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Abstract

Tree-ring analysis can be used to estimate growth in forest inven-
tory, and to supplement or replace permanent sample plot data in the
development of growth models. Costs can be reduced by measuring
growth rings in a carefully selected subset of the trees in a plot, making
use of the information on current tree size. Efficient sampling strate-
gies for estimating past basal area were investigated by simulation with
permanent sample plot data.
Combinations of simple random, stratified, and variable probability

sampling with minimum variance unbiased, ratio, and regression esti-
mators were tested, as well as a method based on order statistics from
the Weibull distribution. Best results were obtained with a variable
probability sampling procedure related to systematic sampling.

1 Introduction

Growth ring measurements are widely used in forest management. Mea-
surements can be made at breast height, on increment cores or cut cross-
sections, to determine past basal areas or diameters at breast height. A full
stem analysis can provide information on taper, volumes, and heights.

In forest inventories, increment cores are often used to estimate growth.
Because of the cost, cores are commonly taken only from a subset of the sam-
ple plot trees. This sub-sampling is usually random, or a uniform covering
of the full diameter range is attempted (a kind of stratification).

Growth models for managed stands can be developed using pairs of con-
secutive measurements of stand variables such as basal area per hectare,
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stems per hectare, and mean top height. The availability of long series of
permanent plot measurements, although desirable, is not essential (Garćıa
1988a, 1988b). Under certain circumstances, this kind of data can be reli-
ably derived from tree-ring measurements (P. L. Wilcox, 1987 unpublished).
Information obtained by this method has been used to supplement a perma-
nent sample plot data base in a model for radiata pine in Canterbury, New
Zealand (M. E. Lawrence 1988 unpublished, P. L. Wilcox 1990 unpublished,
Garćıa 1988a). The extraction and analysis of several increment cores from
each tree in a plot, however, was expensive and time-consuming.

Usually, individual tree diameters or basal areas at two points in time
are highly correlated. This fact could be exploited to improve the estimation
of past stand basal area from tree-ring samples. Knowledge of the current
diameters can be used to select the sample trees, to improve the estimators,
or both. A preliminary simulation study was carried out to compare esti-
mation methods, and to assess the likely gains from using current diameter
information.

Pairs of permanent sample plot measurements were used. The objective
was to estimate the past basal area for the trees alive at the second mea-
surement. To obtain the past plot basal area it would be necessary to add
the basal area of any dead trees; in most situations their increment can be
safely ignored. Strategies for the joint estimation of basal area and height
or other variables were not considered.

The next section describes the data used. Then, several sampling/estimation
methods from classical survey sampling theory, and one method based on or-
der statistics are discussed. These correspond to “model independent” and
“model dependent” methods, respectively (Hansen et al. 1983). Simulation
details, results and conclusions follow.

2 Data

Measurements were obtained from the Forest Research Institute permanent
sample plot (PSP) database (Pilaar and Dunlop 1990). Radiata pine plots
established according to the specifications described by Tennent (1988) were
used. These are variable-area plots, designed to include a similar number
of final crop trees. Sixty pairs of measurements separated by 2 years, and
sixty separated by 6 years (with no thinnings between them) were taken at
random from the whole database. Since some of the plots had as little as
10 trees, the 10 plots with the smallest numbers of trees were then deleted
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Table 1: Data (“current” values)
2-yr intervals 6-yr intervals

Mean Min. Max. Mean Min. Max.
Age (years) 17.1 7 33 22.2 13 38
Stems per hectare 0 0 0 0 0 0
Basal area (m2/ha) 0 0 0 0 0 0
Mean dbh (cm) 36.1 8.2 57.7 44.5 24.9 65.4
Dbh increment (cm) 4.0 1.3 7.7 9.8 4.1 20.9
Plot size (m2) 0 0 0 0 0 0
Trees per plot 35.8 17 111 37.9 21 83

(at random if necessary), leaving 50 plots for each interval length. Some
characteristics of the selected data are given in Table 1.

Tree basal areas calculated from the diameters at breast height (dbh)
over bark were used. This differs from ring measurements, where diameters
under bark would be obtained and bark thickness would be estimated from
regression equations. The errors in deriving dbh from radial measurements
in increment cores or stem cross-sections are also different from those arising
from diameter tape measuring. These differences, however, are unlikely to
affect the comparison of sampling strategies.

