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Oscar Garćıa a,1, Federico Ruiz F. b

aUniversity of Northern British Columbia, 3333 University Way, Prince George,

B. C., Canada V2N 4Z9

bCIT – ENCE, Apartado de Correos 223, 21080 Huelva, Spain

Abstract

A relatively simple system of differential equations was used for predicting growth
of eucalypt coppice stands. Only limited, low quality data was available, from
small continuous forest inventory plots not originally designed for growth modelling.
Therefore, biological principles and growth patterns observed elsewhere were used
to constrain model form. The differential equations used are analytically integrable,
facilitating usage and estimation. Similar models and techniques may be useful in
other data-poor situations.
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1 Introduction

Introduced into Europe from Australia around the middle of the 19th cen-
tury, Eucalyptus globulus Labill is widespread at the lower elevations along
the Western and Northern coasts of the Iberian Peninsula. In Galicia, North-
Western Spain, it has in recent years rivaled Pinus pinaster as the most im-
portant commercial tree species. The only growth projection tools for Galicia,
however, were two unpublished yield tables by A. Fernández López, based on
temporary sample plots (Rojo and Montero, 1994; Madrigal C. et al., 1999).
We have developed a stand growth model using continuous forest inventory
plot measurements from the Empresa Nacional de Celulosas (ENCE).

The data comes from unthinned stands, thinning of eucalypts being uncom-
mon in Galicia. Thus, it would have been feasible to limit the study to the
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production of traditional “static” yield functions (Alder, 1980). It was felt,
however, that a dynamic model, at least beyond the early ages, would be
more useful in two respects. First, there is some interest in future diversifica-
tion into the production of eucalypt sawn timber, in addition to the currently
predominant use for pulp and particle-board. It would be interesting, then, to
estimate the response of various spacing and thinning regimes, even if on a
somewhat speculative basis at this stage. Second, using static yield functions
to project the future development of existing stands, which in general have
deviated from the predicted trajectories due to climatic fluctuations or other
causes, requires ad hoc approximations or adjustments of doubtful rationality
and accuracy. Dynamic models deal with these issues in a natural way.

Most of the data corresponds to coppice, including spontaneous vegetative re-
generation after fire, and it was found necessary to exclude planted stands from
the model. The heterogeneous nature of these forests, their fast growth rates,
and the small size of the sample plots, resulted in highly variable observations.
Together with the limited stand density coverage, this made the use of purely
empirical relationships impractical. The structure of the model, therefore, is
largely based on ecophysiological considerations and previous experience with
other species.

We used a relatively simple system of differential equations, integrable ana-
lytically, thus facilitating usage and parameter estimation. We believe that
the model and techniques applied here are of wider methodological interest,
in particular being potentially useful in other “data-poor” situations.

The structure of the article is as follows. After a brief background on the data,
the top height growth and site index sub-model is described, followed by the
time-scaling approach used for incorporating differences in site quality. The
mortality component comes next, before being used in the development of
the basal area growth equation. Then all the growth equations are brought
together, and methods for computing growth projections are discussed. This
dynamic model is only appropriate for closed-canopy stands, so that young
stands need to be “started” with a separate initial growth estimate. Other
variables of interest, such as volume per hectare, are estimated from the cur-
rent values of the projected height, number of stems, and basal area. A rela-
tionship between number of stems and basal area removed in thinning is also
useful. After developing these additional elements, we end with a discussion
and conclusions. A modification of the model that eliminates the need for a
separate estimate of initial growth is presented in the Appendix.
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2 Data

The data comes from ENCE’s continuous forest inventory, and consists of
permanent sample plots of 200 m2, measured between 1988 and 1994. There
were 113 plots in coppice, all of them first rotation, and 20 planted plots. Each
had between 1 and 5 re-measurements, mostly at one year intervals. The range
of ages and other variables can be appreciated from the figures. As discussed
below, only the coppice data was used in the final model.

In the inventory all live trees are counted, and diameter at breast height (dbh)
and total height are recorded for those with a dbh of at least 5 cm. Volume
for these trees is estimated from dbh and height with a tree volume equation.
Stand top height is taken as the average of the two largest trees in the plot.
Sampling and measurement methods have been described in more detail by
Pardo (1990). The data ranges and distribution can be appreciated in the
figures that follow.

3 Height growth and site quality

Top heights are graphed over age in Figure 1. Ages are years since planting
or, in coppice, since the previous stand harvest. The growth trends show a
high degree of variability. This may be largely attributed to the small plot
size, to the heterogeneity typical of eucalypt stands in Galicia, and possibly
to imprecision in tree height and/or stand age measurements. Although top
height was based on only two trees per plot, this does not appear to be a
major factor because graphing mean heights shows a similar pattern.

