1

v
g(y)

p ← n− k(mod n)

y ← y + (z − zp)/n

output k, t, k/n, y, z

zp ← z

t ← t+ z/n

k ← k + 1

Actually, there is little to choose between this and the algorithm that uses
the t vector.

5.4 Numerical integration

Instead of formulating directly the problem as an approximation in discrete
time, one might use a continuous model and discretize it in order to compute
an approximate numerical solution. Although in fact it is somewhat debat-
able which model, discrete or continuous, represents reality more accurately.
Trees often have a relatively short annual growing season, and cuts occur at
discrete points in time.

In general, the numerical integration of delay differential equations can
be very complex (Baker et al., 1995; Baker, 1996). It is easier in the present
situation, though, where the delay is constant and the solutions are contin-
uous and smooth (except possibly at time zero).
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The method of steps shows most clearly the connection with ordinary
differential equations. As shown in Section 3.5, the problem reduces to inte-
grating a sequence of ODEs over successive rotation segments. Computing
the solution over a segment makes use of the solution over the previous
segment. The only complication is that, with the usual variable time-step
integration methods, it is not possible to predict the points for which the
previous segment solution will be needed. It is necessary then to have some
“dense-output” facility to interpolate non-meshpoint solution values, and
sophisticated strategies for doing this are possible (Baker et al., 1995).

A constant s-step size h = 1/n for some integer n greatly simplifies
the problem, at the cost of additional computing expense and/or reduced
accuracy. The solution is computed at each point sk = kh, knowing the
values at the previous n points. Euler’s method applied to (5) gives

t(sk + h) = t(sk) +
h

v
g[t(sk)− t(sk − 1)]

or

t(sk+1) = t(sk) +
1

nv
g[t(sk)− t(sk−n)] ,

which is the same as (25). Similarly, Euler integration of (9) gives (27).
Therefore, the discrete model of Sections 5.2 and 5.3 may be seen as a
numerical solution to the continuous model.

It is well-known that Euler’s method is not very reliable, although it is
probably adequate with a large enough n. More sophisticated ODE numer-
ical integration methods could be used, but it seems simpler to work with
the integral equation forms instead. With the same step length as before,
(15) may be approximated by a numerical quadrature of the form

y(sk) ≡ yk =
1

v

n
∑

i=1

wig(yk−1) =
n

∑

i=1

wizk−1 . (29)

Equal weights wi = 1/n (the rectangular integration rule) result in (26).
Again an equivalence with the discrete model, and the simplifications of
Section 5.3 are applicable. More accurate alternatives could be easily used
directly with (29), e. g., a modified Simpson’s rule or a semi-open8 Newton-
Cotes formula. Although unlikely to make much difference in practice, other
quadrature refinements come to mind: methods based on Fourier instead of

8Function values are available for one of the two ends of the integration interval. (See
also footnote 7).

23



polynomial approximations, use of more than n previous values9, use of
previous values of both y and z (which links with ODE integration methods
such as Adams-Bashforth, see Chapter 13 in Hamming, 1962).

5.5 Examples

The first algorithm of Section 5.3 has been programmed in APL (Appendix
2). The examples use the yield function g(y) = exp(1 − 1/y) shown in
Figure 1. To make things easier, the scaling in this function is such that the
maximum mean annual increment is 1 at age 1 10.

Figure 5: Four simulations cutting 95% of the maximum MAI; effect of the initial age
distribution shape (upper left in each display). In two instances the cut is sustained,
with the cutting age y (inner spiral) and z (outer spiral) converging to the stable
equilibrium point. In the other two the forest is exhausted, y and z going to zero.

9A connection between the DDE solution and an analytical continuation of the initial
segment?

10In real life one of these age/time units would typically be 20 to 200 years, depending
on tree species and site productivity. One yield unit might be of the order of 1000 cubic
meters per hectare.
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Output is shown graphically on screen as the simulation progresses (Fig-
ure 5). The values of y and z are plotted in polar coordinates, with an
angular step of 2π/n radians. Thus, appropriately enough, one full turn
represents one rotation. The red outside spiral is z, and the green inside
one, at half the scale, is the cutting age y. These examples used n = 30.
For reference, the initial age distribution, the yield curve and the vy line
are displayed on the upper left. Actually, the distribution is discrete, with
equal areas at each of the points in the supplied ages list, but a histogram
approximation is shown to facilitate visualization11.