3 Probability-sampling methods

Knowing the current dbh (and tree basal areas) of all the trees in a plot, we
want to estimate their total basal area at some point in the past by ascer-
taining the past basal areas in a subset of them. Probability-sampling is a
commonly-used approach to this type of problem (Cochran 1977, Sukhatme
and Sukhatme 1970). Randomization is used to minimize any dependency
of the inferences on models or assumptions about the population, although
models and prior knowledge are used to achieve efficient sample designs
(Hansen et al. 1983).

The sampling design has two parts, a sampling plan that determines the
selection probabilities of the potential samples, and an inference procedure
which here is a point estimator. Ancillary information, in this case the
current dbh values, can be used in the sampling plan, in the estimator, or
in both. I tested combinations of simple-random, stratified, and variable-
probability sampling, with minimum variance unbiased, ratio, and regression
estimators. In general, the methods were chosen as those likely to be the

3



most efficient. The availability of sample-based error estimators was not a
consideration, since this is not so important in this application, and error
estimates based on very small samples would not be reliable anyway.

The estimators will be given as generalized expressions in terms of the
sampling plan inclusion probabilities. This simplifies the presentation by
treating all combinations of sampling plan and estimator in a unified way.
Variables in the population (plot) are denoted by upper case letters, and
variables in the sample by lower case.

3.1 Sampling plans

3.1.1 Simple random sampling (SRS)

A sample of n trees is selected with equal probabilities and without replace-
ment from the N trees in the plot. The past basal areas y1, . . . , yn are
measured.

The probability of the i-th tree appearing in the sample (inclusion proba-
bility) is πi = n/N . The joint inclusion probabilities, that is the probabilities
of both trees i and j appearing in the sample, can be used to compute the
variance of estimators. These are πij =

n(n−1)
N(N−1) .

3.1.2 Stratification (STR)

The data shows that there is usually a close proportionality relationship
between the past tree basal area Yi and the current basal area Xi. One way
of making use of this ancillary information is to divide the population into
strata defined by intervals of the variable X, such that the aggregate values
of the X variable are approximately the same for each stratum (Hansen
et al. 1983). This corresponds to the Ekman rule for approximately optimal
stratification, which is known to perform consistently well (Cochran 1977,
Sukhatme and Sukhatme 1970). For maximum efficiency the stratification
was carried out down to one observation per stratum.

The specific procedure was as follows. The N trees were sorted according
to increasing values of Xi, and the values were accumulated. The range of
the accumulated X was subdivided into n equal intervals. The strata were
then formed by shifting the interval boundaries to the nearest accumulated
Xi value. One tree was selected at random, with equal probabilities, within
each stratum.

Trees with a value of X larger than the interval size
∑

Xi/n were placed
in a separate stratum by themselves (i. e. sampled with probability 1), and
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the procedure just described was then applied to the remaining trees and
sample size. This only happened in one plot, for the largest sample size.

The inclusion probabilities are clearly πi = 1/Nh, where Nhi
is the num-

ber of trees in the stratum containing tree i. The joint selection probabilities
are πij = 1/(Nhi

Nhj
) if trees i and j are in different strata, and zero other-

wise.

3.1.3 Systematic with probability proportional to prediction (SP3)

Another way of using ancillary information in the sampling plan is with
variable probability sampling (Sukhatme and Sukhatme 1970, Chapter II).
If the inclusion probabilities were proportional to the Yi, the mean could
be estimated with zero variance. Of course, this is not possible without
knowing Yi, but if it is predicted that the Yi are approximately proportional
to the Xi, sampling with probability proportional to Xi can be expected to
be efficient.

There are a number of schemes that could be used for sampling with
probability proportional to X. A simple one is to sample with replacement.
Another is 3-P sampling, developed by Grosenbaugh for forest inventories
(Grosenbaugh 1965). These two procedures have the inconvenient here that
the number of trees to be measured would be a random variable. A method
suggested by Madow produces samples of fixed size with specified inclusion
probabilities, is likely to be more efficient, and is easy to use (Sukhatme and
Sukhatme 1970, Cochran 1977, Schreuder et al. 1971).