Growth was modelled with Richard’s differential equation, which may be con-
veniently linearized as

dHc

dt
= b(ac −Hc) , (1)

where H is top height (m), t is the age (years), and a, b and c are param-
eters to be estimated (Garćıa, 1983). Also known as the von Bertalanffy or
Chapman-Richards model, it is more commonly written as dH/dt = κH −
ηHγ. One of the parameters (or a combination of them obtained through re-
parameterization) is assumed to be site quality-dependent, being specific to
each plot (“local”), while the others are common to all plots (“global”).

Integration of (1) predicts H at any age t, given the height H0 at some other

3



0

5

10

15

20

25

30

35

0 5 10 15 20 25

T
op

 h
ei

gh
t (

m
)

Age (years)

Planted
Coppice

Fig. 1. Top height vs age. Successive measurements in the same plot are joined by
lines.

age t0:

H = a{1− [1− (H0/a)
c] exp[−b(t− t0)]}1/c . (2)

With a fixed origin [t0, H0], usually taken as [0, 0], this expression also describes
a family of site index curves. The family is parameterized, or indexed, by the
free local parameter, that is, by the parameter chosen as varying across stands.
More conventionally, a site index S can be used, defined as the top height that
a “typical” stand growing in the site would reach at some base age tc. It is
related to the local site-dependent parameter through the substitution of S and
tc for H and t in (2). See Garćıa (1983) for further details and generalizations.

All the parameters, global and local, were estimated simultaneously by maxi-
mum likelihood (ML) as described in Garćıa (1983). Essentially, the method
represents variability in the data by adding white noise to the right-hand side
of (1), which simulates environmental fluctuations, and by including inde-
pendent random measurement errors in the observed heights. The likelihood
function for the resulting stochastic model is calculated, and the parameter
values that maximize this function are found with a custom-built optimization
algorithm. Extensive experience with the technique has proven it to be highly
efficient and robust, even (or especially) in instances of scarce or poor quality
data (Garćıa, 1999).
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Table 1
Height growth model estimates

Plots Measurements a c Log-likelihood

Coppice 113 388 31.60 0.6339 366.4

Planted 20 63 33.88 0.6686 78.7

Pooled 133 451 32.68 0.6808 438.6

Note that in this approach the base age is just an arbitrary reference point, a
convention used for the calculation of the traditional site index. Site quality is
more directly tied to the site-dependent parameter in the model, and changing
the base age has no effect on the estimates or predictions. That is, the method
is “base age invariant” (Bailey and Clutter, 1974). A base age tc = 10 years
was adopted during model development, but in the final implementation it
was changed to 7 years following ENCE’s preferences and practices in their
other eucalypt plantations.

Two main model variants were tested, one where the site-dependent or local
parameter is the height asymptote a, and another where the local parameter
is the time scale factor b. The first option produces anamorphic curves, the
effect of site being a change in the vertical H scale. The second option gives
so-called polymorphic curves, with the horizontal time scale dependent on
site. Allowing an origin different from t = 0 and H = 0 was also tried. In
previous experience with the model, these have consistently been the best
parameterization alternatives (Garćıa, 1999).

Bests results were obtained with b as the local parameter. Table 1 shows
values of separate estimates for the coppice, the planted stands, and for the
total pooled data. Here t0 = H0 = 0.

The anamorphic version gave significantly lower log-likelihoods (325.9, 71.9,
and 397.8, for coppice, planted, and pooled, respectively), and fits that visually
appeared clearly inferior. Including t0 as an additional parameter in the b-local
model increased the pooled log-likelihood to 438.9, not significantly different
from the previous one considering the reduction in degrees of freedom. In
addition, the estimated t0 was 0.0044 years, practically zero.

The hypothesis of equality between coppice and planted can be tested by com-
paring the sum of the log-likelihoods to the log-likelihood for the pooled data.
The difference, 6.5 units with 4 additional estimated parameters (a, c, and two
variances), lies within the uncertainty margins of the various criteria available
for testing the hypothesis at the 5% significance level (Garćıa, 1983, 1984).
Prediction differences between the three models are relatively small, particu-
larly within the ranges where there is sufficient data. On the other hand, the
planted data is scarce and fairly variable. We cannot rule out much steeper
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trends, like those observed for eucalypt plantations under similar climatic con-
ditions in Chile where the a asymptote was estimated at 75.3 meters (Garćıa,
1995). In addition, there is evidence of eucalypts in Galicia reaching heights
much larger than the asymptotes obtained here.

