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A System for the Differentiation of Fortran Code
and an Application to Parameter Estimation
in Forest Growth Models

Oscar Garcia®

Abstract. An automatic differentiation system, GRAD, is described. Given a Fortran
subprogram for computing a function, it generates a subprogram that computes partial
derivatives. The APL computer language was used in the implementation.

The performance of automatic differentiation in fitting growth models for intensively
managed forest plantations is examined. The models consist of a system of stochastic dif-
ferential equations. and parameters are estimated by maximume-likelihood using a general-
purpose variable-metric optimization procedure. Compared to central difference approxi-
mations. the use of derivatives generated by GRAD in the optimization reduced computing
time by a factor of 4 on an 80386/80387 microcomputer and by a factor of 6 on a MicroVAX
3500. GRAD was found superior to JAKEF in this type of problem.

GRAD combines the forward mode of automatic differentiation with symbolic manip-
ulation. A conceptual framework capable of describing these hybrid strategies is presented.
and their advantages are discussed.

Keywords: Automatic differentiation, symbolic differentiation. computer algebra, statis-
tics, estimation, optimization. forestry, maximum-likelihood. stochastic differential equa-
tions, APL. GRAD, JAKEF.

1 Introduction. In an effort to speed-up the estimation of parameters in complex
forest growth models, an automatic differentiation system, GRAD. was developed [Garc89a).
[t takes as input a Fortran program unit (usually a subroutine or function subprogram) that
computes the value of a function, and produces as output another Fortran program unit
that computes partial derivatives with respect to specified independent variables.

The paper is in three parts. First, the methods used in GRAD and its implementation
are described, and examples of output are shown. In the second part I discuss the application
to growth models, and compare the performance of the generated differentiation code with
the use of finite difference approximations. In this type of problem GRAD is found to be
superior to JAKEF [Hill83a), one of the better-known automatic differentiation systems.
Finally, a framework for the description and analysis of automatic differentiation strategies
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274 PREPROCESSORS AND LANGUAGE EXTENSIONS

is presented. A state-space interpretation is used, instead of the more common treatment
through computational graphs. This allows for the use of symbolic manipulation at the
statement level, as implemented in GRAD.

2 The GRAD automatic differentiator. The basic idea was inspired by Wengert
(Weng64a]. He suggested substituting for each operator a routine, that in addition to
computing the result of the operation would also produce the values of the derivatives. A
related approach was implemented by hand in order to compute first and second partial
derivatives in a parameter estimation program ([Garc83a] and Appendix 2). The problem
required the computation of the derivatives of a function defined by a complicated Fortran
subroutine (the log-likelihood function) with respect to a number of independent variables
(the model parameters). A subroutine to compute the derivatives was built by following
each assignment statement in the function evaluation routine by statements computing the
derivatives of the left-hand-side variable (usually an intermediate variable). For example.

D =As*B + SIN(C)
would be followed by

Di = A1 * B + A » Bi + COS(C) * C1

D2 = A2 = B + A » B2 + COS(C) » C2

etc.,
where the Ak, Bk, and Ck are partial derivatives with respect to the A-th independent
variable. computed in previous statements (with obvious simplifications where the partials
for some terms do not exist). The function derivatives sought follow the final function
value assignment, at the end of the subroutine. Unlike Wengert’s, this method produces
stand-alone code. without the overheads of calling routines in a run-time package.

GRAD essentially automates this procedure. The statements that compute derivatives
precede instead of follow each assignment from the input, in order to handle correctly
statements that re-define variables. as in

A=AssB.

For each assignment statement in the input, the Fortran code to compute the relevant
derivatives is generated by symbolic manipulation of the right-hand-side. The symbolic dif-
ferentiation algorithm is based on recursive descent parsing [Davi8la, for example]. It does
not need to be as sophisticated as those in computer algebra systems [Char9la.Gold91a},
since maximum simplification of expressions is not required; most redundancies will be re-
moved by an optimizing Fortran compiler. Unnecessary parentheses, however, are avoided
as much as possible because parentheses in Fortran fix the order of operations, inhjbit-
ing optimization. Note also that a good optimizing compiler will take care of common
subexpressions across statements, such as COS(C) in the example above.

Identifiers for the derivatives are formed by appending to the variable name a user-
defined delimiter character and the number of the independent variable (see the examples
in Appendix 1, where the delimiter is _). ldentifiers exceeding the 6-character Fortran
standard maximum length might need to be changed by the user (a warning is produced),
although many compilers can accept long variable names.