Madow’s method is a kind of systematic sampling from the cumulated
Xi. A sampling interval L =

∑N
1 Xi/n was calculated, and a starting point

s was selected at random between 0 and L. The N values of Xi were
accumulated, and the first trees whose accumulated X values exceeded each
of the numbers s, s+L, s+2L, . . . , s+(n−1)L were taken as the sample. This
procedure produces a sample of size n with probabilities proportional to X
without replacement, provided that the largest of the Xi does not exceed L.
As in the STR sampling plan, and as suggested by Schreuder et al. (1971),
trees larger than L were placed in a separate stratum and sampled with
probability 1.

The individual inclusion probabilities (for Xi ≤ L) are πi = nXi/
∑

Xj .
The exact joint inclusion probabilities are complicated, and have been given
by Connor (1966). The theoretical analysis is easier for a variant of the
method, where the units are arranged at random before the accumulation.
However, if the trees are considered in the order in which they are visited
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in the plot it is possible to approximate this sampling plan without having
to list and number the trees (Schreuder et al. 1971). Although tree sizes are
related to their locations (Garćıa 1991), the effect of the random ordering
would probably be small. In the simulations the trees were taken in the
order of their PSP numbers, which is typical of the order in which they
might be visited in the field.

3.1.4 Ordered systematic with probability proportional to pre-
diction (OSP3)

This is similar to SP3, except that the trees are sorted in increasing order of
X before sampling. The method has been analyzed by Hartley (1966), and
usually leads to more efficient estimates. Listing and numbering of all the
trees before selection is required, however.

3.2 Estimators

I discuss estimation of the mean past basal area Ȳ =
∑N

1 Yi/N . The plot
basal area estimate is obtained multiplying by the known number of trees
N .

The estimator equations are given here in terms of the inclusion prob-
abilities πi. Thus they can be applied in a uniform way to any sampling
plan.

3.2.1 Minimum variance unbiased (MVU)

The minimum variance unbiased estimator for the mean with variable prob-
ability sampling is the Horwitz-Thompson estimator:

ˆ̄Y =
1

N

n
∑

1

yi

πi
.

With SRS and STR this gives the usual unbiased estimators after substitut-
ing the inclusion probabilities given previously.

Expressions for the sampling variance in terms of the πij are given by
Sukhatme and Sukhatme (1970) and Cochran (1977). Sample-based unbi-
ased estimates of the variance are available when none of the πij is zero (this
is not the case for STR, SP3 or OSP3).
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3.2.2 Ratio (RAT)

Ratio estimators attempt to improve estimation efficiency by making use
of an assumed proportionality relationship between the variable of interest
(Y ) and some ancillary variable (X). They are slightly biased, but can be
much more efficient than the UMV estimator. Only large-sample variance
approximations are available.

For sampling with variable probabilities, a generalized ratio estimator
based on “π-inverse weighting” is

ˆ̄Y =

∑

yi/πi
∑

xi/πi
X̄,

where X̄ =
∑

Xi/N is the population mean (Särndal 1980).
With the SRS and STR sampling plans this estimator reduces to the

ordinary ratio estimator, and to the combined ratio estimator, respectively.
With SP3 and OSP3 it coincides with the UMV estimator.

3.2.3 Regression (REG)

If there is an approximately linear relationship between X and Y , but with
a non-zero intercept, a regression estimator can be preferable. From Särndal
(1980), a π-inverse weighted regression estimator can be written as

ˆ̄Y = ỹ + β̂(X̂ − x̃),

where

x̃ =

∑

xi/πi
∑

1/πi
, ỹ =

∑

yi/πi
∑

1/πi
,

and

β̂ =

∑

(xi − x̃)(yi − ỹ)/πi
∑

(xi − x̃)2/πi
.

With SRS this gives the usual regression estimator. For stratified sampling
this differs from the classical regression estimators given by Cochran (1977)
and Sukhatme and Sukhatme (1970), but (Särndal 1980) points out that
it is in line with the approach of other authors. The classical estimators
cannot be used with one sample tree per stratum, as in STR.