Given the uncertainty, and the fact that current interest focuses mainly on
the growth of coppice stands, we have limited ourselves to model these. The
a and c parameter estimates are therefore those in the top row of Table 1.
Equation (2) reduces to

H = 31.60(1− e−bt)1/0.6339 . (3)

The site index is obtained from b by substituting the base age tc for t. Con-
versely, solving for b, this value can be calculated given S:

b = − ln[1− (S/31.6)0.6339]/tc . (4)

Some of the site index curves are displayed, together with the coppice data,
in Figure 2.
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Fig. 2. Site index curves and coppice top height data
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4 Site scaling

Figure 3 shows basal area over age for the available data. The large variation
is in part due to differences in site quality. One simple way of accounting
for site in a model is to use top height instead of age as the independent
variable, assuming that relationships among stand variables other than age
are not affected by site quality (e. g. Beekhuis, 1966; Mitchell, 1975; Drew and
Flewelling, 1979). This slightly extends Eichhorn’s rule, the often confirmed
observation that yield tables relating stand volume to stand height tend to be
the same for all sites (Eichhorn, 1904; Assmann, 1970). However, imprecision
in observed stand heights can obscure trends and affect estimates.
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Fig. 3. Basal area over age. Same-plot measurements joined by lines.

As seen in the previous section, in this instance site quality affects top height
through a change in the time scale. Therefore, a better implementation of
these ideas adjusts the ages, multiplying them by some quantity proportional
to the site factor b, making them “physiologically equivalent”(Garćıa, 1990).
We chose to multiply all ages by 7b, matching them to those for b = 1/7 or
S = 20.51 (base age 10), a value close to the average observed site index. The
ML b-estimates for each plot (local parameters) were obtained from the height
model fitting procedure. In what follows, the age t refers to this adjusted or
reference age. Scaling reduces data scatter substantially, although considerable
variability in the increments remains (Figure 4). Color graphic plotting showed
no clear residual site index effects in any of the scaled graphs.
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Fig. 4. Basal area over site-adjusted age.

5 Mortality

5.1 Stems per hectare

Tree mortality, even regular mortality which excludes severe wind damage
and other catastrophic losses (Vanclay, 1994), is notoriously difficult to model,
being extremely variable, greatly influenced by weather conditions, and weakly
correlated with other stand characteristics (Clutter et al., 1983). The present
instance is no exception (Figure 5).

As seen in figure 5, sometimes the number of stems N increases. In general,
this seems to be caused by ingrowth of new sprouts or seedlings (only trees
greater than 5 cm dbh were measured), which can be ignored due to their
small contribution to growth and competition. Without detailed analysis of
the original individual-tree raw data, it is not known if at the same time other
trees died, so that the 25 intervals between successive measurements where
the numbers of stems increased were eliminated. This left 250 measurement
intervals available for further analysis (Figure 6).

We calculated the relative annual mortality for each interval, and looked at re-
lating it to various stand variables. The relative mortality rate,−(dN/dt)/N =
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Fig. 5. Changes in the number of trees per hectare with (site adjusted) age.
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Fig. 6. Observed and predicted natural mortality. Model projections for initial stock-
ings of 1000, 2000, 3000 and 4000 stems per hectare. Data with increasing N not
included
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−d lnN/dt, was approximated by the divided differences

− lnN2 − lnN1

t2 − t1
, (5)

where N1 and N2 are the numbers of stems and t1 and t2 the site adjusted
ages for two consecutive measurements. Other variables were represented by
their interval averages (x1 + x2)/2.

No clear trends were apparent when plotting this relative mortality against any
stand variables: t, H, N, basal area per hectare (B), mean dbh (D), volume
per hectare (V ). No relationships were found either with various combina-
tions of variables, including stand density indices such as Reineke’s ND1.6

and the V
√
N implicit in the 3/2 self-thinning rule (Clutter et al., 1983;

Vanclay, 1994). Therefore, we model the relative mortality rate as a constant
−d lnN/dt = m, or

dN

dt
= −mN . (6)

Integration produces estimates for the number of stems per hectare N at age
t, given the number N0 at any other age t0:

N = N0 e
−m(t−t0) . (7)

Notice that in this instance (5) would equal m, in the absence of noise. A
reasonable estimate for m is the mean of the observed relative mortalities,
m = 0.0281. As a percentage of the initial number of stems, this represents
an annual mortality of 100(1 − e−0.0281) = 2.77% (for the average site). Fig-
ure 6 compares the mortality curves (7) and the data. Note, however, that
mortality shortly after establishment may follow a different pattern, with dif-
ferent mechanisms at work; information on numbers of stems past the initial
development stages should be used if possible.

