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Scale and spatial structure effects on tree size

distributions: implications for growth and yield

modelling

Oscar García

Abstract: Diameter and other size distributions are extensively used in growth modelling. These are usually obtained
from sample plot data and assumed to apply both at the stand level, of interest for production planning, and at the
forest patch level, the level relevant for tree growth interactions. However, spatial correlation can cause distribution
parameters and their estimates to vary with the extent of ground considered. Using mapped tree data from four forest
stands in central Canada, it is shown that differences in DBH variance with plot size can be substantial. In addition, size
correlations between neighbouring trees were positive, rather than negative as implied by current distance-dependent
growth models. Biases in mean DBH are also found. It is proved that plot totals and frequencies are unbiased estimates
of stand parameters, but variances and some other statistics are not. The expected variance is expressed in terms of plot
size and shape and of second-order stand spatial structure properties. Some possible approaches for reducing bias in
stand-level variance estimates are discussed, and the desirability of modelling microsite or genetic spatial correlations in
individual-tree simulators is pointed out.

Résumé : Les distributions de diamètres et d’autres dimensions sont très fréquemment employées pour modéliser la
croissance. Ces distributions sont habituellement obtenues à partir de données provenant de placettes-échantillons et on
assume qu’elles s’appliquent à la fois à l’échelle du peuplement, qui est utile pour la planification de la production, et
à l’échelle d’îlots d’arbres, qui est appropriée pour étudier les interactions de la croissance entre les arbres. Toutefois, à
cause de la corrélation spatiale, les paramètres de la distribution et la valeur estimée de ces paramètres peuvent varier en
fonction de la superficie du terrain qui est considéré. À l’aide de données provenant d’arbres cartographiés dans quatre
peuplements situés dans le centre du Canada, il est démontré que les différences dans la variance du DHP peuvent être
substantielles selon la taille des placettes. De plus, les corrélations de taille entre les arbres voisins sont positives et non
négatives comme l’assument les modèles actuels de croissance qui sont dépendants des distances. Des biais ont aussi été
trouvés dans le cas du DHP moyen. Il est démontré que les totaux et les fréquences dans les placettes sont des estimations
non biaisées des paramètres de peuplement mais que les variances et d’autres paramètres statistiques le sont. La variance
attendue est exprimée en termes de taille et de forme de placette, ainsi que de propriétés de second ordre quant à la
structure du peuplement. Certaines approches permettant de réduire les biais dans l’estimation des variances à l’échelle du
peuplement sont abordées et l’opportunité de modéliser la corrélation spatiale d’ordre génétique ou à l’échelle du microsite
dans les simulateurs d’arbres est soulignée.

[Traduit par la Rédaction]

1. Introduction

Distributions of tree sizes, especially of diameter at breast
height (DBH), have been extensively studied and used in forestry
at least since the time of de Liocourt (1898). A search for di-
ameter or DBH distribution(s) in the TREECD database (now
the Forest Science Database; http://www.cabi-publishing.org/
AbstractDatabases.asp?SubjectArea=&PID=114) for February
2000 to October 2004 returns 938 literature references. Dis-
tributions are estimated on sample plots and are used in pre-
dicting tree growth, as well as to estimate the yield in forest
products of various types and sizes. Only a few studies, how-
ever, have questioned the applicability of plot-level estimates
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to spatial scales ranging from patches of competing trees to
entire stands or compartments (Magnussen 1989; García 1992;
Fox et al. 2001). Some authors have noted effects of plot size
on individual-tree growth model estimates, but attributed them
to error-variables regression biases (Jaakkola 1967; Stage and
Wykoff 1998; Hynynen and Ojansuu 2003; Lappi 2005).

Distance-independent, individual-tree growth models
(Munro 1974; Vanclay 1994) ignore spatial structure and area
effects. Competition indices in distance-dependent models in-
duce negative size correlations among nearby trees, causing
size variability to be higher in smaller plots than in larger plots.
On the other hand, as asserted by a reviewer, it may be “intu-
itively clear” that variability in larger areas tends to be higher
than in smaller areas, as larger areas have a greater probability
of including different conditions. In fact, both situations occur,
possibly with one or the other dominating over different spa-
tial scales, or changing with the age of the stand (Matérn 1960;
Bachacou and Decourt 1976; Kenkel et al. 1989; Magnussen
1989; García 1992).
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Fig. 1. Mapped tree locations for the four data sets. Dashed lines show the 10 m grid. In the spruce, some regeneration seems to have
concentrated on or around fallen stems.