7



4 A model-dependent approach

Given a probability distribution, good location and scale parameter esti-
mates can often be obtained from just a few properly chosen order statistics
(Zacks 1971, Chan and Cheng 1988). For example, for a family of contin-
uous distributions of the form F [(x − µ)/σ], the location (µ) and scale (σ)
parameters may be estimated by linear combinations of any subset of or-
der statistics. Coefficients can be obtained to produce estimates that are
best linear unbiased (BLUE) or “asymptotically best linear” (ABLE, almost
BLUE for large samples). For any subset size, the ranks of the selected order
statistics can be chosen to maximize the efficiency of the estimators (Chan
and Cheng 1988).

Assume that the past tree basal area distribution can be modelled by
some continuous probability function, so that the past N basal areas are a
random sample from it. Assume also that growth preserves the dbh rank-
ings, so that the ordering of the trees according to the current basal areas
coincides with the one for the past basal areas. Then, we can chose n trees
corresponding to any specified set of order statistics (sample quantiles) from
the sample of N , and use their past basal areas to estimate the distribution
parameters. The mean or total past basal area can be obtained from the
estimated distribution.

A commonly used model for tree basal area (or, equivalently, dbh) dis-
tributions is the two-parameter Weibull, with distribution function

F (y) = 1− exp[−(y/b)c].

The logarithm z = ln y has the smallest extreme value distribution

G(z) = 1− exp[−exp(
z − µ

σ
)],

with
µ = ln b, σ = 1/c,

which is of the location-scale type. Hassanein (1972) gives the ABLE co-
efficients and optimal ranks for this distribution and n between 2 and 10.
These values were used to estimate the past basal area with samples of 2,
4, and 8 trees.

The procedure is as follows. The trees in a plot are sorted in decreas-
ing order of dbh, receiving ranks 1, . . . , N . Select the trees with ranks
[λ1N + 1], . . . , [λnN + 1], where [x] denotes the integer part of x (i. e. the
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largest integer not exceeding x), and the λi are the optimal “spacings”, from
Hassainen’s Table 2. Estimate the Weibull parameters by

b = exp(
n

∑

i=1

bi ln yi),

c = 1/(
n

∑

i=1

ci ln yi),

where yi are the past tree basal areas for the selected trees, and the coef-
ficients are from Table 2 in Hassanein (1972). The past mean basal area
estimate is given by

ˆ̄Y = bΓ(1 + 1/c).

The assumptions on which this method is based can be regarded only
as rough approximations (Sutton 1973, Garćıa 1991). In addition, “best”
estimates of distribution parameters do not result necessarily in “best” es-
timates for the mean. Nevertheless, the assumptions are probably not too
far from reality, and the high efficiency of the estimators when the model is
“true” originally suggested the possibility of obtaining acceptable estimates
with a small number of tree-ring measurements. Incidentally, Weibull dis-
tributions and no changes in ranking imply a linear relationship between
the logarithms of the tree diameters at two points in time (Bailey 1980, but
note that equation (11) and following results are incorrect). Data plotting
shows reasonably good log-log trends.

5 Simulation

The 10 distinct combinations of probability sampling plan and estimator
were applied to the 100 plots (fifty 2-year intervals and fifty 6-year inter-
vals), with sample sizes of 2, 4, and 8 trees. Although in a few cases the
exact variances could have been calculated, repeated sampling was used to
compare the performance of the various methods. In each instance, 100
samples were simulated, and mean errors (bias) and mean squared errors
were computed.

All the programming and computations were done in APL, using STSC’s
APL*PLUS interpreter. The APL built-in random number generator, known
to be of good quality, was used. Computing time for the 300 000 samples
was approximately 3.7 hours on a 16 MHz 386SX personal computer.
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The quantile-based estimator was also applied to the 100 plots, using
2, 4, and 8 quantiles. The method does not involve randomization, so that
there were no replications.

6 Results

6.1 Probability sampling

There was no consistent pattern in the mean errors for the unbiased (UMV)
compared to the ratio and regression estimators (RAT and REG). Therefore,
any biases in RAT and REG are likely to be small. By using mean square
errors, bias effects are included in the performance comparisons below.

There are clear relationships between the mean square errors and the
means, with the form of these trends varying across methods. The number
of trees in a plot had no appreciable effect. For presentation purposes,
the plots have been grouped according to their mean basal areas into three
classes of 17, 16, and 17 trees.

It was found that a logarithmic transformation gave a more symmetrical
distribution and stabilized the variances of the mean square errors. For this
reason, the statistical analysis was based on the logarithms of the relative
root-mean-square (RMS) errors.