5.2 Mortality in basal area and volume

In order to relate net and gross increments, we also need the mortality in terms
of volume per hectare (V ). It seems reasonable to approximate the mortality
in V by the product of the number of dead trees and the mean tree volume,
times a factor k < 1 to take into account the fact that dead trees tend to be
smaller than average:

k
V

N

dN

dt
. (8)
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Dead trees have not been measured, so there is no direct information on volume
or basal area mortality. From Beekhuis (1966), however, we can derive the same
relationship, and a reasonable value for k. On page 15, the periodic basal area
mortality in square feet per acre for radiata pine is estimated as

∆B = 0.004158D2 ∆N ,

where ∆N is the mortality in number of stems per acre, and D is the quadratic
mean dbh in inches at the start of the measurement interval. Intervals are 2
or 3 years. Changing to metric units and substituting D in terms of B and N ,

∆B = 0.7624
B

N
∆N .

If V is approximately proportional to BH and, as could be expected, the
top height is not affected by the dead trees, the same equation applies when
substituting V for B. Except for the approximation of infinitesimal by finite
intervals, this is the same as (8), with k = 0.7624.

It can be seen, though, that the value of k for volume should be slightly lower
than that for B, because of the lower than average height of the dead trees.
Beekhuis (1966, p.19) finds that in thinnings the volume-basal area ratio for
the removed trees is about 2 1

2% smaller than for the initial stand, which would
imply k = 0.975 × 0.7624 = 0.743 for volume. It is found also that in going
from finite to infinitesimal intervals k should be slightly smaller. From all this,
and for lack of a better estimate, we shall use k = 0.75, as a reasonable figure.
The exact value will not make much difference to the growth predictions.

6 Basal area and volume growth

It seems clear from Figure 4 that a purely empirical model derived exclusively
from these data would not be very reliable. Variability is high, and all stands
are unthinned. Many different equations could fit the observations equally
well, but differ for treatments poorly represented or absent from the data
base. Nevertheless, it is possible to take advantage of experiences elsewhere
and of theoretical reasoning to narrow down the alternatives.

Growth in total biomass or stem volume is more easily interpreted than that
in basal area or dbh, being more directly related to assimilation per unit area.
We can write the net increment

dW

dt
= gross increment−mortality , (9)
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where W might be biomass or volume per hectare, or a suitable proxy. Here
we use the product of basal area per hectare and top height W ≡ BH, being
more directly measurable and independent of particular tree volume tables,
utilization limits, etc. W and V are strongly correlated, with V = W/3 being
a close approximation in this instance (see below). The gross increment and
mortality in (9) are in units of W per unit time.

From (8), we already have the mortality term. We need an expression for the
gross increment. The gross increment is

dW

dt
− kW

d lnN

dt
,

and we look to model it as an appropriate function of stand variables, at
least for closed-canopy stands. For each pair of consecutive measurements we
approximated the derivatives by the divided differences (W2 −W1)/(t2 − t1)
and (5). For W we used (W1 +W2)/2, and analogously for the independent
variables, except for N where we preferred lnN ≈ (lnN1 + lnN2)/2 because
of linearity (c. f. equations (6), (7)).

As a first approximation, for closed-canopy stands the gross increment could
be expected to be roughly constant, assuming that assimilation efficiency, res-
piration or other losses do not change much with stand structure (or that they
compensate for each other in terms of stem-wood increase). In fact, extensive
data from radiata pine plantations subject to a wide range of treatments, and
other published growth experiments, show linear trends of accumulated gross
stem volume per hectare over age for closed stands, continuing up to ages
far beyond normal rotations (Garćıa, 1990). The slopes appear slightly less
steep on the lower lines (lower density stands). The best predictor for the
gross increment in Garćıa (1990) was the number of stems per hectare, with
a regression linearly decreasing with the mean spacing 1/

√
N , and no other

significant additional variables. Our graph of W vs t (Figure 7) is not incon-
sistent with this hypothesis, taking into account that there is mortality for the
higher values of W , and less than full closure for low W . Using V instead of
W gives very similar results.