Table 1. Statistics for the mapped data.

Site code BOREAS I.D. Species Trees per hectare Basal area (m2/ha) Arith. mean DBH (cm)

NP NSA-OJP Jack pine 1507 15.3 10.9
NS NSA-OBS Black spruce 4787 35.4 9.1
SA SSA-9OA Aspen 983 37.5 21.6
SP SSA-OJP Jack pine 1403 18.6 12.4
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To be specific, this paper focusses mainly on DBH variances
estimated on single random plots. The variance turns out to be
mathematically tractable, with explicit results, but qualitatively
similar conclusions can be expected for other distribution char-
acteristics like higher moments, quantiles, and many fitted dis-
tribution model parameters. Some of the results, although gen-
erally ignored in growth modelling, may seem obvious to forest
inventory specialists. Unlike in inventory, however, single-plot
estimates are normally used; later in this paper is a discussion of
methods applicable in the infrequent instances when a number
of random plots in the same stand are available. Moreover, in-
ventory and survey sampling deal mostly with estimating means
or totals. The estimation of population variances (as opposed
to the variance of estimators) is not treated in the standard lit-
erature, therefore, the relevant theory is presented here in some
detail. There are important differences: (i) a plot’s basal area
per hectare is an unbiased estimate of the population value,
while in general the DBH variance is not. (ii) In design-based
inference, spatial correlation is irrelevant for the estimation of
means and totals (Gregoire 1998), but it affects the estimation
of more complex quantities such as variances.

In the first part of the article, mapped tree data are used
to quantify the magnitude of spatial scale effects. There were
substantial area-related differences in DBH variance owing to
the spatial correlation of tree diameters. It was also found that
single-plot means per tree can systematically overestimate the
stand average, although the relative bias is generally smaller
and the underlying causes are different. The sampling theory is
developed in the second part. It is shown that linear functions
of individual tree values, e.g., sums per hectare (and even stand
tables) are estimated without bias by the respective plot statis-
tics. But in the presence of spatial correlation, the expectations
of nonlinear functions differ, as is the case of variances. The
expected plot variance is related to the variogram, and graphs
of expectation over plot size for the field data are calculated.
Finally, some possible bias reduction approaches are discussed.

2. Empirical results

2.1. Data

The example data are from the Boreal Ecosystem–Atmosphere
Study (BOREAS), an intensive remote-sensing and field study
in central Canada focusing on exchanges of energy, water, heat,
CO2 and trace gases between the boreal forest and the at-
mosphere (Rich and Fournier 1999). Four same-size, single-
species plots are available. Coordinates, DBH, and other vari-
ables were measured for all trees taller than 2 m on a 50 m ×

60 m area, subdivided in the field into subplots on a 10 m grid.
Dead trees were ignored (Fig. 1).

Site characteristics and their BOREAS TE-23 identifiers are
listed in Table 1. NSA and SSA refer to the northern study
area in Manitoba and the southern study area in Saskatchewan,
respectively. The forests are described as old jack pine (OJP),
old black spruce (OBS), and old aspen (OA).

For the purposes of this paper, each of the four data sets
are referred to as a site, a stand, or total area, and plot is any
contiguous subset of trees. In particular, the next two sections
deal with the thirty 10 m × 10 m plots.

Table 2. Total and plot DBH variances.

Site Total (cm2) Plot (cm2) Ratio

Pine, north (NP) 10.16 8.56 0.84
Spruce (NS) 10.74 10.22 0.95
Aspen (SA) 18.41 13.25 0.72
Pine, south (SP) 13.51 10.28 0.76

Note: Plot values are the means of 30 plot variances.

Table 3. Results of randomization tests for no
spatial structure effects on plot variance.

Site Observed Perm. range p value

NP 8.56 8.81–11.66 <10−5

NS 10.22 10.10–11.44 2 × 10−4

SA 13.25 14.75–26.04 <10−5

SP 10.28 11.09–16.29 <10−5

Note: From 100 000 permutations.