In Figure 5, v = 0.95, that is, the cut is 95 % of the maximum MAI.
Depending on the initial age distribution, the constant cut v is or is not
sustainable. Always y and z either converge to the stable equilibrium (point
B in Figure 1), or they crash to zero in a “death spiral”. Changing the
scale of the initial distribution shows that the transition between both cases
occurs when the oldest age is close to the unstable fixed point (A in Figure
1). The exact position, however, depends of the distribution shape. All
these instances are close to that critical situation. Under those conditions
it is observed that convergence to the equilibrium normal forest can be very
slow, while forest exhaustion is usually faster.

Figure 6: A simulation with a cut equal to the maximum MAI, hovering around the
unstable equilibrium: (a) after 130 rotations, (b) after 170 rotations.

The dynamics when the cut equals the maximum MAI, v = 1 here, is
interesting. Theoretically the equilibrium point (C in Figure 1) is unstable.
However, often the simulation initially seems to converge to the equilibrium,
with the graph remaining unchanged for a long time before finally collapsing

11The variable class-width histogram is computed from a polygonal cumulative distri-
bution function passing through the origin and through the points (x0i, i/n), i = 1, . . . , n.
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(Figure 6). The fixed point appears as an attractor for distributions coming
from “above”, repelling those “below”, a sort of saddle point. Presumably,
the observed final collapse is caused by small perturbations due to round-
off error. For all practical purposes, though, a maximum MAI cut can be
sustainable, especially considering that slight feedback corrections by the
manager can stabilize the system.

6 Dynamics in <2

Discrete models with 2 or 3 classes are obviously quite inadequate for prac-
tical use. However, for m = 3 and n = 2 the properties of the models
of Section 5 are easily visualized graphically, and some important points
become particularly clear in this the simplest of situations. Perhaps sur-
prisingly, analytical solutions are still far from trivial. Solving these simpler
problems would be a crucial first step, and they are also a source of ideas
and insight for the study of the functional differential equations.

6.1 States and transitions

The behavior of a dynamic system is conveniently specified by a state vector,
that describes current conditions, and a transition function, that determines
the changes of state (e. g., Padulo and Arbib, 1974). The various state
descriptions and transition functions already seen in sections 5.2 and 5.3 are
summarized here for n = 2. The extension to any n is straightforward, but
the essential points are seen more clearly in these specific instances.

Using the age list, the state of the forest is characterized by the xki and
the current time tk, a three-dimensional state vector. The state is updated
by the transition function

xk+1,1 = f(xk2)

xk+1,2 = xk1 + f(xk2) (30)

tk+1 = tk + f(xk2)

writing g(x)/(nv) ≡ f(x). For investigating asymptotic behavior, for in-
stance, we may not be interested in the correspondence between the stage
numbers k and the actual times tk, so that a two-dimensional state space
may be sufficient.

Instead of this, three consecutive time values make an equivalent state
vector (uk1, uk2, uk3) ≡ (tk−2, tk−1, tk). From (25),

uk+1,1 = uk2
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uk+1,2 = uk3 (31)

uk+1,3 = uk3 + f(uk3 − uk1)

The reduction to two dimensions is not possible here.
With (26), a state vector is (uk1, uk2, uk3) ≡ (yk−1, yk, tk), and

uk+1,1 = uk2

uk+1,2 = f(uk1) + f(uk2) (32)

uk+1,3 = uk3 + f(uk2)

Again, we may ignore the third component.
In contrast, the difference equation (27) is

yk+1 = yk + f(yk)− f(yk−2) ,

and attempting to use this would require keeping a record of three values
of y instead of two. The presence of a redundant state variable in this
formulation reaffirms our previous observations that equations (15) and (26)
are somehow “more fundamental” than (9) and (27).

Finally, (16) gives the state vector (uk1, uk2, uk3) ≡ (zk−1, zk, tk), and
the transition function

uk+1,1 = uk2

uk+1,2 = h(uk1 + uk2) (33)

uk+1,3 = uk3 + uk2/2

with h(x) ≡ g(x/2)/v.
The dynamics of y and z may also be described by simple second-order

recurrence relationships:

yk = f(yk−1) + f(yk−2)

zk = h(zk−1 + zk−2) .

6.2 Basins of attraction

With (30), (32) or (33), the sets of initial values that lead to sustainability or
to exhaustion can be shown graphically in the plane. For each graphics pixel
representing an initial point (x01, x02) or (u01, u02), the first two transition
equations are iterated until convergence to either (0, 0) or to the stable
normal forest is determined, and the pixel colored accordingly.
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Figure 7: Initial age distributions in a two equal-area classes model that do not sustain
a 95% cut (see text).