The calculated gross increments are plotted over N in Figure 8. Only mea-
surements with W ≥ 150 m3/ha (approx. V ≥ 50 m3/ha) were used, thus ex-
cluding slower-growing open stands (see Figure 7). Five outliers were omitted:
three with high relative mortalities (0.69, 0.50, and 0.31), and two with exces-
sively high increments. The remaining growth intervals include 93 with mor-
tality, and 98 which did not contain any dead trees. These last ones should be
somewhat more reliable, not depending on assumptions about W -mortality 2 .

2 They are still subject to considerable measurement and sampling errors, especially
for top height, which in particular explains the presence of negative increments
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Coinciding with the radiata pine observations, graphs pointed to N as the best
predictor, This was confirmed by running stepwise multiple linear regressions
with t, H, B, D and W , in addition to N and various transformations of it:
lnN , 1/N ,

√
N , 1/

√
N , N 0.75 and N−0.75. The best fit (minimum standard

error) was obtained with the simple regression

gross increment = 41.23 + 0.01820N , (10)

with a standard error of 34.97 and r = 0.274.

Other regressions of the form α + βN γ were only slightly worse, including
the one with the average spacing mentioned before (γ = −1/2). For more
generality in the results, in what follows we write the gross increment in this
form.

Substituting in (9), we finally have

dW

dt
= α + βNγ − kmW , (11)

with α = 41.23, β = 0.01820, and γ = 1.

After substituting N from (7), this is a linear differential equation in W that
can be integrated according to standard formulae, giving

W =e−km(t−t0) W0 +
α

km
[1− e−km(t−t0)] (12)

− βNγ
0

m(γ − k)
[e−γm(t−t0)− e−km(t−t0)] .

The basal area can be recovered from B = W/H. It may be more convenient,
however, to arrange computations as described in the next section.

7 Closed-stand growth summary and computations

We have described the stand, at any adjusted age t (i. e., the real age multiplied
by 7b), by three state variables: H, N , and B. The rate of change of these
variables (growth, mortality) is given by the differential equations (1), (6),
and (11), which can be written as

dHc

dt
=−1

7
Hc +

ac

7
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dNγ

dt
=−γmNγ (13)

dBH

dt
=−kmBH + βN γ + α

The parameter values are: a = 31.60, c = 0.6339, γ = 1,m = 0.0281, k = 0.75,
α = 41.23, and β = 0.01820.

Conceptually, it may be clearer to use differential equations in terms of the
basic state variables. Expanding the derivatives on the left-hand side, and
after some algebraic manipulation,

dH

dt
=2.012H0.3661 − 0.2254

dN

dt
=−0.0281N (14)

dB

dt
=0.2043B + 41.23

1

H
+ 0.0182

N

H
− 2.012

Given an initial state [H0, N0, B0] at the (site-scaled) age t0, (14) can be nu-
merically integrated to predict the state [H,N,B] at any other age t. Site
scaling is achieved by multiplying the actual age by 7b, with b from (4). Other
variables of interest (“outputs”), such as volume per hectare V and mean dbh
D, are calculated as functions of the current state variables.

For teaching and training purposes we have found it useful to implement these
equations in a visual modelling system such as Vensim, Stella, Powersim, or
Dynamo (Figure 9). These are based on Forrester’s System Dynamics dia-
grams, representing state variables by boxes (levels, stocks), derivatives by
thick arrows with control “valves” (rates, flows), and the dependency of rates
on state variables by curved arrows (e. g. Ford, 1999). For any initial con-
ditions the system evolution is simulated through numerical integration, and
trajectories for the various variables can be displayed in graphical or tabular
form.

It is more efficient and accurate, however, to compute predictions through
analytical integration. Integrals have already been given in (2), (7), and (13).

Computations can be arranged in a somewhat more convenient form by noting
that (13) is a system of linear differential equations in the transformed vari-
ables Hc, Nγ, and BH. In fact, it is a special case of the multivariate Richards
model, where the transformations are more generally products of powers of
the basic variables, and their exponents can be parameters to be estimated
from the data (Garćıa, 1984, 1994; Vanclay, 1994). A common way of solving
such a linear system is by “un-coupling” the equations through an eigenvalue-
eigenvector transformation. Here we need just one transformed component of
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Fig. 9. Simulation of (14) with the free version of Vensim
(www.vensim.com/venple.html). The simple stand volume equation V = BH/3
has been used here.

the form BH + pN γ, where p is such that

d

dt
(BH + pNγ) = −km(BH + pN γ) + constant .

It is found that p = − β
m(γ−k)

. Defining

x≡ ac −Hc

y≡Nγ (15)

z≡ α

km
−BH +

β

m(γ − k)
Nγ ,

we can then write three independent equations:

dx

dt
=

1

7
x

dy

dt
=−γmy

dz

dt
= kmz ,
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and the general solution

x=e
1
7
(t−t0) x0

y=e−γm(t−t0) y0 (16)

z=ekm(t−t0) z0 .