2.2. Plot versus total variances
Calculated finite-population total and plot variances are com-

pared in Table 2. Plot values are means over the 30 plots.
Subplot to plot variance ratios can serve as indicators of spa-

tial structure, as suggested for point processes by Diggle (1979).
Unlike in the theory of point processes, here spatial structure
does not refer to the pattern of tree locations, but to the spa-
tial relationships of tree size conditional on the tree positions.
If competition causes neighbouring tree sizes to differ more
than in the stand average, one would expect ratios >1 for small
subplots. If the effect of microsite or genetic similarities pre-
dominates, ratios would be <1. Other examples of variance
ratios are given by García (1992, 1998) and García and Batho
(2005).

These within-plot variances are related to the between-plot
variances used in forest inventory (although the contexts are
different). Let yij denote the size of tree i in plot j . Sums of
squares can be partitioned according to the following analysis
of variance (ANOVA)

df SS MSS
Within N − m

∑m
j

∑nj

i (yij − ȳj )
2 S2

w

Between m − 1
∑m

j nj (ȳj − ȳ)2 n̄S2
b

Total N − 1
∑m

j

∑nj

i (yij − ȳ)2 S2

(García 1992; Cochran 1963, for fixed nj ). Here S2 is the total

site variance for a total of N trees and S2
w is the mean vari-

ance within the m = 30 plots (slightly different from those in
Table 2 in that S2

w is weighted by degrees of freedom). It is
seen that the within-plot variance has a counterpart in S2

b , the

variance of the plot means. Although the plot size effect on S2
w

has been largely ignored, the effect on S2
b is well-known (e.g.,

Whittle 1956; Cochran 1963; Sukhatme and Sukhatme 1970).
In forest inventory S2

b is usually (but not always) found to be
larger than S2/n, the expected value in the absence of spatial
structure (Matérn 1960; Loetsch and Haller 1964; Magnussen
1989; García 1992).
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Table 4. Total and plot DBH means.

Site Total (cm) Plot (cm) Perm. range (cm) p value

NP 10.92 11.38 10.70–11.15 <10−5

NS 9.13 9.40 8.99–9.28 <10−5

SA 21.63 22.01 21.18–22.18 0.048
SP 12.45 12.98 12.09–12.81 <10−5

Note: Plot values are the average of 30 plot means. Randomization
tests were based on 100 000 simulations.

The statistical significance of the variance differences in Ta-
ble 2 can be assessed in at least two ways. A “within” to “be-
tween” mean square ratio, with an asymptotic F distribution
under the hypothesis of no spatial structure, can be computed
from the ANOVA table above. This produced p values ranging
from 2 × 10−21 for NS to 4 × 10−13 for SA. Alternatively, a
nonparametric randomization test can be performed by calcu-
lating the mean plot variances after permuting at random the
diameters among the tree locations. A p value is computed as
the proportion of values smaller than the observed one. Results
are shown in Table 3. In addition, the simulations confirmed
that in the absence of spatial structure the plot and total vari-
ances are the same, with the mean of the simulations and the
observed values agreeing to two or three decimal places.

2.3. Means
Plot means were also significantly different from the overall

means (Table 4). In typical growth modelling applications, a
single-plot mean is calculated; the tabulated plot values repre-
sent an average of these under repeated sampling.

A plot mean is the ratio of a sum of diameters and a tree count,
both random variables under sampling. It is therefore biased as
an estimate of the population mean per tree. With several plots
and proper weighting, the bias is generally assumed to be unim-
portant (Cochran 1963; Sukhatme and Sukhatme 1970), but in
this instance the ratio sample size is one. The approximately
5% difference seems to be caused by the negative correlation
between DBH and local stand density (Fig. 2). In the random-
ization tests, where this correlation does not exist, there was
practically no difference.

2.4. Short-range variability
A measure of size variability more relevant to tree growth

might consider size differences among interacting trees, rather
than those over entire plots or stands. The following identity is
used for the variance

[1] S2 ≡

∑
(Yi − Ȳ )2

N − 1
=

∑
i

∑
j (Yi − Yj )

2

2N(N − 1)

=

∑
i<j (Yi − Yj )

2

N(N − 1)

The variance is seen as a mean of squared differences between
pairs of data points. It seems reasonable to measure short-range
variability by a similar mean, but restricted to pairs of competing
or neighbouring trees.