Tables 2 and 3 show the percentage relative RMS for the 2-year interval
and 6-year interval plots, respectively. These are geometric means within
each class (corresponding to the means of the logarithms). An analysis of
variance of the logarithmic relative RMS was used to calculate least signifi-
cant differences between methods (LSDs) at the 95% confidence level. The
individual-class LSDs were all fairly similar, with a clear trend only across
sample sizes, so that pooled LSDs for each sample size were used. In the
tables, vertical bars join methods differing by less than the LSD.
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Table 2: Relative RMS error of past basal area estimates (%). 2-year inter-
vals

Mean diameter, cm
3 – 28 29 – 37 38 – 56

OSP3/UMV 7.35 OSP3/UMV 3.30 STR/RAT 1.95
OSP3/REG 7.37 OSP3/REG 3.30 STR/REG 1.95
STR/RAT 7.58 STR/RAT 3.45 OSP3/UMV 2.01
STR/REG 7.61 STR/REG 3.46 OSP3/REG 2.01

n = 2 SP3/UMV 7.89 SP3/UMV 3.50 SP3/UMV 2.21
SP3/REG 7.90 SP3/REG 3.51 SP3/REG 2.22
SRS/RAT 8.49 SRS/REG 3.66 SRS/RAT 2.30
SRS/REG 8.49 SRS/RAT 3.66 SRS/REG 2.30
STR/UMV 16.80 STR/UMV 12.44 STR/UMV 12.57
SRS/UMV 24.03 SRS/UMV 18.96 SRS/UMV 19.90

OSP3/UMV 4.50 OSP3/UMV 2.16 OSP3/UMV 1.25
OSP3/REG 4.52 OSP3/REG 2.16 OSP3/REG 1.26
STR/RAT 4.86 SP3/UMV 2.30 STR/RAT 1.29
STR/REG 4.89 SP3/REG 2.30 STR/REG 1.29

n = 4 SRS/RAT 5.46 STR/RAT 2.43 SP3/UMV 1.41
SRS/REG 5.47 STR/REG 2.43 SP3/REG 1.41
SP3/UMV 5.52 SRS/REG 2.48 SRS/RAT 1.45
SP3/REG 5.53 SRS/RAT 2.49 SRS/REG 1.45
STR/UMV 8.56 STR/UMV 6.13 STR/UMV 5.61
SRS/UMV 16.49 SRS/UMV 13.17 SRS/UMV 13.46

OSP3/UMV 3.07 OSP3/UMV 1.30 OSP3/UMV 0.77
OSP3/REG 3.09 OSP3/REG 1.31 OSP3/REG 0.77
STR/RAT 3.11 SP3/UMV 1.38 STR/RAT 0.84
STR/REG 3.13 SP3/REG 1.39 STR/REG 0.84

n = 8 SP3/UMV 3.51 STR/RAT 1.45 SRS/RAT 0.97
SP3/REG 3.53 STR/REG 1.46 SRS/REG 0.97
SRS/RAT 3.54 SRS/REG 1.61 SP3/UMV 0.98
SRS/REG 3.54 SRS/RAT 1.61 SP3/REG 0.98
STR/UMV 4.71 STR/UMV 2.87 STR/UMV 2.59
SRS/UMV 10.66 SRS/UMV 8.06 SRS/UMV 8.50
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It is clear that large gains are possible by using fully the information on
current diameters instead of ignoring it (SRS/UMV) or of using it just for
stratification (STR/UMV). Simple random sampling with ratio or regression
estimators was generally inferior to stratification and variable probability
sampling.

There was no gain from using regression over the ratio or UMV estima-
tors in stratified and variable probability sampling, respectively. Regression
could be useful, however, in estimating variables not so directly related to
current basal area, such as height or volumes.

The most efficient methods were OSP3/UMV or STR/RAT, with the
first slightly better for the 2-year intervals, and the second for the 6-year
intervals. Implementing the stratification procedure is somewhat more com-
plicated than OSP3 sampling. Together with the theoretical bias of the ratio
estimator, this might suggest OSP3/UMV as the better method in general.