A list of left-hand-side variables encountered and derivatives generated is kept in an
internal data structure as the statements are processed. In order to minimize computing and
storage requirements. new statements are initially generated only for non-zero derivatives.
In some instances this would not produce correct results, and multiple passes may be needed
to initialize at zero some of the derivatives. For example, with one pass the following
statements would generate incorrect code (X is the first independent variable and this is the
first appearance of A; derivatives of VAR with respect to the k-th independent variable are
identified as VAR _k):

IF (I .LT. §) GO TO 10 IF (I .LT. §) GO TO 10
A = 0. A=0.
GO TO 20 GO TO 20
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10 CONTINUE 10 COXTINUE
A=1X =3> ALl =1,
20 CONTINUE A=X
B=A+1 20 CONTINUE
B_.1 = A_t
B=A+1

Here A_1 = 0.0 would be needed following the IF statement. Similar problems may arise
from loops. and in other sitvations as in Problem E in Appendix . GRAD handles these
cases automatically with multiple passes over the input code. The need for another pass
is detected when a derivative is encountered for the first time for a variable that had been
used on the left-hand-side of a previous assignment. Keeping the list of derivatives from the
previous pass causes that new derivative to be initialized at zero in the appropriate place.

A result of the myvopic strategy of examining only assignment statements. one at a time.
was a relatively simple and efficient system. However, a few restrictions must be observed
in the source coding:

e User defined functions involving the independent variables are not supported.
e The independent variables must be scalars or array elements with constant sub-
scripts.
e Assignments involving independent variables directly or indirectly are not allowed
in IF or other control statements.
o Labels are not allowed in assignment statements (use CONTINUE).
In addition. the header of the output routine must be edited manually to change its name
and to include the derivatives as arguments. It may also be necessary to declare the new
variables if default types or IMPLICIT declarations are not used. Most of these limitations
could be eliminated by adding appropriate pre- and/or post-processing steps to the current
implementation.

If the input subroutine computes a vector-valued function, GRAD produces the ele-
ments of the Jacobian matrix. Second or higher derivatives can be generated simply by
running the output through GRAD again. The resulting code. however. will perform re-
dundant computations. since (for second derivatives) two versions of the gradient and of
the off-diagonal Hessian elements are generated. [t would not be difficult to eliminate this
redundancy in a post-processing step. but this has not been implemented vet. '

GRAD was written in APL. using STSC’s APL*PLUS interpreter for [BM PC or com-
patible microcomputers [STSC89a]. This is transparent to the user. however. and no knowl-
edge of APL is required to use it. The high level and power of the APL computer language
made it possible to complete the implementation in a very short time. The system also runs
with the inexpensive Pocket APL [Turn83a] and other STSC APL interpreters for various
computers, and a version for the free I-APL interpreter is available. Both versions of GRAD
can be obtained from the author. free.

3 Application and performance.

3.1 The problem. The development of GRAD was motivated by the need to speed-
up the estimation of parameters in a series of growth models for forest plantations. The mod-
els are systems of stochastic differential equations. with parameters estimated by maximum-
likelthood. Given a set of data. parameter estimation is an unconstrained function opti-
mization problem. finding the parameter values that minimize the negative log-likelihood.
The models and estimation procedures are described in more detail in Appendix 2 and in
the references.

For each data set. there are tvpicallvy many parameter estimation runs. with variations of
the basic model involving different numbers of state variables, the fixing at zero of various
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subsets of the parameters. and other model changes. It is also advisable to repeat the
procedure with different starting points to guard against the possibility of local optima.
The number of parameters vary between 9 and 20.

The optimization is carried out with a general-purpose numerical optimization routine.
After some unsuccessful experiences with a finite differences implementation of Fletcher and
Powell's algorithm {Lill70a], and with Nelder and Mead's simplex procedure ([ONei71a], see
[Garc79a]). Hatfield Polytechnic's OPVM routine has performed well [Bigg7la.Bigg73a.
NOC76a]. OPVM is a Fortran subroutine that uses a quasi-Newton or variable-metric un-
constrained optimization method. For the gradient it can use analytic first derivatives. or
approximate them with central differences in the auxiliary subroutine OPND1. Other more
recent optimization routines have not been tested because they lack an essential feature
of OPVM: if the function evaluation routine cannot compute the value at a given point,
it can set a flag, and OPVM then reduces the step length and tries again. This is neces-
sary because often trial points cause floating point exceptions. typically from out of range
arguments in exponentials and other functions. In addition. some parameter values result
in complex eigenvalues for the A matrix (Appendix 2). unacceptable on physical grounds.
The alternative of supplving step bounds is generally unsatisfactory.