The calculation procedure consists then of computing the initial x0, y0 and z0

from the initial conditions with (15), projecting these values with (16), and
recovering the original state variables from the inverse of (15):

H =(ac − x)1/c

N = y1/γ (17)

B=(
α

km
+

β

m(γ − k)
y − z)/H .

Note that when simulating for a series of equally spaced (e. g., annual) time
steps, the factors in (16) only need to be computed once.

8 Initial growth

The basal area growth and mortality predictions seem reliable for BH greater
than some 100 to 150 m3/ha (V greater than 33 to 50 m3/ha, approximately).
Different relationships apply to young stands that have not yet reached these
stocking levels. To deal with them, for instance when simulating the develop-
ment of future stands, we can use a separate (static) model to estimate appro-
priate starting points for initializing the growth projections. An alternative
combined modelling of open and closed stands is presented in the Appendix,
but the simpler approach described here was preferred for the practical appli-
cation.

We chose to estimate H, N , B and t for the time when BH = 150. Knowing t,
the top height can be obtained from (2). Lacking any better information, (7)
may be applied to the initial density (there was no data on the initial densities
for the available sample plots), or in a specific situation there might be some
more direct estimate for N near age t. What is needed then, is the t at which
BH = 150 for various values of N .

To estimate this relationship between t and N , we used the first measurement
with BH ≥ 150 in each plot, extrapolating to the initial N and to BH ≡
W = 150 with (7) and (13). It is not possible to solve explicitly for t in (13),
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Table 2
Starting point regressions

BH < n best R b0 b1 SE t̄ SE(t̄) SE(b0)

200 25 1/
√

N 0.625 4.256 117.4 0.772 6.97 0.772 —

250 40 lnN -0.528 16.52 -1.247 0.739 7.13 0.858 0.326

300 49 lnN -0.518 17.38 -1.360 0.798 7.09 0.923 0.328

400 63 lnN -0.510 17.57 -1.399 0.825 6.96 0.951 0.302

500 73 lnN -0.464 18.48 -1.524 0.985 6.92 1.104 0.345

600 83
√

N -0.306 9.144 -0.0520 1.191 6.80 1.244 —

∞ 96 1/N2 0.145 6.671 848.9 1.297 6.93 1.307 —

so that in each instance t was calculated numerically by the bisection method.
The values thus obtained are shown in Figure 10.
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Fig. 10. Projected initial density N and t for BH = 150, using the first measurement
with BH ≥ 150 in each plot. Points with observed BH greater or less than 400 are
distinguished with different symbols. The curve corresponds to equation (18).

We computed linear regressions of t over N , N 2,
√
N , 1/N , 1/N 2, 1/

√
N ,

and lnN . Values farther from BH = 150 are obviously less reliable but, on
the other hand, excluding them reduces the available number of points. The
results from the best regressions for various thresholds are shown in Table 2.

Except for the extreme sample sizes, lnN was the transformation most highly
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correlated with t. The standard error (SE) was not reduced by including ad-
ditional regressors. As expected, the variability, reflected in higher standard
errors and lower correlation coefficients (R), increases with the degree of ex-
trapolation, although the larger sample size compensates to some extent in
the precision of the parameter estimates (e. g., Sb0). The consistency of the
means, t̄, suggests an absence of substantial biases. From a practical point of
view the differences between the various regressions are relatively small, and
it was decided to use the one obtained for BH < 400:

t = 17.57− 1.399 lnN (18)

(Figure 10). Here t is the (site-adjusted) age at which BH = 150 is reached
for various initial densities N . If N is known at some other age, the initial
density (at t = 0) may be calculated with (7).

9 Auxiliary relationships

9.1 Volume

The growth model, in the strict sense, projects the changes in state variables
due to stand development. Other variables of interest (outputs) can be calcu-
lated or estimated from the current state. For instance, the mean (quadratic)

dbh, D = 200
√

B/(πN) cm, is calculated easily enough. Estimates for the
total volume per hectare are given here. Additional outputs could include
merchantable volumes, and dbh distribution parameters (Garćıa, 1984).

To reduce the effects of heteroscedasticity we used the volume-basal area ratio
V/B as the dependent variable in stepwise linear regression. Various combi-
nations of B and H commonly found in stand volume functions were tried as
independent variables: H, 1/B, H/B. In order to avoid before/after thinning
inconsistencies, it is advisable to take also into account the number of stems
(Beekhuis, 1966; Garćıa, 1984). Accordingly, terms containing N found sig-
nificant in Garćıa (1984) and in later models were added: N , H/N , H/

√
N ,

NH/B.