Fractint, a public domain program normally used for producing fractals,
was found to be a convenient tool for generating and exploring these graphs
(Appendix 3). The simplest sets are obtained with (33). Figure 7 shows the
result for g(y) = exp(1 − 1/y) with v = 0.95. The unsustainable set (the
basin of attraction of (0, 0)) is shaded, with the gray levels corresponding
to a color coding of the number of iterations performed. The white points
in the rest of the first quadrant are sustainable, eventually converging to
the stable equilibrium (z′, z′), i.e., they constitute the basin of attraction of
(z′, z′).

z′ ≈ 1.40261 is the stable fixed point, solution of g(z)/v = h(2z) = z.
As it might be expected, the boundary between the two basins of attraction
passes through (z′′, z′′), where z′′ ≈ 0.737810 is the unstable fixed point.
Zooming in with Fractint the boundary appears smooth, with a similar
banding pattern at all scales and no indications of fractal structures or
chaotic behavior.

It is seen that the corner near (2.215, 0) is taken by the transition to
the other corner, approximately (0, 1.160). This, in turn, goes to a point
on the boundary curve. Clearly, points on that curve remain on the curve,
eventually approaching (z′′, z′′).
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A very similar picture is obtained for the maximum MAI cut v = 1.
There the boundary passes through the fixed point (1, 1), with corners near
(3.47, 0) and (0, 1.53). Equations (30) and (32) also produce smooth bound-
aries, although more curved.

It is rather intriguing that it is not known how to directly calculate the
apparently simple boundary curve of Figure 7.

6.3 The classic model with three age classes

For m = 3, the behavior of the “classic” model of Section 5.1 can also be
displayed in the plane. The areas a1 and a2 may be used as coordinates,
given that the total a1 + a2 + a3 = A must be constant. Or, for a more
attractive presentation, isometric coordinates could be used.

Systematic simulation becomes somewhat complicated by the effect of
different yield patterns, represented by two essential additional parameters
apart from v. Limited experimentation with Fractint shows apparently lin-
ear basin of attraction boundaries (and parallel iteration bands). An exhaus-
tive algebraic analysis seems feasible, although tedious due to the various
cases to be enumerated.

If the linearity is confirmed, we might conjecture that it extends to higher
dimensions and to the continuous model. The desired discriminant func-
tional for sustainability might then be of the form

Q =

∫ ∞

0
ϕ(x) dFt(x)

for some function ϕ(x), using the notation of Section 3.1. From here,

Q =

∫ 1

0
ϕ[Ht(p)] dp =

∫ 1

0
ϕ[t(s)− t(s− p)] dp =

∫ 1

0
ϕ[

∫ p

0
z(s− u) du] dp .

This would suggest that perhaps the equation of the curve in Figure 7 has
the form

ϕ(z−1) + ϕ(
z−1 + z0

2
) = constant .

It is not at all clear how to find ϕ, though.

7 Discussion and conclusions

A sustainable forest harvesting model has been formulated in terms of delay
differential equations and of nonlinear integral equations. Using this, pre-
vious conjectures about the location and stability of steady-state solutions
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have been formally proved. The less obvious possibility of limit cycles has
been ruled out.

The main problem, determining the sustainability or not of a harvesting
level for any given initial age distribution, remains an open question. How-
ever, linking the problem to an active and well-established mathematical
discipline, the theory of functional differential equations, might attract the
interest of mathematicians and contribute new tools for advancing toward
a solution. Conversely, this model might help in the development of the
theory as a testing ground for concepts and a source of ideas.

Discrete versions serve as a complement to the continuous functional
differential equation models. They are convenient for simulation and ex-
perimentation. In addition, they provide mathematically simpler analogies
that throw some light into issues that are rather subtle in the continuous
setting. A particularly interesting instance is the ambiguity/redundancy in
some DDEs noted by Busenberg and Cooke (1980) and Bélair (1991), and
discussed in sections 4.3, 5.3 and 6.1.

Although unrealistic from a practical point of view, studying the behav-
ior of low-dimensional discrete models was found useful to better understand
the fundamentals. These “bare bones” models allow stating the crucial ques-
tions in the simplest possible setting. Even then, the key problem does not
seem easy to solve. Essentially, it can be distilled into the following. Con-
sider the recurrence

zk+2 = f(zk + zk+1) ,

where f(x) = 3 exp(−2/x), for example, and zi ≥ 0. It is known that zk will
either converge to 0 or to 1.6153 . . .. Which initial pairs (z1, z2) lead to 0?
Answering this appears to be a necessary first step for further work.
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Appendix 1. List of variables

(Any consistent system of units could be used, those shown are given as an
example).
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Sections 2 to 4 (continuous model)