SP3/UMV was not far behind, and the fact that it can be approximated
without having to list and number all the plot trees (i. e., without a sampling
frame) would make it preferable in many circumstances. The approximation
involves having to guess the current basal area before measuring the trees,
and can cause some variation in the intended sample size. Incidentally, as
indicated by Schreuder et al. (1971), this seems an attractive alternative to
the popular 3-P sampling in forest inventories, especially since the advent
of intelligent portable data-loggers. Sample size is more predictable, and
precision can be expected to be higher.

As expected, the RMS error is higher for 6-year than for 2-year intervals.
Data plotting shows much weaker relationships between current and past
basal areas in very young stands compared with more mature ones. This
contributes to the differences in performance with tree size observed for the
methods based on these relationships.

To evaluate the magnitude of the sampling errors and choosing a sample
size, it would be necessary to compare them to measurement and other error
sources. For example, Kinashi (1953) found a standard deviation of 0.44 cm
in random callipering of trees having a mean dbh of 20 cm. This is about
4.4% for a tree basal area, or 0.88% for the mean of 25 trees. More research
on the precision of tree-ring data is needed.

Although the relative basal area errors are smaller for larger trees and
shorter time intervals, the basal area increments are also smaller. For the
best methods it was found that the relative increment errors are not strongly
dependent on mean tree or increment size. The averages (arithmetic means)
of the relative RMS errors for basal area increments are given in Table 4.
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Table 3: Relative RMS error of past basal area estimates (%). 6-year inter-
vals

Mean diameter, cm
3 – 28 29 – 37 38 – 56

OSP3/UMV 10.43 STR/RAT 6.98 STR/RAT 5.39
OSP3/REG 10.49 STR/REG 7.00 STR/REG 5.40
STR/RAT 10.58 SP3/UMV 7.44 OSP3/UMV 5.74
STR/REG 10.62 SP3/REG 7.45 OSP3/REG 5.75

n = 2 SP3/UMV 11.06 OSP3/UMV 7.53 SP3/UMV 5.86
SP3/REG 11.09 OSP3/REG 7.54 SP3/REG 5.86
SRS/RAT 12.03 SRS/RAT 7.71 SRS/REG 6.07
SRS/REG 12.04 SRS/REG 7.72 SRS/RAT 6.07
STR/UMV 16.30 STR/UMV 14.61 STR/UMV 13.18
SRS/UMV 23.25 SRS/UMV 20.81 SRS/UMV 19.32

OSP3/UMV 6.82 STR/RAT 4.55 STR/RAT 3.59
OSP3/REG 6.85 STR/REG 4.57 STR/REG 3.60
SP3/UMV 6.94 OSP3/UMV 4.69 SP3/UMV 3.77
SP3/REG 6.98 OSP3/REG 4.71 SP3/REG 3.77

n = 4 STR/RAT 7.09 SP3/UMV 5.07 OSP3/UMV 4.03
STR/REG 7.12 SRS/RAT 5.07 OSP3/REG 4.04
SRS/RAT 7.82 SRS/REG 5.08 SRS/REG 4.17
SRS/REG 7.83 SP3/REG 5.09 SRS/RAT 4.17
STR/UMV 9.32 STR/UMV 7.82 STR/UMV 6.46
SRS/UMV 15.53 SRS/UMV 13.89 SRS/UMV 13.75

SP3/UMV 4.04 STR/RAT 2.96 STR/RAT 2.28
SP3/REG 4.05 STR/REG 2.98 STR/REG 2.28
OSP3/UMV 4.39 OSP3/UMV 3.14 OSP3/UMV 2.46
OSP3/REG 4.42 OSP3/REG 3.15 OSP3/REG 2.47

n = 8 STR/RAT 4.69 SP3/UMV 3.29 SP3/UMV 2.59
STR/REG 4.71 SP3/REG 3.30 SP3/REG 2.61
SRS/RAT 4.99 SRS/RAT 3.45 SRS/REG 2.67
SRS/REG 5.00 SRS/REG 3.45 SRS/RAT 2.67
STR/UMV 5.46 STR/UMV 4.12 STR/UMV 3.61
SRS/UMV 9.93 SRS/UMV 9.20 SRS/UMV 8.78
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It is interesting that there are no large differences either between the 2-year
and the 6-year intervals, although some interaction between method and
interval length is again apparent.