There were 388 observations. The regression V/B = −0.7394+0.3334H, of the
form used by Beekhuis (1966), had a standard error (SE) of 0.431. Without the
intercept we obtained V/B = 0.3318H, with SE= 0.466, essentially the same
error than with V/B = H/3, confirming the simple approximation V ≈ BH/3
mentioned before. The SE decreased to 0.274 when a term in N was included:

V/B = 0.7723 + 0.3334H − 0.0004361HN/B .
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Up to 6 “significant” terms were found, giving an SE of 0.234. The following
intermediate solution, with SE= 0.237, may be a reasonable compromise:

V/B = 0.3542 + 0.3332H − 0.0004276HN/B + 0.4958H/B − 3.415/B .

We decided, however, to use instead the previous two-term function, being
simpler and sufficiently precise for our purposes. The estimated volume will
then be

V = 0.7723B + 0.3334BH − 0.0004361HN . (19)

9.2 Thinning

Although the data came from unthinned stands, in principle the nature of the
model allows predictions of stand development under various thinning regimes.
Thinning just causes an instantaneous change in the state variables, and the
model can calculate trajectories starting from the new after-thinning state.
Obviously, the predictions may be unreliable for states not represented in the
data. Also, there may be some over prediction with heavy thinnings, where
for some time after the treatment there is less than full occupancy of the site
(Garćıa, 1990), especially if BH is reduced to less than about 100 m3/ha.
In addition, possible damages from logging or windthrow are ignored. With
all these caveats, and accepting that the results will be largely speculative,
thinning simulations can be useful.

Often, thinnings are specified in terms of numbers of trees per hectare left
or removed, and the corresponding basal area needs to be estimated (it can
be assumed that the top height does not change for thinnings from below).
Sometimes it is the basal area which is given, possibly as a percentage, and
the numbers have to be estimated.

The relationship between number of stems and basal area removed or left in
a thinning depends, among other things, on its selectivity. There is no data
on this for eucalypts in Galicia. Therefore we used experiences from elsewhere
to include in the growth simulator a relationship to calculate thinnings, if
necessary. It represents “typical” thinning from below, and its use may be
avoided by specifying both thinning basal area and number of stems.

Beekhuis (1966) presents in his Table 4 data on percentage of basal area re-
moved for various percentages of stems removed, for thinnings in Pinus radi-
ata. The values vary somewhat between successive interventions, and with the
age of thinning, but the following expression gives a reasonable approximation:

pB = 100− (100− pN)
0.75 ,
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where pB is the percentage of basal area and pN the percentage of stems
removed. In terms of the basal areas and numbers before and after thinning,
B0, N0 and B, N , respectively, we get:

B/B0 = (N/N0)
0.75 . (20)

This agrees with the relationships for natural mortality found before. A similar
model was used by Elliott and Goulding (1976), and it is a special case of the
more general equations of Garćıa (1984).

10 Discussion and conclusions

The model was implemented in an interactive computer program. We also
provided printed unthinned yield tables, for a range of site indices and ini-
tial densities. Extensive testing showed that the model predictions agree well
with the measurements, although the variability and limited coverage of the
available data indicates that projections should be used with caution. Never-
theless, the rationale behind the equations used, and their basis on experience
with other forests, provide a higher level of confidence than what would be
expected from a purely empirical model. The approach seems applicable to
other data-poor growth modelling situations. It would also be useful to con-
firm or modify the relationships with more extensive data sets for different
species and growing conditions.

It must be remembered that we used data exclusively from first rotation cop-
pice. It is not clear how different the behavior of planted stands could be.
Fernández López presents some comparisons between successive coppice rota-
tions in a 1982 unpublished report from the Centro de Investigaciones Fore-
stales de Lourizán.

Closure/occupancy models similar to the one in the Appendix may be appro-
priate when simulation of early and heavy thinnings is important. Pruning
effects on growth have also been modelled through these means (Garćıa, 1989,
1990).