Note: In the text it has been assumed that the total area is 1, so that the
unit of area would be the total area of the forest. Alternatively, quantities
like F and v may be expressed on a unit-area basis, which is what has been
done in the example measurement units below.

t time (years)
x age (years)
Ft(x) = F (t, x) age distribution at time t (cumulative frequency)
g(x) volume yield per unit area (m3/ha-year)
v , v(t) volume harvesting rate (m3/ha-year)
r , r(t) , y(s) oldest age, felling age, rotation length (years); r(t) =

F−1
t (1) = Ht(1)

MAI mean annual increment, g(r)/r (m3/ha-year)
p , s area, cumulative harvested area, rotation number

(relative to the forest total, proportion, relative
units,“rotation units”)

Ht(p) = H(t, p) inverse age distribution, F−1
t (p) (years)

z(s) dt/ds (years)

Sections 5 and 6 (discrete models)

m number of age classes
ati area in age class i at year t (ha)
cti area cut from age class i in year t (ha)
A total forest area (ha)
gi , g(x) yield for age class i or age x (m3/ha-year)
v , vt volume cut (m3/year or m3/ha-year)
n number of equal-area classes
xki age of (equal-area) class i at time step k (years)
∆tk length of time step k (years)
tk time at the start of step k (years)
sk elapsed rotation units
yk oldest age (years)
zk ∆tk/∆sk, n∆tk (years)
f(x) g(x)/(nv) (years)
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Appendix 2. Simulation program

The examples in Section 5.5 used an APL*PLUS implementation
of the first algorithm of Section 5.3. A free interpreter is found
on the Internet at ftp://watserv1.uwaterloo.ca/languages/apl/

\mbox{apl-plus}/index.html.
The main routine, or function in APL jargon, is����������	�
������������������������������� �!�#"�$�%&�('��*)�+����
, -/. ���&+&��+�$�"�+����
,�0!. ����1!� ��2��
,�3!. �������/4
,�5!. 6�7�7�8�9
,�:!. �;����2��=<>�
,�?!. ����� 2/� , � .
,�@!. ����A�B - 2�C��!D -#E�F�3�G C�	
,�H!. 7�I �(� I ��A���C�� G�J � J �
, K/. � , � . ���
, - 4 . ����� L���C��
, -�-/. ������L -
, -�0!.NM A#4�O�1 J ��������P��#Q�R E�S&G�T�6�7�7�8
, -�3!.VU +��&+�%�W

�

For clarity it follows closely the algorithm pseudocode, ignoring questions
of APL conventional style or efficiency (in particular, avoiding the notorious
APL “one-liners”). The function is called with the cutting level v as left
argument, and a vector of (increasing) class ages on the right. It runs until
interrupted by pressing any key, and returns that key for possible use by
calling functions. As an example, enteringX/Y Z�[�\�]�^`_�a�b c�d�X#e&f�X�X/g�h�f�i�X�X

runs a simulation that starts with a random initial distribution.
The function SIM itself is standard APL, except for the key-press test

on line 12. It calls three functions that use graphics and keyboard control
functions peculiar to APL*PLUS. The first one computes the initial point
on the curves, initializes graphics and keyboard (the POKE suppresses the
INKEY default wait for a key-press), and draws the histogram and yield
curve:

34



jlk�m&n&o�n�p�q�n�r�s/t�u
v w/x q�p�y&o(z�{*|�n�m�o�}/~&����� w������ ����� w���� � w����������
v��!x ����� u���� v w/x }/~
v��!x u#}/~ ������� � ������� u#} � k#� � ���
v��!x u#}�� ��� k#�/k�����k�  ��¡���¢���£ �
v��!x u#} ����¤ k#��¥ ��¤ ~�~ ���
v�¦!x ������¢ k#������� w�§ ~&� ��� � w � � � v w!¨��!x#w�� �#~ ¨���©�ª���� ©#��� � w�§ ~&� �
v�«!x ������¢ k#��� w�� ~ �¬ª u&� v w!¨��!x#w�� ~ ¨���© � w���� u#}/~ ¨ w�©&#� ~
v � x ¦�����¢ k#��� w����¬ª ~ w�� � w����

j

The second one draws the y and z spiral segments:®°¯�±&²(³*±&²µ´&¶ ·�¸�¹
º »/¼ ¹;½�¾�¿°À »ÂÁ�Ã�Ä�Å�Ä À�Æ Ç�È�É�Ê&²(Ë�³*Ì�Í�Î�² º »/¼ ¾ ´&¶ · º »/¼
º À ¼ À�Ï�Ð�Ñ&Ò#Ó�Ô » À�À¬ÕlÀ Ã�Ö°»!Ã�Ö À Ã�Ö°»!Ã�Ö�× ¹*Ç�À�Ø&Ù Ã�Ö Ç�È�É�Ê&²(Ë�³*Ì�Í�Î�² º À ¼ ¾ ´&¶ · º À ¼
º�Ú!¼ Û Ï�Ð�Ñ&Ò#Ó�Ô » À�À¬ÕlÀ Ã�Ö°»!Ã�Ö À Ã�Ö°»!Ã�Ö�× ¹*Ç�À�Ø�È�É�Ê&²(Ë�³*Ì�Í�Î�² º�Ú!¼ ¾ ´&¶ · º�Ú!¼
º�Û!¼ È�É�Ê&²(Ë�³*Ì�Í�Î�²�½�´&¶ ·

®

The final function just returns to text mode and resets INKEY to its
default behavior:Ü�Ý&Þ�ß&Þ�à�á�â�ã

ä å/æ ã�ç�è�é�ê#ë�ì å�í
ä�î!æ ã�ç å é�ï�ð�ñ�ò î�ó�ô

Ü

Appendix 3. Exploring low-dimensional dynamics
with Fractint

Fractint is a computer program for the graphical manipulation and display of
various types of fractals. Versions for several platforms are freely available,
for instance on the Internet at http://spanky.triumf.ca/www/fractint/
fractint.html

In addition to many built-in fractals, there is a “formula” feature for
specifying other equations in a simple programming language. After fa-
miliarizing oneself with the most important of the myriad of options and
commands, Fractint can thus become a convenient tool for studying the be-
havior of low-dimensional systems, fractal or not. The variety of calculation
and display options, easy scale and parameter changes, and the ability to
zoom into picture details at arbitrary depths are particularly useful.

The “formula” for producing Figure 7 was as follows:

Zforest{

old=real(pixel), new=imag(pixel)

v=real(p1)

:
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temp = new

new = exp(1-4/(new+old+0.01+abs(new+old-0.01)))/v

old = temp

z = old + flip(new)

|z| > 0.000001

}

Fractint works with complex arithmetic. For each pixel, it first performs
the initialization code up to the colon. Here it reads the point previous
and current z values, and obtains the cutting level supplied by the user in
parameter p1. Then the instructions that follow are iterated until either
the last statement becomes false, a specified maximum number of iterations
is reached, or a recurring pattern in the special (complex) variable z is
detected. By default, in the first instance the pixel is colored according to
the number of iterations reached, and with a background color otherwise. A
protection against overflow and division by zero has been included by taking
the maximum between old+new and 0.01, although it did not seem to make
any difference in practice.

The user must supply the v level, and appropriate upper-left and bottom-
right corner coordinates for display. For some reason computations were
much faster with the floating-point arithmetic option (f command or x

menu) than with the fixed-point default. In case of doubt it is wise to
check results by disabling the “guessing” calculation mode, increasing the
iteration limit (both in the x menu), and disabling periodicity checking (g
followed by periodicity=no). Coordinates may be read with the cursor in
the orbit mode activated with o n.

The “classic” model with m = 3 may be implemented as follows

classic{

a1=real(pixel), a2=imag(pixel), a3=1-a1-a2

g1=real(p1), g2=imag(p1)

v=real(p2)

:

IF (a3 < 0)

a2 = -1

ELSE

if (v <= a3)

a2 = a1

a1 = v

a3 = 1-a1-a2
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elseif (v <= a3+g2*a2)

a2 = a1

a1 = a3+(v-a3)/g2

a3 = 1-a1-a2

elseif (g1 > 0)

a2 = a1-(v-a3-g2*a2)/g1

a1 = 1-a2

a3 = 0

else

a2 = -1

endif

ENDIF

z = a1 + flip(a2) ; for periodicity check

;

a2 > 0

}

The third age class is taken as open and, without loss of generality, it has
been assumed that A = g3 = 1. The user supplies v and the yields g1, g2 for
age classes 1 and 2. The display coordinates are a1 and a2, and the proper
corners (0, 1), (1, 0) must be specified (the outside IF forces the background
color on the “impossible” a1 + a2 > 1 region). Note that the if-then-else

construct is only available in the later PC versions (19.6) of Fractint.
An isometric graph might be produced by substituting a1 = (sqrt(3)

*real(pixel) - imag(pixel))/2 for the first assignment. The triangle
delimiting the relevant region would need to be added somehow to facilitate
visualization.
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