The likelihood function to be optimized in these models is fairly complex. As much of
the computation as possible is done in a pre-processing step. storing transformed data in an
array. Still. the function evaluation subroutines called by the optimization procedure contain
some 130 to 180 Fortran statements. This size. together with the frequent modifications
to the programs. made impractical the hand-coding of analytic derivatives. Therefore, the
OPND! difference approximations were used.

Each function evaluation includes a loop over hundreds. or even thousands of observa-
tions. An approximation of the gradient by central differences requires a number of function
evaluations equal to twice the number of variables (parameters). With the use of more com-
plex model forms and larger data sets. the necessity of many lengthy over-night computer
runs increased costs and slowed down progress considerably. In 1988, GRAD was developed
in an attempt to improve computing turn-around.

3.2 Tests and results. The use of analytic derivatives generated by GRAD and
of difference approximations has been compared on three parameter estimation problems
(Table 1). Problem A is one of the simpler models, with a moderate amount of data
[Garc84a). Problem B is a more complex model [Garc39a], typical of those that motivated
the automatic differentiation approach. The runs with A and B started from reasonable
estimates. with those for A derived from the sclution of B. and vice-versa. Problem C
tested a more general form for the stochastic structure, with additional parameters to be
estimated [Garc79a.Garc84a). The starting point for C was the parameters estimated with
the simpler form, and the optimization procedure stopped with only small changes in the
log-likelihood and failing the convergence test, showing the problem to be ill-conditioned
(over-parametrized).

The computations were performed in double precision on an AT-compatible 20 MHz
80386 microcomputer with an 80387 coprocessor and Microsoft Fortran 4.10. Problem B
was also run on a MicroVAX 3500 with VAX Fortran. The problems are reasonably well
scaled. with variables and objective value not very far from one. The step size for the finite
differences was set to 10=2 for runs A and B, and to 10~* for C. Previous experience had
shown that the step size is not critical, and that these values are satisfactory.

The third line in Table 1 shows the time taken by the automatic differentiation proce-
dure. This does not include the minor manual editing required to change the subroutine
header and assign the gradient. The finite differences run on problem B stopped without
reducing all gradient components below the value of 10™> specified in the convergence cri-



PARAMETER ESTIMATION IN FOREST GROWTH 277

Problem A B C B, VAX
Variables (parameters) 9 16 18 16
Observations 339 2093 1655 2093
Gradient subroutine generation (min) 6 10 14 —
Difference approximations
Function calls 70 301 147 348
Gradient calls 45 184 32 210
Time (minutes) 10.8 890.7 89.9 614.8
Analvtic derjvatives
Function calls 72 352 145 384
Gradient calls 45 211 33 221
Time (minutes) 2.7 228.5 21.8 99.3
Difference approximations run-time
/ analytic derivatives run-time 4.0 39 4.1 6.2

Table 1: Parameter estimation runs.
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Figure 1: Optimization progress for problem B.

terion, although it was verv close. The speed-up factors from using analytic derivatives
are given in the last row of Table 1. Some additional improvement could be obtained by
modifying the optimization routine to make use of the function values computed by the
analytic gradients subroutine.

There was no evidence of improved reliability from using analytic derivatives, except
perhaps for the difference in satisfying the stringent convergence test just mentioned. The
optimization paths in problems A and C were very similar. but in problem B the difference
approximations achieved larger reductions of the objective in fewer iterations (Figure 1).

Table 2 shows what Griewank ({Grie89a]) calls the work ratio, the ratio of the time
required to compute the (analvtic) gradient to the time required to compute one function
evaluation (actually. a function value is also produced together with the gradient). This
can be compared to ratios of n + 1 and 2n + 1 for one-sided and central finite differences.
respectively, where n is the number of variables. Problem D is a model similar to A, but
with more free parameters, and with the data set of C. The computations for D were done
on a 12 MHz AT-compatible 80286 microcomputer, with the 80287 coprocessor circuitry
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Problem Variables Observations Work ratio

A 9 339 3.0
B 16 2093 3.6
B, VAX 16 2093 3.7
C 18 1655 6.4
D 18 1633 5.2

Table 2: Ratio of gradient to function evaluation times (work ratio).