To define neighbours, Brown’s area potentially available
(APA, Brown 1965) was used. A tree APA contains the ground
points that are closer to that tree than to any other tree (Fig. 3).

Table 5. DBH variability among neighbouring trees.

Site Total (cm2) Plot (cm2) Neighbours (cm2)

NP 10.16 7.63 7.27
NS 10.74 9.74 9.82
SA 18.41 13.25 14.72
SP 13.51 10.41 9.95

The APAs are also known as Dirichlet cells, and their bound-
aries as Voronoi or Thiessen polygons (Aurenhammer 1991).
Neighbours are those trees that share a polygon side; they are
joined by lines in the Delaunay triangulation (Fig. 3).

The triangulations were computed with Fortune’s algorithm
from Netlib (http://www.netlib.org/voronoi/sweep2). Pairs on
the outside boundary were excluded from eq. 1 to reduce edge
effects.The neighbour variances are compared with the total and
plot variances in Table 5. They are close to the plot variances,
as might be expected from the small plot size, but considerably
lower than the total.

Ii is also interesting to examine the correlation of neigh-
bouring tree diameters. A direct calculation gives 0.31, 0.10,
0.23, and 0.27, for NP, NS, SA, and SP, respectively. Neighbour
sizes are positively correlated here, contrary to the assumption
in distance-dependent models. Similarly, Kenkel et al. (1989),
among others, have found positive DBH spatial correlations.
This might help in explaining why competition indices often
do not predict increments better than simple nonspatial stand
density measures (e.g. Lorimer 1983; Martin and Ek 1984; Bar-
clay and Layton 1990; Vanclay 1994, p. 61, 69, and 159).

3. Theory

3.1. Inference
The relationship between size distributions and spatial struc-

ture can be studied through spatial statistical models (Matérn
1960; Whittle 1956; Ripley 1981; Magnussen 1989), or through
classical finite population sampling methods (Cochran 1963;
Sukhatme and Sukhatme 1970); that is, using model- or design-
based inference (Gregoire 1998). In the spirit of Matheron’s
“transitive methods”, the second approach was used, “to see
how far it is possible to go without appealing to [hypothetical
probabilistic interpretations]” (Matheron 1971). The popula-
tion is fixed, and the population distribution is the discrete one
giving equal weights to the population items.

A comparison and evaluation of model- and design-based
inference is outside the scope of this article. It may be use-
ful, however, to point out that many misunderstandings seem
to arise from the fact that the nature of the statistical infer-
ence involved is quite different. In model-based approaches,
the inference is about parameters of an assumed model, given
the observed sample; if the model is “true”, that reflects on the
population. Design-based inference focuses instead on the long-
run properties of a sampling strategy (sampling design plus es-
timator) under repeated sampling. If the strategy has “good”
properties in the long run, its application to a particular sample
is likely to produce good results. In other words, design-based
inference looks at repeated sampling from a fixed population,
while model-based inference is based on one observed sample
from a hypothetical “random” population.

© 2006 NRC Canada
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Fig. 2. Relationship between plot DBH and density.
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Fig. 3. Voronoi tessellation (bottom) and Delaunay triangulation (top) for the NP data set.

© 2006 NRC Canada



García 2989

In what follows, no assumptions are made about tree sizes or
spatial patterns. Population properties such as distributions or
variograms refer to the real (finite) population, not to a model.
The only source of probability is the random location of sample
plots.

3.2. A counterexample
Some of the lack of awareness about the effects of spatial

structure on size distributions might be caused by taking cer-
tain statements out of context. For instance, in reviewing the
literature, Gregoire (1998) says that under design-based infer-
ence “spatial correlation is an irrelevant issue” (p. 1433), and he
comments repeatedly on the irrelevance of spatial structure and
of pairwise inclusion probabilities. This is perfectly true under
his stated objective of estimating totals. It is not true, however,
for estimates of more complex quantities such as population
variances, fitted distribution parameters, or order statistics. This
can be proven with a simple counterexample where exact cal-
culations are possible.