From a theoretical point of view, perhaps the least satisfactory aspect of this
model is the mortality relationship (6). As already pointed out, natural mor-
tality tends to be highly variable, and often does not appreciably deviate from
a constant relative rate (see for instance Ferguson and Leech, 1976). Fur-
thermore, in managed stands mortality may be unimportant. Still, it would
be interesting to explore alternatives. We believe, however, that analytically
integrable models are preferable to those that can only be used through numer-
ical simulation, not only for convenience of use, but also for their potential to
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support effective parameter estimation and management optimization proce-
dures. A mortality component compatible with the 3/2 self-thinning rule was
used in a growth model for Chilean eucalypts similar to the one described here
(O. Garćıa, unpublished); although integrable through state variable transfor-
mations, recovering the original variables required iteration. A more realistic
and tractable mortality modelling remains a challenge.

The multivariate Richards model has been highly successful in summarizing
large permanent sample plot data sets, covering a very wide range of treat-
ments (Goulding, 1995). The fact that it encompasses a special case with a
mechanistic justification is gratifying, and may partially explain that success.

The parameters could have been re-estimated through more sophisticated si-
multaneous maximum likelihood techniques developed for the multivariate
Richards (Garćıa, 1984). Such a refinement was not judged warranted in this
instance. In addition, the step-by-step approach seems to present advantages
in the incorporation of prior knowledge and subjective data weighting, in a
way that would be difficult to achieve with an automated procedure.

Contrary to what might be expected, to make the most of limited informa-
tion, a higher degree of mathematical and statistical sophistication may be
justifiable with scarce data than in data-rich situations.

A Appendix : An extension to open stands

For a more general model, we introduce an additional state variable, R, rep-
resenting relative closure. One may think of R as the amount of assimilating
material as a fraction of that present in a fully closed stand; for instance, in
terms of foliage biomass, leaf area index, or some combination of foliage and
fine roots. It is unnecessary to be more precise here, it is just an unobserved
variable that starts as a small quantity per tree when these are free-growing,
and increases up to a maximum of 1 on a hectare basis for a fully closed
stand. When thinning, R immediately drops in proportion to the basal area
or volume removed, and then gradually recovers.

When R < 1, both volume increment and mortality are reduced by an “oc-
cupancy factor”, Ω, related to R. Top height growth is not affected. It is
well-known that moderate thinning has a negligible effect on total increment.
Therefore, the relationship between occupancy and closure is non-linear, with
Ω = 0 for R = 0, Ω = 1 for R = 1, and Ω changing little as R nears 1.

We use here a simple special case of the models described in Garćıa (1989),
where more mathematical details are given. Additional biological justification
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and analysis of extensive radiata pine data are presented in Garćıa (1990).
The right-hand sides of (11) and (6) are multiplied by the occupancy factor

Ω = 1− (1−R)2 = R(2−R) (A.1)

(this is (4) with m = 2 or (5) with a = 2 in Garćıa (1989)). Stand closing is
modelled by the logistic

dR

dt
= θR(1−R) , (A.2)

with the initial condition R = r0N at breast-height age 3 . Estimation of the
parameters θ and r0 is described below.

It is clear that this model coincides with the previous one when R = 1. For
R < 1, it is found that it is sufficient to substitute for t in (7) and (13), or in
the last two equations of (16), the “physiological time”

t+ (R− lnR− 1)/θ (A.3)

(Garćıa, 1989). R starts at r0N for H = 1.3, and is projected with the integral
of (A.2):

R = 1/{1 + (1/R0 − 1) exp[−θ(t− t0)]} . (A.4)

When thinning, the current R may be reduced by multiplying by the ratio of
residual to current basal area.

We looked for parameter values that would make the predictions of this model
as close as possible to those from the segmented approach. With initial densi-
ties of 1000, 2000, 3000, and 4000 stems per hectare, we took the ages at which
BH = 150 (V ≈ 50 m3/ha), and the yield table entries with V closest to 100
and 200 m3/ha. This gave 12 density–age combinations for which we computed
predictions with both models; discrepancies at older ages would be expected
to be smaller. We used a general-purpose optimization algorithm to minimize
sums of squares, and the maximum absolute relative differences, with similar
results. The values θ = 2.153 and r0 = 5.53010−8 gave a maximum relative
difference in both basal area and number of stems of just under 1%, negligible
for all practical purposes.

3 As a reviewer pointed out, in principle, other state variables might affect (A.2).
Possibly just H, because stand density is reflected in R, and there is no obvious
causal connection between accumulated stem-wood and growth. The simpler model
was sufficient here.
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We conclude that this extended model is capable of simulating the growth
over the whole range of interest, without the need for a separate initial growth
relationship. Compared to the segmented approach it is more flexible, elegant,
and potentially more accurate for early and heavy thinnings. However, given
the current limited interest in thinning in Galicia, and the added usage and
comprehension difficulties due to having to account for R, it was decided not
to use it in this instance.
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