Problem Variables GRAD JAKEF

D, 100 obs. 18 5.2 8.0
E 4 2.7 11.1
F 3 3.1 11.2

Table 3: Work ratios for GRAD and JAKEF

modified to run at 12 MHz. and Microsoft Fortran 4.10.

Another automatic differentiation system. JAKEF [Hill85a.Jued91a], was also tried.
JAREF uses a reverse differentiation approach [Grie89a], with storage requirements in-
creasing with the number of statements executed in the function evaluation. This number
is large here. due to the loop over the observations. In the 640 Kbytes of memory available
in a microcomputer under DOS. JAKEF was unable to handle problems of practical size
(200 or more observations). In addition. a test with problem D on a subset of 100 observa-
tions showed that the code generated by JAKEF was substantially slower (Table 3). The
results for two small examples (Appendix 1) are also included in the Table as E and F.

3.3 Discussion. | have not tested alternatives to the direct maximization of the
likelihood with a variable-metric algorithm. An attractive possibility are the extensions of
Fisher's method of scoring [Zack71a] discussed by Bard [Bard74a] under the name of the
Gauss Method. These provide an explicit approximation to the Hessian that can be used in
the likelihood optimization. Although more difficult to implement, these techniques might
be more efficient. The relative performance of analytic derivatives vs difference approxima-
tions. however, is likely to be similar. The same is true for alternative estimation criteria,
for example. the maximization of the product of the likelihood and a prior distribution in
Bayesian approaches.

The gains from automatic differentiation may differ with other optimization proce-
dures. In particular, some implementations of difference approximations start using for-
ward differences. switching to central differences near the optimum. It is also possible that
a derivative-free optimization algorithm. such as Brent’s {Bren73a] modification of Powell’s
method. could perform well in this application.

The speed-up in the estimation of growth model parameters achieved through automatic
differentiation was well worthwhile, reducing computing costs and the turn-around time for
each computer run. Later, it made it feasible to perform the parameter estimation on
microcomputers.

With the increased availability of inexpensive and powerful microcomputers. the prepara-
tory work required by current automatic differentiation procedures is probably not war-
ranted for the casual user. or for one-off or small optimization problems (see also [Soul91a)).
For large problems that need to be solved repeatedly, however, automatic differentiation
can be very useful.

The larger savings in computing time on VAX computers shown here agrees with our
previous experience [Garc8%a]. A possible reason might be differences in the degree of
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optimization achieved by the Fortran compilers.

In terms of storage requirements and speed. the code generated by GRAD seems fairly
efficient, at least compared to JAKEF in this type of problems. Even more favorable results
have been reported by Soulié in tests including also other automatic differentiation systems
[Soul91a).

4 Analysis of differentiation approaches. Two techniques of automatic differ-
entiation of algorithms are generally recognized, the forward mode and the reverse mode
[Grie89a.Jued91a]. Symbolic differentiation can be used on expressions. but does not nor-
mallv apply to algorithms containing loops and conditionals [Char9la]. GRAD can be
considered as a hybrid approach. combining the forward mode of handling algorithmic con-
structs with symbolic differentiation at the statement level. Alternatively, it can be seen as
extending symbolic differentiation to the manipulation of whole algorithms.

Automatic differentiation techniques are usually described and analyzed through com-
putational trees and graphs (Rall81a.Grie89a). A different and somewhat more general
formalism is presented here, covering the use of svmbolic manipulation as in GRAD.

4.1 Model of computation. Consider the execution of a subprogram or algorithm
as a sequence of assignments:

g, — filx), i=1,...,m, (1)

where x = (z;,...,Z,) are all the variables defined in the program. In the ¢-th assignment
the k,-th variable is given the value of the right-hand-side of (1). The sequence of assign-
ments may vary between runs by the action of control statements; we consider the sequence
determined by a particular initial value of x.