Consider a row of trees at 1 m spacing, with sizes alternating
between 1 and 3: . . . 1 3 1 3 1 3 1 3 . . .. The population may
extend indefinitely in both directions, or one may think of an
even number N of trees arranged in a circle. The mean is clearly
2. The deviations from the mean are either 1 or −1, so that
the infinite population variance, i. e., the mean of the squared
deviations, is 1; for a finite population the variance is N/(N−1).

It can be shown that if trees are selected independently at
random, the expected sample variance equals that of the pop-
ulation. Consider, however, a single one-dimensional sample
“plot” n metres long, containing n contiguous trees. If n is even,
there is only one possible outcome, an equal number of ones
and threes. The sample mean is then 2, and the sample variance
is n/(n − 1). If n is odd, we have to average over two possible
patterns; the expected sample mean is again 2, and the expected
sample variance turns out to be (n + 1)/n in both cases. The
calculated sample variances for the first few plot sizes are

n 2 3 4 5 6 7 … ∞

s2 2.00 1.33 1.33 1.20 1.20 1.14 … 1.00

The differences in variance are due to the spatial correlation
and to the pairwise inclusion probabilities changing with the
distance between trees. As seen in sections 2.3 and 3.4, even
the means are affected by spatial structure when n varies.

3.3. General sampling relationships
Using customary notation, let a sample (y1, y2, . . . , yn) be

selected from a population (Y1, Y2, . . . , YN ) under a sampling
design with inclusion probabilities πi and pairwise inclusion
probabilities πij . That is, πi is the probability of the population
element i appearing in the sample and πij is the probability
of observing both i and j . For instance, the Yi may be tree
diameters, and the sample may be the list of diameters in a
sample plot. The sample size n may be fixed, as in the previous
example and in the lattice plantations of Magnussen (1989), or
may vary across samples, as in the BOREAS plots.

For any function g, the expected value of a sample sum is

[2] E

[
n∑

i=1

g (yi)

]
=

N∑

i=1

πig (Yi)

Similarly, for any two-variable function g

[3] E




n∑

i=1

n∑

j=1

g
(
yi, yj

)

 =

N∑

i=1

N∑

j=1

πijg
(
Yi, Yj

)

Stuart (1963) gives these relationships for the case of fixed n,
but they are also valid for variable n: let αi be 1 if element i is
in the sample, and 0 otherwise; then, the left-hand side of eq. 2
is

E

[
n∑

i=1

g (yi)

]
= E

[
N∑

i=1

αig (Yi)

]

=

N∑

i=1

E [αi] g (Yi) =

N∑

i=1

πig (Yi)

The proof of eq. 3 is analogous.
Making g = 1 and noting that πii = πi , it is found that

[4]
N∑

i=1

πi = E[n],

N∑

i<j

πij = E[n(n − 1)/2]

extending the formulae in Cochran (1963) and Stuart (1963) to
variable n.

If all πi �= 0, the substitution g → g/πi in eq. 2 gives the
Horvitz–Thompson estimator for variable-probability sampling

E

[
n∑

i=1

g (yi) /πi

]
=

N∑

i=1

g (Yi)

That is, an average weighted by the inverse inclusion probabili-
ties is an unbiased estimate of the population total.An analogous
result obtained from eq. 3 will be useful later

[5] E




n∑

i=1

n∑

j=1

g
(
yi, yj

)
/πij


 =

N∑

i=1

N∑

j=1

g
(
Yi, Yj

)

Note also the special cases

[6] E

[
n∑

i=1

1/πi

]
= N, E




n∑

i<j

1/πij


 = N(N −1)/2

As pointed out by Fellegi in the discussion to Stuart (1963),
much of finite population sampling theory can be obtained as
special cases of the above by substituting the inclusion proba-
bilities appropriate to each sampling design.

3.4. Estimating totals, means, and frequencies
There are two common models for fixed-size plot sampling

in forest inventory, let us call them models I and II. Model I
assumes that the possible sample plots, typically square or rect-
angular, constitute a tessellation of the whole sampled region,
as in the examples of section 2 (Loetsch and Haller 1964; Husch
et al. 2003). The classical cluster sampling (more specifically
area sampling) theory applies (Cochran 1963; Sukhatme and
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Sukhatme 1970). In model II, plots are located uniformly at
random anywhere within the region (e.g., Gregoire 1998). With
typical inventory sample sizes both models lead to similar nu-
merical results. Assume that edge effects are negligible or that
they are taken care of in an appropriate way.