Table 4: Relative RMS error of basal area increment estimates (%)
Method 2 years 6 years
STR/RAT 14.5 12.9

n = 2 OSP3/UMV 14.5 13.7
SP3/UMV 15.8 13.9

STR/RAT 9.7 8.5
n = 4 OSP3/UMV 9.2 9.1

SP3/UMV 10.5 9.2

STR/RAT 6.2 5.5
n = 8 OSP3/UMV 5.8 6.2

SP3/UMV 7.3 6.2

6.2 Quantile-based estimation

For the quantiles method there is only one error value from each plot. RMS
errors were computed within each of the three tree-size groups. These are
compared in Table 5 with RMS errors for OSP3/UMV calculated by pooling
the square errors of the 100 replications. In the table, the first number of
each pair corresponds to the quantiles method, and the second to OSP3.

The variability of the quantile RMS errors for the size groups is large,
since they are based on just 16 or 17 values. The OSP3 method appears

Table 5: Mean tree basal area RMS errors (cm2) for the quantiles and
OSP3/UMV methods

Tree-size groups
Interval n Small Medium Large All
2-yr 2 22.5 19.6 35.5 32.4 64.1 33.8 44.4 29.3
2-yr 4 15.8 11.9 34.4 21.5 27.6 21.8 26.9 18.9
2-yr 8 13.1 8.1 20.6 13.0 27.8 13.8 21.4 11.9
6-yr 2 67.3 58.6 96.2 83.9 63.4 98.9 76.6 82.1
6-yr 4 35.8 40.8 52.9 52.6 75.8 66.5 57.3 54.3
6-yr 8 21.8 31.0 45.1 36.9 35.2 44.9 35.1 38.0
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superior for the 2-year intervals, but for the 6-year intervals the compari-
son is inconclusive. With model-dependent methods there is a risk of bias
causing spurious relationships between variables, which could be especially
troublesome in growth modelling applications. Therefore, on the base of
these results the quantile-based method cannot be recommended.

It seems plausible, however, that related approaches, such as using BLUE
instead of ABLE estimators, could result in better performance. It was found
that with n = 8 and N ≤ 30, for example, Hassainen’s spacings produce
samples with less than 8 distinct trees, so that taking into account the fi-
nite nature of the population would certainly improve the estimates in those
instances. Methods could be designed also aiming at minimizing the vari-
ance of estimators for the mean instead of for the distribution parameters.
Another possibility would be to introduce randomization and develop a hy-
brid method, with a sampling plan near-optimal under the assumed order
statistics model and a model-independent estimator.

7 Conclusions

To estimate past basal area, methods that exploit the correlation between
current and past diameters were much more efficient than unbiased estima-
tion with simple or stratified random sampling.

The best methods were a near-optimal stratification with ratio estima-
tion, and an “ordered systematic with probability proportional to predic-
tion” (OSP3) sampling plan with the Horwitz-Thompson estimator. Re-
gression estimators did not reduced the mean square errors. The OSP3

method is somewhat easier to implement and is free of the theoretical bias
of the ratio estimator, so that it may be recommended in preference to the
stratification approach.

A similar method without pre-ordering (SP3) was almost as good. It
can be approximated without the need for numbering and listing all the plot
trees, which would make it the preferred alternative in many circumstances.

A model-dependent approach based on order statistics of the Weibull
distribution seems reasonably precise, but not as good as OSP3. Further
refinements might make this and related methods an attractive option.

Definite decisions about sample sizes would require more information
on measurement and other non-sampling errors. Strategies for the joint
estimation of basal area and height also need to be investigated.

15



Acknowledgments

Thanks to Mark Kimberley for discussions on statistical analysis of the re-
sults.

References

Bailey, R. L. (1980). Individual tree growth derived from diameter distribu-
tion models. Forest Science, 26 (4), 626–632.

Chan, L. K. and Cheng, S. W. (1988). Linear estimation of the location and
scale parameters based on selected order statistics. Commun. Statist.

-Theory Meth., 17 (7), 2259–2278.

Cochran, W. G. (1977). Sampling Techniques (Third ed.). Wiley.

Connor, W. S. (1966). An exact formula for the probability that two spec-
ified sampling units will occur in a sample drawn with unequal prob-
abilities and without replacement. Journal of the American Statistical

Association, 61, 348–390.
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