From a state-space point of view, the state of the process after the i-th assignment is
given by the value x* of the state vector x (the contents of the storage locations). Transitions
are given by

x = fi(x"1) (2)
according to the mapping

f:R ~ R

X o (iyeesThoys Si(X) Thigy s - Zn)-

Our subprogram must compute a function value as a function of p independent variables.
Assume that the independent variables are in the first p initial values of x:

(z?,...,zg) =0,
and the function value is
. = 0.
We want to compute the gradient
9¢
56 = &

Observations:

a) All variables (storage locations) can be re-assigned.

b) At stage z, intermediate variables not initialized or yet assigned a value contain
arbitrary values. In a valid program these are not used in f;.
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¢) m can be much larger than the number of statements in the subprogram, for example
if the subprogram contains loops.

d) We may think of (1) as assignments in a high-level language (e.g. Fortran), with
arbitrary right-hand-sides. This is the view taken in GRAD. Alternatively, they may be
assignments in the Assembler or machine language code after compilation, or results from
elementary operations in the computational tree generated by a precompiler. This later
one is the view commonly taken in the literature. with the f; in (1) limited to primitive
operations on one or two arguments.

e) [ discuss only scalar assignments, as in Fortran and similar languages. The extension
to languages such as APL, which allows parallel assignments to arrays or sub-arrays, is
straightforward.

4.2 Forward differentiation. The forward mode is based on carrying forward the
partial derivatives with respect to the independent variables:

Ix"

TR = nxp
59 = Y' e RP
The initial value is clearlv
x°
YO = —_— = 0 T’
50 ~ 10

(where I is an identity matrix and 0 is a matrix of zeroes) and, using the chain rule. the
i-th value can be obtained as

' 9x' ox'! Ofi yric1

Y =56 "1 96 " oax®

or

Y =J'Y" i=1,....m, (3)
where J* € R"*" is the Jacobian matrix of (2). The required gradient is the k,,-th row of
Y™

With scalar assignments, only the k,-th row of Y changes in step i. The calculations
can be arranged as follows. where y; denotes the j-th row of Y:

Y ~ (10T

fort=1,....m
Ye, — VLAY (4)
Ty, — fi(x)

8 — Yim:

4.3 Reverse differentiation. The reverse mode iterates backwards carrying the
partial derivatives of the final function value:

305 —_al PN

% =z' e R".
The starting value is

mw 00

= — = e}

ox™ m’
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where e; is the j-th Cartesian basis (row) vector. The chain rule produces the updating
formula:

i=1 a¢ 3(15 6x‘ _ iafi

I PT  r

z
or
z ' =23 i=m,. ...l (3)

The required gradient is left in the first p components of 2°.
With scalar assignments.

I =1+ el (Vfi - ex),
and the calculations for the “reverse sweep” are as follows:
zZ — €,
fort=m,....1

z —z+(Vf; — e )Tk
g —(z21,...5p).

(6)

A forward sweep over the sequence (1) must be performed first to obtain the Vf; required
in (6). There are at least two possibilities. In the immediate differentiation variant, the Vf;
are computed and stored in the forward sweep. In the delayed differentiation variant. the
x' (or sufficient information to reconstruct them later) are stored in the forward sweep. and
used to compute the Vf; as needed in the reverse sweep.

4.4 Discussion. I have ignored questions of existence and correctness for values of
@ where changes in the execution sequence occur. Some careful analvsis of this issue might
be needed.

As described above. the computational effort in the forward and reverse strategies differs
significantly onlv in the computation of (4) instead of (6). The expression in (4) contains
np multiplications. while (6) has only n. This is the basis for the computational superiority
claimed for the reverse approach [Grie89a,Hili85a].

When the sparsity of Uf; and Y is exploited, however. the situation is not that clear.
It seems likely that in most instances the number of non-zeros in these arrays would grow
slowly, if at all. with the number of independent variables. Properly handled, zero elements
save multiplications and. in addition, some elements of the Vf; in (4) may not be needed at
all. Although the asymptotic number of these multiplications might still be more favorable
in the reverse mode, the practical significance of this is not obvious, at least with high-level
assignments where the bulk of the computational effort is elsewhere.

It is clear from its description that GRAD uses a forward approach. taking advantage of
sparsity to avoid unnecessarv computation and storage. The multiple passes may be needed
to ensure that the sparsity patterns are valid for any run-time execution sequence, and that
values are correctly initialized. Unlike most (all?) other automatic differentiators, GRAD
works with the high-level Fortran assignments of the input. instead of breaking them down
into assignments involving just one elementary arithmetic operation or univariate function.
Therefore. it may not be seen as “pure” forward mode. but rather as a hybrid , using
symbolic algebraic manipulation within statements.