In both models, the probability of any tree being included in
a plot of area a is the same, πi = a/A, where A is the area
of the sampled region. It follows from eq. 2 that any total per
unit area is estimated without bias by the corresponding plot
quantity.

Apart from quantities such as basal area per hectare (g(Yi) ∝

Y 2
i ), by choosing the appropriate g one obtains less obvious

cases. With g(Yi) = 1 for all Yi , it is seen that the number
of trees per unit area is unbiased. The population distribution
function on an area basis, i.e., the number F(z) of trees per
hectare smaller than or equal to z, can be written in terms of the
indicator function

I (y, z) =

{
1 if y ≤ z

0 otherwise

as

F(z) =
1

A

N∑

i=1

I (Yi, z)

Making g(Yi) = I (Yi, z) shows that the expected value of the
corresponding sample distribution function per unit area equals
that of the population for any z. Any linear function of F(z) is
also estimated without bias, in particular, the numbers of trees
per hectare by size classes (stand tables).

Unless n is fixed, however, plot sample means per tree are bi-
ased as estimates of the population mean; they correspond to the
estimation of a ratio (Cochran 1963; Sukhatme and Sukhatme
1970). The bias is related to the variability and to the correla-
tion between the numerator and denominator (Sukhatme and
Sukhatme 1970, sections 4.3–4.4) and, as seen in the examples,
it can be appreciable. Where n is less variable, as in managed
stands and (or) larger plots, the bias might not be important.

3.5. Variances
A good approximation to the expected plot variance for dif-

ferent plot sizes can be calculated without resorting to extensive
simulations.

By taking g(Yi, Yj ) = (Yi − Yj )
2, eqs. 1 and 3 give

E
[
s2

]
= E

[∑n
i=1

∑n
j=1

(
yi − yj

)2

2n(n − 1)

]

≈
E

[∑n
i=1

∑n
j=1

(
yi − yj

)2
]

2E[n(n − 1)]

=

∑N
i=1

∑N
j=1 πij

(
Yi − Yj

)2

2E[n(n − 1)]

and from eq. 4,

[7] E
[
s2

]
≈

∑

i<j

πij

(
Yi − Yj

)2
/2

∑

i<j

πij

Sums in eq. 7 are over all the pairs of trees in the population.
The approximation of the expected ratio by the ratio of expecta-
tions can be good because, unlike in section 2.3, no appreciable
correlation between plot variances and numbers of trees is ob-
served.

Under both models I and II, the πij vary strongly with the
distance between trees i and j . In particular, a model I random
sample plot can only contain pairs belonging to a same tile
of the tessellation of the stand into plots; πij is 0 otherwise.
García (1992) relates model I sample variances to intracluster
correlations. Here, the case of one circular sample plot under
model II is further analyzed.

Obviously, pairs of trees further apart than the plot diameter
D can not appear in the sample. Otherwise, it is seen that a pair
would be included in any plot whose centre lies within the inter-
section of two circles of diameter D centred at the tree locations
(Fig. 4). Therefore, ignoring any edge effects, the pairwise in-
clusion probability πij is proportional to the overlap of a circle
of diameter D and a copy of it displaced by the intertree distance
dij . For any figure this is called a distance function by Matérn
(1960), a geometrical covariogram by Matheron (1971), or a
set covariance function by Stoyan and Stoyan (1994). For the
circle it depends only on the distance and circle size

[8] K(d, D) =
D2

2


arccos

d

D
−

d

D

√

1 −

(
d

D

)2



if d < D, 0 otherwise

The squared differences in eq. 7, as a function of distance,
correspond to the population variogram (or semivariogram)

[9] γ (dij ) = E
[(

Yi − Yj

)2
]
/2

(e.g., Venables and Ripley 2002). The expectation is an average
over any repeated distances. Variograms for the example data
sets are shown in Fig. 5, with distances rounded to the nearest
metre.

Equation 7 can therefore be written in terms of the set co-
variance function and the variogram

[10] E[s2] ≈

∑

i<j

K(dij , D)γ (dij )

∑

i<j

K(dij , D)

For our purposes, computation is simplified by omitting the
expectation in eq. 9, and by including only the pairs with dij <
D.

Figure 6 shows the results for the BOREAS example data
sets. The approach can be extended to rectangular or other plot
shapes, with fixed or random plot orientation. Similar calcula-
tions for the between-plots variance might be useful in forest
inventory design.

As an alternative to the variogram, spatial structure is of-
ten described by autocovariance or autocorrelation functions.
These are related by

variogram = variance − autocovariance

= variance × (1 − autocorrelation)
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Fig. 4. Plots with centres in the shaded region include the pair of trees i and j . The shaded area K for plots of diameter D is shown in
the graph and in eq. 8 as a function of the intertree distance d .

Figure 5 shows positive autocorrelations, that can be inter-
preted as microsite or genetic autocorrelations masking any
competition effects. Competition is apparent in SP, where the
variance decreases over a range of small plot sizes. Bachacou
and Decourt (1976) and García (1992) give examples of nega-
tive short-range autocorrelations where competition dominates.
In these, the variance for small plots can be higher than the stand
variance.

4. Bias reduction

When there are several independent sample plots it is possible
to reduce the bias in population estimates. For means per tree,
the ratio of the sum over all plots to the total number of observed
trees is preferred to the average of the individual plot estimates
(Cochran 1963; Sukhatme and Sukhatme 1970).

García (1992) derives anANOVA-based nearly unbiased vari-
ance estimator under inventory model I. For model II one can
use the analogue of the Horwitz–Thompson estimator in eq. 5.
From eq. 5

E




n∑

i<j

(
yi − yj

)2
/πij




=
1

2
E




n∑

i=1

n∑

j=1

(
yi − yj

)2
/πij




=
1

2

N∑

i=1

N∑

j=1

(
Yi − Yj

)2

Therefore, using eq. 6

[11] Ŝ2 =
1

2

n∑

i<j

(
yi − yj

)2
/πij

n∑

i<j

1/πij

is a nearly unbiased estimator of the population variance (eq. 1).
It is found that the inclusion probabilities are, ignoring any

edge effects

πi = 1 − (1 − a/A)m[12]

πij = 1 − 2(1 − a/A)m + (1 − 2a/A + Kij/A)m

where a is the area of each of m plots selected over an area A
and Kij is the value of the plot set covariance function for the
distance between trees i and j (e.g., eq. 8 for circular plots).

The method is not directly applicable to single plots because
in that case the inclusion probabilities are zero for pairs of trees
further apart than the plot diameter. However, a truncated ver-
sion of eq. 11, neglecting autocorrelation at larger distances,
might be useful. The truncation point could be chosen to try
to balance bias and precision. Details would require further re-
search.

5. Conclusions

The marginal sampling distribution for single-tree values
from random sample plots is the same as the population dis-
tribution. Therefore, plot calculations of totals per hectare, fre-
quencies, and other linear functions of the distribution function
are unbiased estimates of the corresponding population values.
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Fig. 5. DBH variograms with distances grouped in 1 m classes.
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Fig. 6. Calculated circular plot variance for varying plot size.

However, values for different trees in a plot are not statistically
independent, and their joint distribution varies with plot size
and stand spatial structure. Hence, the expectation of quantities
involving nonlinear functions of values from several trees will

vary. These include variances, higher moments, order statistics,
and most fitted distribution parameters. In the simple case of the
variance, which involves squared differences for pairs of trees,
the expectation can be expressed in terms of plot size and shape
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and of second-order spatial structure properties. In practical
situations, the differences across plot sizes can be substantial.

The fact that a full distribution function can be estimated
without bias, but statistics calculated from it are biased, can
be counterintuitive. This may have contributed to the neglect
of these limitations of DBH and other size distributions in the
literature.

Expected means per tree derived from plot data also vary with
plot size, although for a different reason. The differences might
be important for small plots and natural stands with irregular
spatial patterns.

Bias in estimating stand-level variances can be largely elimi-
nated if several random plots are available in the stand. Related
methods might be useful with single plots.

Field observations contradict current individual-tree growth
model assumptions about short-range spatial structure and
tree interactions. It should be possible to obtain more realis-
tic distance-dependent simulations by incorporating microsite,
and in some instances genetic, spatial correlations.
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