Svmbolic differentiation has been criticized as inefficient. generating repeated common
subexpressions. However. apart from the fact that the scope for generating these redundan-
cies in typical Fortran statements is limited, it has here two important advantages. One,
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the resultant expressions for the derivatives are subjected to the full optimization power
of the compiler. The optimization carried out by a modern Fortran compiler (including
the elimination of common subexpressions) is likely to be more sophisticated than any op-
timization built into a differentiator. The second advantage, related to the first, is that the
results from elementary operations within expressions are handled more efficiently, often in
fast CPU registers. instead of having to be explicitly assigned and manipulated as program
variables. In addition, the hybrid approach makes it easier to produce stand-alone code,
without the overheads of a run-time support package.

JAKEF uses the (pure) reverse mode with immediate differentiation. As shown in 3.2,
the storage for the Vf; can become prohibitive for large m. The faster run times for GRAD
on the test functions may be due largely to the use of svmbolic differentiation. and to the
absence of support routine calls.

The storage requirements of the reverse mode could be reduced with delaved differ-
entiation and the use of high-level statements. With a suitable data structure, it should
be possible to store just the zi, and k,. It is conceivable that reverse strategies could be
advantageous for large values of p, with forward strategies preferable when m > n. The
development of efficient symbolic-forward-reverse hybrids is also a possibility.

5 Conclusions. GRAD is an effective tool for the automatic differeatiation of For-
tran code. It produces stand-alone code, without the overheads of run-time auxiliary pack-
ages. On the tests carried out its performance compares favorably with that of JAKEF and
other available systems {Soul91a].

In its current form, GRAD might be considered only as “semi-automatic”, since some
manual editing of the input and/or output is still necessary. Most of this could be avoided
by refinements in the implementation. [t is not clear to me. however, if completely auto-
matic. robust and “fool-proof™ differentiation will ever be achievable. Experience indicates
that occasionally code is generated that, although mathematically correct, is numerically
unfeasible or inaccurate Some of the work in [Fisc91b] might be relevant here.

The use of automatic differentiation in parameter estimation for our growth models
produced worthwhile savings in time and money. Similar results may apply to optimization
and to the fitting of complex statistical models in other fields, if closely related problems need
to be solved repeatedly. With the current software and cheap computing power, however,
automatic differentiation may not be worth the effort for smaller or one-off problems.

The state-space view of automatic differentiation algorithms facilitates the analysis of
hybrid strategies, combining the conventional forward and reverse modes with symbolic
manipulation. [t seems likely that hybrid procedures will often generate more efficient code
than “pure” forward or reverse approaches where expressions are broken down into primitive
unary and binary operations.

Appendix 1. Examples. Two small examples of GRAD input and output are shown
here. These are Problems E and F in Section 3.2.

The subroutine header in the output needs to be edited manually to change its name,
and to include the derivatives in the parameters list. Note that redundant operations such
as »»(2-1) are resolved at compile time, and have no effect on runtime efficiency.

Problem E.

Input:
SUBROUTINE CALFUN(X,N,FF,INF)
IMPLICIT REAL#*8 (A-H,0-2)
DIMENSION X(4)
I8F = 0
DOL1I=2, 4
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IF (X(I) .GT. 0.) GOTO 1
INF = 1
CONTINUE
IF (INF .EQ. 1) RETURN
= (X(1) - 1.)%*2 + (X(1) - DSQRT(X(2)))#=2
FF = FF + (X(2) - DSQRT(X(3)))**2 + (X(3) - DSQRT(X(4)))»*2
RETURE
EXD

Derivating with respect to:
x(1) x(2) x(3) 1(4)

SUBRQUTIBE CALFUN(X,¥, FF,INF)
INPLICIT REAL*8 (A-H,0-2)
DIMENSION X(4)
INF = 0
DD1I=2, 4

IF (X(I) .GT. 0.) GOTO 1

ISF = 1

CONTINUE
IF (INF .EQ. 1) RETURN
FF_1=2%(X(1)~1.)9*(2-1)+2*(X(1)-DSQRT(X(2)))**(2-1)
FF_2=2%(X(1)-DSQRT(X(2)))»*(2-1)»(-1./2./DSQRT(X(2)))

0.
0.
(X(1) - 1.)*s2 + (X(1) - DSQRT(I(2)))**2
FF_2+2%(X(2)~-DSQRT(X(3)))*»(2-1)
FF_3+2%(X(2)-DSQRT(X(3)))»»(2-1)#(~-1./2./DSQRT(X(3)))+2*(X(3)
RT(X(4)))*»(2-1)
=FF_4+2+(X(3)-DSQRT(X(4)))**(2~-1)+(-1./2./DSQRT(X(4)))

FF + (X(2) - DSQRT(X(3)))**2 + (X(3) - DSQRT(X(4)))**2

3
-4
-2
-3
DSQR
-4

:::"::::a

TURN
END

Problem F.
Input:

SUBROUTINE FP (X, Y, Z, F)

= Fletcher and Powell, 1963 ==

IMPLICIT REAL»6 (A-H,0-2)

PI = 3.14159

PI2 = 2 * PI
= DSQRT(X*X + YsY)

IF (X .LT. 0) GO TO 10
THTA = DATAN(Y / X) / PI2
G0 TO 20

10 CONTINVE

THTA = (PI + DATAN(Y / X)) / PI2

20 CONTINUE

F = 100. *» ((Z - 10 » THTA)**2 +
1 (R - 1)%%2) + Z»Z

RETURN

END
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Qutput:

=== Derivating with respect to:
c xXyz
C

SUBRQUTINE FP (X, Y, Z, F)
C == Fletcher and Powell, 1963 ==
IMPLICIT REAL+8 (A-H,D-Z)
P1 = 3.14159
P12 = 2 » PI
R_1=(X+X)/2./DSQRT(X#X+Y#*Y)
R_2=(Y+Y)/2./DSQRT(X*X+Y*Y)
R = DSQRT(X*X + Y*Y)
IF (X .LT. 0) GO TO 10
THTA_1=(-Y/X)/X/(1.+(Y/X)»»2) /P12
THTA_2=1./X/(1.+(Y/X)#»*2)/PI2
THTA = DATAN(Y / X) / PI2
GO TO 20
10 COSTIEUE
THTA_1=(-Y/X)/X/(1.+(Y/X)*%2)/P12
THTA_2=1./X/(1.+(Y/X)»%2) /PI2
THTA = (PI + DATAN(Y / X)) / PI2
20 COBTINVE
F_1=2100.#(2%(Z-10+THTA) #¢(2-1)»(-10+THTA_1)+2*(R-1) *#»
(2-1)*R_1)
F_2=100.%(2%(Z-10*THTA) #»*(2-1)#(~10%THTA_2) +2%(R-1)»»
(2-1)*R_2)
F.3=100.%2«(Z~-10THTA)**(2-1)+2+2Z
F = 100. & ((Z - 10 » THTA)#*2 +
1 (R - 1)%e2) + 22
RETURN
END

Appendix 2. Application background. Foresters can influence the development
of a forest stand (a homogeneous patch of forest) through a number of silvicultural treat-
ments . Stand density (trees per hectare), can be controlled by the selection of an initial
planting density, and by thinnings, which are partial cuts where usuallv smaller and mal-
formed trees are removed. Density affects the total volume production. the incidence of
competition-induced mortality, and the size and timber qualitv of individual trees. Timber
quality can also be improved by pruning lower branches, possibly at some cost in reduced
growth. Other management decisions may involve the application of fertilizers and pesti-
cides. different planting or regeneration techniques. the development and use of genetically
improved seed. and the timing of the final cut. Mathematical growth models capable of
predicting treatment effects are essential for rational forest management. especially in in-
tensively managed production forests.

Over the past decade. 10 regional growth models for radiata pine and one for Douglas-fir
have been developed in New Zealand using a methodology based on stochastic differential
equations and maximum-likelihood estimation [Garc88a]. The models can predict the be-
havior of stands subject to a wide range of initial densities, timing and intensity of thinnings,
and in some instances pruning, fertilizing, and genetic improvement.

A brief description of these models and estimation procedures follows. More details can
be found in [Garc79a.Garc34a.Garc89a), and a more general discussion of growth modeling
in {Garc88b]. [Bard74a] is an excellent source for estimation theory and methods.

The state of a forest stand is assumed to be adequatelv described by 3 to 5 state
variables: mean diameter. stand height, trees per hectare. and. in some models. measures
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of ground cover and/or nutrient concentrations. Treatments cause instantaneous changes
in the state variables. Between treatments, the state trajectories are modeled by a system
of differential equations.
The differential equations are linear on power transformations of the state variables,
and can be written as
dx€

_ C
T Ax~ + b,

defining
xC = exp[Clnx].

x is the state vector. and A. b. and C are matrices and vectors of parameters to be
estimated. Some of these are actually functions, containing unknown parameters. of a site
productivity index specific to each stand. Some models include additional functions of state
variables multiplying the right-hand-side [Garc389a).

The data consists of a few consecutive measurements, at irregular intervals, on a large
number of sample plots established in different stands. In order to devise a rational estima-
tion procedure, the data variability is modeled as a perturbation of the differential equations
by a Wiener stochastic process. The resulting stochastic differential equations can be inte-
grated analytically to compute the likelihood function, that is. the probability of the model
generating the observed data as a function of the parameters . The maximum-likelihood es-
timates are those values of the parameters that maximize the likelihood [Zack71a.Bard74a].

The differential equation parameters are estimated by maximum likelihood in two
stages. The height growth is treated as a self-contained subsystem. since it can be as-
sumed that the development in stand top height is approximately independent of the other
state variables. Therefore. one of the equations involves only the heights. and its parameters
are estimated first. together with the site index for each stand. Once these are available. the
rest of the parameters are estimated using the likelihood function for the whole system. In
addition to the Wiener perturbations, the height growth model also includes other random
variables representing measurement errors.

The fitting of the height growth model, although simpler than the full model in being
univariate, involves the optimization of functions of hundreds of variables, i. e. the different
site indices and sometimes nuisance parameters (variances) for each sample plot. A full
Newton algorithm. with modifications to ensure convergence. has been implemented for
this purpose [Garc83a]. Although very large, the Hessian is sparse, with a special struc-
ture exploited by partitioning techniques. Analytic first and second derivatives are used,
computed by a hand-coded implementation of the differentiation approach behind GRAD,
described in Section 2. The procedure has proven to be very reliable and efficient.

For the rest of the parameters. the likelihood function is maximized (or rather. minus
the logarithm of the likelihood is minimized) using a general-purpose variable-metric opti-
mization routine. The smaller number of variables (9-20). and the experimental nature of
the code, subject to frequent detail changes, did not justify the development of a specialized
procedure as in the case of the height model.



Part IX

Automatic Differentiation Bibliography

collected by George F. Corliss

This bibliography represents the common bibliography for all of the papers in this
volume. Each author prepared a bibliography for her or his own paper. The separate
bibliographies were merged into a single BibTex database. and references from several other
sources were added. Especially valuable contributions were made by bibliographic data
bases previously compiled by Bruce Char, by David Gay and by Davis, Corliss, and Krenz
[Davis8al.

This bibliography includes most of the work known to the editors in the area of auto-
matic differentiation. Because it includes all of the works cited by any paper in this volume,
it includes many citations which are not directly related to automatic differentiation. For
example. it includes basic references in optimization, symbolic algebra systems, and several
applications areas.

The electronic form of this bibliography contains many other works relating to auto-
matic differentiation. The electronic version is available from netlib (netlib@research.att.
com). Corrections and additions are welcome and should be sent to Dr. George F. Corliss,
Department of Mathematics, Statistics, and Computer Science. Marquette University. Mil-
waukee. WI 53233 USA. georgecdboris.mscs.mu.edu.

[Abrat0a] M. ABRAMOWITZ AND [. A. STEGUN, eds.. Handbook of Mathematical Func-
tions, Dover, New York, 1970.

[AdaLRM] Apa JoINT PROGRAM OFFICE, Reference Manual for the Ada Programming
Language, ANSI/MIL-STD-1815A, Washington, DC. 1983.

(Adam69a] D. S. ApamsoN aND C. W. WINANT, A SLANG simulation of an initially
strong shock wave downstream of an infinite area change, in Proceedings of the Con-
ference on Applications of Continuous-System Simulation Languages, 1969, pp. 231 -
240.

[AFNO83a] AFNOR, Le langage de programmation FORTRA.V, norme 1SO 1539 (norme
NF Z 63-110), Association Frangaise de Normalisation. Tour Europe, Cedex 7. F-
92080 Paris La Defense Cedex, 1983.

[AhoaB86a)] A. V. AHo, R. SETHI. AND J. D. ULLMAN, Compilers: Principles, Techniques,
and Tools. Addison-Wesley. Reading, MA. 1986.
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